IBM Db2 for Linux, UNIX and Windows (includes Db2 Connect Server) 10.5, 11.1, and 11.5 could allow an authenticated user to cause a denial of service with a specially crafted query due to improper memory allocation.
IBM Db2 for Linux, UNIX and Windows (includes Db2 Connect Server) 11.5 could allow an authenticated user to cause a denial of service with a specially crafted query due to improper memory allocation. IBM X-Force ID: 292639.
IBM Db2 for Linux, UNIX and Windows (includes Db2 Connect Server) 10.5, 11.1, and 11.5 is vulnerable to a denial of service, under specific configurations, as the server may crash when using a specially crafted SQL statement by an authenticated user.
IBM Db2 for Linux, UNIX and Windows (includes Db2 Connect Server) 10.5, 11.1, and 11.5 is vulnerable to a denial of service as the server may crash when using a specially crafted query on certain columnar tables by an authenticated user. IBM X-Force ID: 287613.
IBM MQ 9.3 CD and 9.4 LTS/CD could allow a local user to cause a denial of service due to improper memory allocation causing a segmentation fault.
IBM Db2 for Linux, UNIX and Windows (includes Db2 Connect Server) 11.1 and 11.5 could allow an authenticated user to cause a denial of service with a specially crafted query due to improper memory allocation. IBM X-Force ID: 294295.
IBM Cognos Analytics Mobile Server 11.1.7, 11.2.4, and 12.0.0 is vulnerable to Denial of Service due to due to weak or absence of rate limiting. By making unlimited http requests, it is possible for a single user to exhaust server resources over a period of time making service unavailable for other legitimate users. IBM X-Force ID: 230510.
IBM QRadar WinCollect Agent 10.0 through 10.1.13 could allow a remote attacker to cause a denial of service by interrupting an HTTP request that could consume memory resources.
IBM Tivoli Endpoint Manager could allow a unauthorized user to consume all resources and crash the system. IBM X-Force ID: 123906.
Resolver caches and authoritative zone databases that hold significant numbers of RRs for the same hostname (of any RTYPE) can suffer from degraded performance as content is being added or updated, and also when handling client queries for this name. This issue affects BIND 9 versions 9.11.0 through 9.11.37, 9.16.0 through 9.16.50, 9.18.0 through 9.18.27, 9.19.0 through 9.19.24, 9.11.4-S1 through 9.11.37-S1, 9.16.8-S1 through 9.16.50-S1, and 9.18.11-S1 through 9.18.27-S1.
An issue was discovered in wolfSSL before 5.5.0 (when --enable-session-ticket is used); however, only version 5.3.0 is exploitable. Man-in-the-middle attackers or a malicious server can crash TLS 1.2 clients during a handshake. If an attacker injects a large ticket (more than 256 bytes) into a NewSessionTicket message in a TLS 1.2 handshake, and the client has a non-empty session cache, the session cache frees a pointer that points to unallocated memory, causing the client to crash with a "free(): invalid pointer" message. NOTE: It is likely that this is also exploitable during TLS 1.3 handshakes between a client and a malicious server. With TLS 1.3, it is not possible to exploit this as a man-in-the-middle.
An issue was discovered in Foxit PhantomPDF before 8.3.12. It allows memory consumption because data is created for each page of an application level.
Cloudflare Quiche (through version 0.19.1/0.20.0) was affected by an unlimited resource allocation vulnerability causing rapid increase of memory usage of the system running quiche server or client. A remote attacker could take advantage of this vulnerability by repeatedly sending an unlimited number of 1-RTT CRYPTO frames after previously completing the QUIC handshake. Exploitation was possible for the duration of the connection which could be extended by the attacker. quiche 0.19.2 and 0.20.1 are the earliest versions containing the fix for this issue.
Affected devices do not properly handle the renegotiation of SSL/TLS parameters. This could allow an unauthenticated remote attacker to bypass the TCP brute force prevention and lead to a denial of service condition for the duration of the attack.
A vulnerability in the HTTP/HTTPS service used by J-Web, Web Authentication, Dynamic-VPN (DVPN), Firewall Authentication Pass-Through with Web-Redirect, and Captive Portal allows an unauthenticated attacker to cause an extended Denial of Service (DoS) for these services by sending a high number of specific requests. This issue affects: Juniper Networks Junos OS 12.3 versions prior to 12.3R12-S17 on EX Series; 12.3X48 versions prior to 12.3X48-D105 on SRX Series; 15.1 versions prior to 15.1R7-S8; 15.1X49 versions prior to 15.1X49-D230 on SRX Series; 16.1 versions prior to 16.1R7-S8; 17.4 versions prior to 17.4R2-S12, 17.4R3-S3; 18.1 versions prior to 18.1R3-S11; 18.2 versions prior to 18.2R3-S6; 18.3 versions prior to 18.3R2-S4, 18.3R3-S3; 18.4 versions prior to 18.4R2-S5, 18.4R3-S4; 19.1 versions prior to 19.1R2-S2, 19.1R3-S2; 19.2 versions prior to 19.2R1-S5, 19.2R3; 19.3 versions prior to 19.3R2-S4, 19.3R3; 19.4 versions prior to 19.4R1-S3, 19.4R2-S2, 19.4R3; 20.1 versions prior to 20.1R1-S3, 20.1R2; 20.2 versions prior to 20.2R1-S1, 20.2R2.
On WAGO PFC200 devices in different firmware versions with special crafted packets an attacker with network access to the device could cause a denial of service for the login service of the runtime.
A segmentation fault in TripleCross v0.1.0 occurs when sending a control command from the client to the server. This occurs because there is no limit to the length of the output of the executed command.
Ubiquiti EdgeMAX devices before 2.0.3 allow remote attackers to cause a denial of service (disk consumption) because *.cache files in /var/run/beaker/container_file/ are created when providing a valid length payload of 249 characters or fewer to the beaker.session.id cookie in a GET header. The attacker can use a long series of unique session IDs.
An issue was discovered in Pillow before 6.2.0. When reading specially crafted invalid image files, the library can either allocate very large amounts of memory or take an extremely long period of time to process the image.
The Zone Controller service in the Zoom On-Premise Meeting Connector Controller before version 4.6.358.20210205 does not verify the cnt field sent in incoming network packets, which leads to exhaustion of resources and system crash.
It is possible for a Reader to consume memory beyond the allowed constraints and thus lead to out of memory on the system. This issue affects Rust applications using Apache Avro Rust SDK prior to 0.14.0 (previously known as avro-rs). Users should update to apache-avro version 0.14.0 which addresses this issue.
A security vulnerability has been identified in Apache Kafka. It affects all releases since 2.8.0. The vulnerability allows malicious unauthenticated clients to allocate large amounts of memory on brokers. This can lead to brokers hitting OutOfMemoryException and causing denial of service. Example scenarios: - Kafka cluster without authentication: Any clients able to establish a network connection to a broker can trigger the issue. - Kafka cluster with SASL authentication: Any clients able to establish a network connection to a broker, without the need for valid SASL credentials, can trigger the issue. - Kafka cluster with TLS authentication: Only clients able to successfully authenticate via TLS can trigger the issue. We advise the users to upgrade the Kafka installations to one of the 3.2.3, 3.1.2, 3.0.2, 2.8.2 versions.
Rust-WebSocket is a WebSocket (RFC6455) library written in Rust. In versions prior to 0.26.5 untrusted websocket connections can cause an out-of-memory (OOM) process abort in a client or a server. The root cause of the issue is during dataframe parsing. Affected versions would allocate a buffer based on the declared dataframe size, which may come from an untrusted source. When `Vec::with_capacity` fails to allocate, the default Rust allocator will abort the current process, killing all threads. This affects only sync (non-Tokio) implementation. Async version also does not limit memory, but does not use `with_capacity`, so DoS can happen only when bytes for oversized dataframe or message actually got delivered by the attacker. The crashes are fixed in version 0.26.5 by imposing default dataframe size limits. Affected users are advised to update to this version. Users unable to upgrade are advised to filter websocket traffic externally or to only accept trusted traffic.
SHAREit through 4.0.6.177 does not check the full message length from the received packet header (which is used to allocate memory for the next set of data). This could lead to a system denial of service due to uncontrolled memory allocation. This is different from CVE-2019-14941.
A malicious user may submit a specially-crafted complex payload that otherwise meets the default request size limit which results in excessive memory and CPU consumption of Vault. This may lead to a timeout in Vault’s auditing subroutine, potentially resulting in the Vault server to become unresponsive. This vulnerability, CVE-2025-6203, is fixed in Vault Community Edition 1.20.3 and Vault Enterprise 1.20.3, 1.19.9, 1.18.14, and 1.16.25.
An issue was discovered in GitLab Community and Enterprise Edition 8.15 through 12.2.1. Particular mathematical expressions in GitLab Markdown can exhaust client resources.
There is a resource management error vulnerability in eCNS280_TD V100R005C10SPC650. An attacker needs to perform specific operations to exploit the vulnerability on the affected device. Due to improper resource management of the function, the vulnerability can be exploited to cause service abnormal on affected devices.
pypdf is a free and open-source pure-python PDF library. Prior to version 6.0.0, an attacker can craft a PDF which leads to the RAM being exhausted. This requires just reading the file if a series of FlateDecode filters is used on a malicious cross-reference stream. Other content streams are affected on explicit access. This issue has been fixed in 6.0.0. If an update is not possible, a workaround involves including the fixed code from pypdf.filters.decompress into the existing filters file.
A remote, unauthenticated attacker could cause a denial-of-service of PHOENIX CONTACT FL MGUARD and TC MGUARD devices below version 8.9.0 by sending a larger number of unauthenticated HTTPS connections originating from different source IP’s. Configuring firewall limits for incoming connections cannot prevent the issue.
LiteSpeed QUIC (LSQUIC) Library before 4.3.1 has an lsquic_engine_packet_in memory leak.
blaze is a Scala library for building asynchronous pipelines, with a focus on network IO. All servers running blaze-core before version 0.14.15 are affected by a vulnerability in which unbounded connection acceptance leads to file handle exhaustion. Blaze, accepts connections unconditionally on a dedicated thread pool. This has the net effect of amplifying degradation in services that are unable to handle their current request load, since incoming connections are still accepted and added to an unbounded queue. Each connection allocates a socket handle, which drains a scarce OS resource. This can also confound higher level circuit breakers which work based on detecting failed connections. The vast majority of affected users are using it as part of http4s-blaze-server <= 0.21.16. http4s provides a mechanism for limiting open connections, but is enforced inside the Blaze accept loop, after the connection is accepted and the socket opened. Thus, the limit only prevents the number of connections which can be simultaneously processed, not the number of connections which can be held open. The issue is fixed in version 0.14.15 for "NIO1SocketServerGroup". A "maxConnections" parameter is added, with a default value of 512. Concurrent connections beyond this limit are rejected. To run unbounded, which is not recommended, set a negative number. The "NIO2SocketServerGroup" has no such setting and is now deprecated. There are several possible workarounds described in the refrenced GitHub Advisory GHSA-xmw9-q7x9-j5qc.
WeGIA is a web manager for charitable institutions. The Wegia server has a vulnerability that allows excessively long HTTP GET requests to a specific URL. This issue arises from the lack of validation for the length of the errorstr parameter. Tests confirmed that the server processes URLs up to 8,142 characters, resulting in high resource consumption, elevated latency, timeouts, and read errors. This makes the server susceptible to Denial of Service (DoS) attacks. This vulnerability is fixed in 3.3.0.
An issue was discovered in GitLab Community and Enterprise Edition before 11.1.7, 11.2.x before 11.2.4, and 11.3.x before 11.3.1. The diff formatter using rouge can block for a long time in Sidekiq jobs without any timeout.
Dell PowerScale OneFS, versions 8.2.0.x-9.4.0.x contain allocation of Resources Without Limits or Throttling vulnerability. A remote unauthenticated attacker could potentially exploit this vulnerability, leading to denial of service and performance issue on that node.
WeGIA is a web manager for charitable institutions. The Wegia server has a vulnerability that allows excessively long HTTP GET requests to a specific URL. This issue arises from the lack of validation for the length of the fid parameter. Tests confirmed that the server processes URLs up to 8,142 characters, resulting in high resource consumption, elevated latency, timeouts, and read errors. This makes the server susceptible to Denial of Service (DoS) attacks. This vulnerability is fixed in 3.3.0.
CiphertextHeader.java in Cryptacular 1.2.3, as used in Apereo CAS and other products, allows attackers to trigger excessive memory allocation during a decode operation, because the nonce array length associated with "new byte" may depend on untrusted input within the header of encoded data.
It was found that the fix for CVE-2018-14648 in 389-ds-base, versions 1.4.0.x before 1.4.0.17, was incorrectly applied in RHEL 7.5. An attacker would still be able to provoke excessive CPU consumption leading to a denial of service.
Chall-Manager is a platform-agnostic system able to start Challenges on Demand of a player. The HTTP Gateway processes headers, but with no timeout set. With a slow loris attack, an attacker could cause Denial of Service (DoS). Exploitation does not require authentication nor authorization, so anyone can exploit it. It should nonetheless not be exploitable as it is highly recommended to bury Chall-Manager deep within the infrastructure due to its large capabilities, so no users could reach the system. Patch has been implemented by commit 1385bd8 and shipped in v0.1.4.
HashiCorp Consul and Consul Enterprise up to 1.6.2 HTTP/RPC services allowed unbounded resource usage, and were susceptible to unauthenticated denial of service. Fixed in 1.6.3.
Suricata is a network IDS, IPS and NSM engine developed by the OISF (Open Information Security Foundation) and the Suricata community. In versions 7.0.10 and below and 8.0.0-beta1 through 8.0.0-rc1, mishandling of data on HTTP2 stream 0 can lead to uncontrolled memory usage, leading to loss of visibility. Workarounds include disabling the HTTP/2 parser, and using a signature like drop http2 any any -> any any (frame:http2.hdr; byte_test:1,=,0,3; byte_test:4,=,0,5; sid: 1;) where the first byte test tests the HTTP2 frame type DATA and the second tests the stream id 0. This is fixed in versions 7.0.11 and 8.0.0.
Unsanitized input in the query parser in github.com/revel/revel before v1.0.0 allows remote attackers to cause resource exhaustion via memory allocation.
Allocation of Resources Without Limits or Throttling vulnerability in Apache Tomcat. This issue affects Apache Tomcat: from 11.0.0-M1 through 11.0.7, from 10.1.0-M1 through 10.1.41, from 9.0.0.M1 through 9.0.105. The following versions were EOL at the time the CVE was created but are known to be affected: 8.5.0 though 8.5.100. Other, older, EOL versions may also be affected. Users are recommended to upgrade to version 11.0.8, 10.1.42 or 9.0.106, which fix the issue.
Allocation of resources for multipart headers with insufficient limits enabled a DoS vulnerability in Apache Commons FileUpload. This issue affects Apache Commons FileUpload: from 1.0 before 1.6; from 2.0.0-M1 before 2.0.0-M4. Users are recommended to upgrade to versions 1.6 or 2.0.0-M4, which fix the issue.
Allocation of Resources Without Limits or Throttling in GitHub repository ikus060/rdiffweb prior to 2.4.8.
Redis is an open source, in-memory database that persists on disk. An unauthenticated connection can cause repeated IP protocol errors, leading to client starvation and, ultimately, a denial of service. This vulnerability is fixed in 8.0.3, 7.4.5, 7.2.10, and 6.2.19.
Pure-FTPd 1.0.48 allows remote attackers to prevent legitimate server use by making enough connections to exceed the connection limit.
A vulnerability in the Session Initiation Protocol (SIP) of Cisco Expressway Series and Cisco TelePresence Video Communication Server (VCS) could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to incorrect handling of incoming SIP traffic. An attacker could exploit this vulnerability by sending a series of SIP packets to an affected device. A successful exploit could allow the attacker to exhaust memory on an affected device, causing it to crash and leading to a DoS condition.
The jv_dump_term function in jq 1.5 allows remote attackers to cause a denial of service (stack consumption and application crash) via a crafted JSON file. This issue has been fixed in jq 1.6_rc1-r0.
An issue was discovered in the ws crate through 2020-09-25 for Rust. The outgoing buffer is not properly limited, leading to a remote memory-consumption attack.
Starting in Python 3.12.0, the asyncio._SelectorSocketTransport.writelines() method would not "pause" writing and signal to the Protocol to drain the buffer to the wire once the write buffer reached the "high-water mark". Because of this, Protocols would not periodically drain the write buffer potentially leading to memory exhaustion. This vulnerability likely impacts a small number of users, you must be using Python 3.12.0 or later, on macOS or Linux, using the asyncio module with protocols, and using .writelines() method which had new zero-copy-on-write behavior in Python 3.12.0 and later. If not all of these factors are true then your usage of Python is unaffected.