In the Linux kernel, the following vulnerability has been resolved: ASoC: SOF: ipc4-topology: Fix input format query of process modules without base extension If a process module does not have base config extension then the same format applies to all of it's inputs and the process->base_config_ext is NULL, causing NULL dereference when specifically crafted topology and sequences used.
A flaw was found in the Linux kernel’s IP framework for transforming packets (XFRM subsystem). This issue may allow a malicious user with CAP_NET_ADMIN privileges to directly dereference a NULL pointer in xfrm_update_ae_params(), leading to a possible kernel crash and denial of service.
In the Linux kernel, the following vulnerability has been resolved: media: v4l: async: Fix notifier list entry init struct v4l2_async_notifier has several list_head members, but only waiting_list and done_list are initialized. notifier_entry was kept 'zeroed' leading to an uninitialized list_head. This results in a NULL-pointer dereference if csi2_async_register() fails, e.g. node for remote endpoint is disabled, and returns -ENOTCONN. The following calls to v4l2_async_nf_unregister() results in a NULL pointer dereference. Add the missing list head initializer.
In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Check 'folio' pointer for NULL It can be NULL if bmap is called.
In the Linux kernel, the following vulnerability has been resolved: net: ti: icssg_prueth: Fix NULL pointer dereference in prueth_probe() In the prueth_probe() function, if one of the calls to emac_phy_connect() fails due to of_phy_connect() returning NULL, then the subsequent call to phy_attached_info() will dereference a NULL pointer. Check the return code of emac_phy_connect and fail cleanly if there is an error.
In the Linux kernel, the following vulnerability has been resolved: libbpf: Prevent null-pointer dereference when prog to load has no BTF In bpf_objec_load_prog(), there's no guarantee that obj->btf is non-NULL when passing it to btf__fd(), and this function does not perform any check before dereferencing its argument (as bpf_object__btf_fd() used to do). As a consequence, we get segmentation fault errors in bpftool (for example) when trying to load programs that come without BTF information. v2: Keep btf__fd() in the fix instead of reverting to bpf_object__btf_fd().
In the Linux kernel, the following vulnerability has been resolved: staging: gpib: Fix cb7210 pcmcia Oops The pcmcia_driver struct was still only using the old .name initialization in the drv field. This led to a NULL pointer deref Oops in strcmp called from pcmcia_register_driver. Initialize the pcmcia_driver struct name field.
In the Linux kernel, the following vulnerability has been resolved: sfc: fix NULL dereferences in ef100_process_design_param() Since cited commit, ef100_probe_main() and hence also ef100_check_design_params() run before efx->net_dev is created; consequently, we cannot netif_set_tso_max_size() or _segs() at this point. Move those netif calls to ef100_probe_netdev(), and also replace netif_err within the design params code with pci_err.
In the Linux kernel, the following vulnerability has been resolved: spi: spi-imx: Add check for spi_imx_setupxfer() Add check for the return value of spi_imx_setupxfer(). spi_imx->rx and spi_imx->tx function pointer can be NULL when spi_imx_setupxfer() return error, and make NULL pointer dereference. Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 Call trace: 0x0 spi_imx_pio_transfer+0x50/0xd8 spi_imx_transfer_one+0x18c/0x858 spi_transfer_one_message+0x43c/0x790 __spi_pump_transfer_message+0x238/0x5d4 __spi_sync+0x2b0/0x454 spi_write_then_read+0x11c/0x200
In the Linux kernel, the following vulnerability has been resolved: driver core: fix potential NULL pointer dereference in dev_uevent() If userspace reads "uevent" device attribute at the same time as another threads unbinds the device from its driver, change to dev->driver from a valid pointer to NULL may result in crash. Fix this by using READ_ONCE() when fetching the pointer, and take bus' drivers klist lock to make sure driver instance will not disappear while we access it. Use WRITE_ONCE() when setting the driver pointer to ensure there is no tearing.
In the Linux kernel, the following vulnerability has been resolved: x86/resctrl: Fix allocation of cleanest CLOSID on platforms with no monitors Commit 6eac36bb9eb0 ("x86/resctrl: Allocate the cleanest CLOSID by searching closid_num_dirty_rmid") added logic that causes resctrl to search for the CLOSID with the fewest dirty cache lines when creating a new control group, if requested by the arch code. This depends on the values read from the llc_occupancy counters. The logic is applicable to architectures where the CLOSID effectively forms part of the monitoring identifier and so do not allow complete freedom to choose an unused monitoring identifier for a given CLOSID. This support missed that some platforms may not have these counters. This causes a NULL pointer dereference when creating a new control group as the array was not allocated by dom_data_init(). As this feature isn't necessary on platforms that don't have cache occupancy monitors, add this to the check that occurs when a new control group is allocated.
A flaw was found in the Linux kernel's Bluetooth implementation of UART, all versions kernel 3.x.x before 4.18.0 and kernel 5.x.x. An attacker with local access and write permissions to the Bluetooth hardware could use this flaw to issue a specially crafted ioctl function call and cause the system to crash.
In the Linux kernel, the following vulnerability has been resolved: nfp: flower: handle acti_netdevs allocation failure The kmalloc_array() in nfp_fl_lag_do_work() will return null, if the physical memory has run out. As a result, if we dereference the acti_netdevs, the null pointer dereference bugs will happen. This patch adds a check to judge whether allocation failure occurs. If it happens, the delayed work will be rescheduled and try again.
In the Linux kernel, the following vulnerability has been resolved: pstore/zone: Add a null pointer check to the psz_kmsg_read kasprintf() returns a pointer to dynamically allocated memory which can be NULL upon failure. Ensure the allocation was successful by checking the pointer validity.
In the Linux kernel, the following vulnerability has been resolved: bpf, skmsg: Fix NULL pointer dereference in sk_psock_skb_ingress_enqueue Fix NULL pointer data-races in sk_psock_skb_ingress_enqueue() which syzbot reported [1]. [1] BUG: KCSAN: data-race in sk_psock_drop / sk_psock_skb_ingress_enqueue write to 0xffff88814b3278b8 of 8 bytes by task 10724 on cpu 1: sk_psock_stop_verdict net/core/skmsg.c:1257 [inline] sk_psock_drop+0x13e/0x1f0 net/core/skmsg.c:843 sk_psock_put include/linux/skmsg.h:459 [inline] sock_map_close+0x1a7/0x260 net/core/sock_map.c:1648 unix_release+0x4b/0x80 net/unix/af_unix.c:1048 __sock_release net/socket.c:659 [inline] sock_close+0x68/0x150 net/socket.c:1421 __fput+0x2c1/0x660 fs/file_table.c:422 __fput_sync+0x44/0x60 fs/file_table.c:507 __do_sys_close fs/open.c:1556 [inline] __se_sys_close+0x101/0x1b0 fs/open.c:1541 __x64_sys_close+0x1f/0x30 fs/open.c:1541 do_syscall_64+0xd3/0x1d0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 read to 0xffff88814b3278b8 of 8 bytes by task 10713 on cpu 0: sk_psock_data_ready include/linux/skmsg.h:464 [inline] sk_psock_skb_ingress_enqueue+0x32d/0x390 net/core/skmsg.c:555 sk_psock_skb_ingress_self+0x185/0x1e0 net/core/skmsg.c:606 sk_psock_verdict_apply net/core/skmsg.c:1008 [inline] sk_psock_verdict_recv+0x3e4/0x4a0 net/core/skmsg.c:1202 unix_read_skb net/unix/af_unix.c:2546 [inline] unix_stream_read_skb+0x9e/0xf0 net/unix/af_unix.c:2682 sk_psock_verdict_data_ready+0x77/0x220 net/core/skmsg.c:1223 unix_stream_sendmsg+0x527/0x860 net/unix/af_unix.c:2339 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x140/0x180 net/socket.c:745 ____sys_sendmsg+0x312/0x410 net/socket.c:2584 ___sys_sendmsg net/socket.c:2638 [inline] __sys_sendmsg+0x1e9/0x280 net/socket.c:2667 __do_sys_sendmsg net/socket.c:2676 [inline] __se_sys_sendmsg net/socket.c:2674 [inline] __x64_sys_sendmsg+0x46/0x50 net/socket.c:2674 do_syscall_64+0xd3/0x1d0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 value changed: 0xffffffff83d7feb0 -> 0x0000000000000000 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 10713 Comm: syz-executor.4 Tainted: G W 6.8.0-syzkaller-08951-gfe46a7dd189e #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/29/2024 Prior to this, commit 4cd12c6065df ("bpf, sockmap: Fix NULL pointer dereference in sk_psock_verdict_data_ready()") fixed one NULL pointer similarly due to no protection of saved_data_ready. Here is another different caller causing the same issue because of the same reason. So we should protect it with sk_callback_lock read lock because the writer side in the sk_psock_drop() uses "write_lock_bh(&sk->sk_callback_lock);". To avoid errors that could happen in future, I move those two pairs of lock into the sk_psock_data_ready(), which is suggested by John Fastabend.
In the Linux kernel, the following vulnerability has been resolved: selinux: avoid dereference of garbage after mount failure In case kern_mount() fails and returns an error pointer return in the error branch instead of continuing and dereferencing the error pointer. While on it drop the never read static variable selinuxfs_mount.
In the Linux kernel, the following vulnerability has been resolved: usb: typec: altmodes/displayport: create sysfs nodes as driver's default device attribute group The DisplayPort driver's sysfs nodes may be present to the userspace before typec_altmode_set_drvdata() completes in dp_altmode_probe. This means that a sysfs read can trigger a NULL pointer error by deferencing dp->hpd in hpd_show or dp->lock in pin_assignment_show, as dev_get_drvdata() returns NULL in those cases. Remove manual sysfs node creation in favor of adding attribute group as default for devices bound to the driver. The ATTRIBUTE_GROUPS() macro is not used here otherwise the path to the sysfs nodes is no longer compliant with the ABI.
In the Linux kernel, the following vulnerability has been resolved: usb: typec: tcpm: Check for port partner validity before consuming it typec_register_partner() does not guarantee partner registration to always succeed. In the event of failure, port->partner is set to the error value or NULL. Given that port->partner validity is not checked, this results in the following crash: Unable to handle kernel NULL pointer dereference at virtual address xx pc : run_state_machine+0x1bc8/0x1c08 lr : run_state_machine+0x1b90/0x1c08 .. Call trace: run_state_machine+0x1bc8/0x1c08 tcpm_state_machine_work+0x94/0xe4 kthread_worker_fn+0x118/0x328 kthread+0x1d0/0x23c ret_from_fork+0x10/0x20 To prevent the crash, check for port->partner validity before derefencing it in all the call sites.
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Use mlx5_ipsec_rx_status_destroy to correctly delete status rules rx_create no longer allocates a modify_hdr instance that needs to be cleaned up. The mlx5_modify_header_dealloc call will lead to a NULL pointer dereference. A leak in the rules also previously occurred since there are now two rules populated related to status. BUG: kernel NULL pointer dereference, address: 0000000000000000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 109907067 P4D 109907067 PUD 116890067 PMD 0 Oops: 0000 [#1] SMP CPU: 1 PID: 484 Comm: ip Not tainted 6.9.0-rc2-rrameshbabu+ #254 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS Arch Linux 1.16.3-1-1 04/01/2014 RIP: 0010:mlx5_modify_header_dealloc+0xd/0x70 <snip> Call Trace: <TASK> ? show_regs+0x60/0x70 ? __die+0x24/0x70 ? page_fault_oops+0x15f/0x430 ? free_to_partial_list.constprop.0+0x79/0x150 ? do_user_addr_fault+0x2c9/0x5c0 ? exc_page_fault+0x63/0x110 ? asm_exc_page_fault+0x27/0x30 ? mlx5_modify_header_dealloc+0xd/0x70 rx_create+0x374/0x590 rx_add_rule+0x3ad/0x500 ? rx_add_rule+0x3ad/0x500 ? mlx5_cmd_exec+0x2c/0x40 ? mlx5_create_ipsec_obj+0xd6/0x200 mlx5e_accel_ipsec_fs_add_rule+0x31/0xf0 mlx5e_xfrm_add_state+0x426/0xc00 <snip>
In the Linux kernel, the following vulnerability has been resolved: spi: fix null pointer dereference within spi_sync If spi_sync() is called with the non-empty queue and the same spi_message is then reused, the complete callback for the message remains set while the context is cleared, leading to a null pointer dereference when the callback is invoked from spi_finalize_current_message(). With function inlining disabled, the call stack might look like this: _raw_spin_lock_irqsave from complete_with_flags+0x18/0x58 complete_with_flags from spi_complete+0x8/0xc spi_complete from spi_finalize_current_message+0xec/0x184 spi_finalize_current_message from spi_transfer_one_message+0x2a8/0x474 spi_transfer_one_message from __spi_pump_transfer_message+0x104/0x230 __spi_pump_transfer_message from __spi_transfer_message_noqueue+0x30/0xc4 __spi_transfer_message_noqueue from __spi_sync+0x204/0x248 __spi_sync from spi_sync+0x24/0x3c spi_sync from mcp251xfd_regmap_crc_read+0x124/0x28c [mcp251xfd] mcp251xfd_regmap_crc_read [mcp251xfd] from _regmap_raw_read+0xf8/0x154 _regmap_raw_read from _regmap_bus_read+0x44/0x70 _regmap_bus_read from _regmap_read+0x60/0xd8 _regmap_read from regmap_read+0x3c/0x5c regmap_read from mcp251xfd_alloc_can_err_skb+0x1c/0x54 [mcp251xfd] mcp251xfd_alloc_can_err_skb [mcp251xfd] from mcp251xfd_irq+0x194/0xe70 [mcp251xfd] mcp251xfd_irq [mcp251xfd] from irq_thread_fn+0x1c/0x78 irq_thread_fn from irq_thread+0x118/0x1f4 irq_thread from kthread+0xd8/0xf4 kthread from ret_from_fork+0x14/0x28 Fix this by also setting message->complete to NULL when the transfer is complete.
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: qca: fix NULL-deref on non-serdev setup Qualcomm ROME controllers can be registered from the Bluetooth line discipline and in this case the HCI UART serdev pointer is NULL. Add the missing sanity check to prevent a NULL-pointer dereference when setup() is called for a non-serdev controller.
A NULL pointer dereference flaw was found in the Linux kernel's drivers/gpu/drm/msm/msm_gem_submit.c code in the submit_lookup_cmds function, which fails because it lacks a check of the return value of kmalloc(). This issue allows a local user to crash the system.
An issue was discovered in the Linux kernel brcm_nvram_parse in drivers/nvmem/brcm_nvram.c. Lacks for the check of the return value of kzalloc() can cause the NULL Pointer Dereference.
A NULL pointer dereference flaw was found in the Linux kernel AMD Sensor Fusion Hub driver. This flaw allows a local user to crash the system.
QEMU (aka Quick Emulator) built with the USB EHCI emulation support is vulnerable to a null pointer dereference flaw. It could occur when an application attempts to write to EHCI capabilities registers. A privileged user inside quest could use this flaw to crash the QEMU process instance resulting in DoS.
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btusb: Add date->evt_skb is NULL check fix crash because of null pointers [ 6104.969662] BUG: kernel NULL pointer dereference, address: 00000000000000c8 [ 6104.969667] #PF: supervisor read access in kernel mode [ 6104.969668] #PF: error_code(0x0000) - not-present page [ 6104.969670] PGD 0 P4D 0 [ 6104.969673] Oops: 0000 [#1] SMP NOPTI [ 6104.969684] RIP: 0010:btusb_mtk_hci_wmt_sync+0x144/0x220 [btusb] [ 6104.969688] RSP: 0018:ffffb8d681533d48 EFLAGS: 00010246 [ 6104.969689] RAX: 0000000000000000 RBX: ffff8ad560bb2000 RCX: 0000000000000006 [ 6104.969691] RDX: 0000000000000000 RSI: ffffb8d681533d08 RDI: 0000000000000000 [ 6104.969692] RBP: ffffb8d681533d70 R08: 0000000000000001 R09: 0000000000000001 [ 6104.969694] R10: 0000000000000001 R11: 00000000fa83b2da R12: ffff8ad461d1d7c0 [ 6104.969695] R13: 0000000000000000 R14: ffff8ad459618c18 R15: ffffb8d681533d90 [ 6104.969697] FS: 00007f5a1cab9d40(0000) GS:ffff8ad578200000(0000) knlGS:00000 [ 6104.969699] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 6104.969700] CR2: 00000000000000c8 CR3: 000000018620c001 CR4: 0000000000760ef0 [ 6104.969701] PKRU: 55555554 [ 6104.969702] Call Trace: [ 6104.969708] btusb_mtk_shutdown+0x44/0x80 [btusb] [ 6104.969732] hci_dev_do_close+0x470/0x5c0 [bluetooth] [ 6104.969748] hci_rfkill_set_block+0x56/0xa0 [bluetooth] [ 6104.969753] rfkill_set_block+0x92/0x160 [ 6104.969755] rfkill_fop_write+0x136/0x1e0 [ 6104.969759] __vfs_write+0x18/0x40 [ 6104.969761] vfs_write+0xdf/0x1c0 [ 6104.969763] ksys_write+0xb1/0xe0 [ 6104.969765] __x64_sys_write+0x1a/0x20 [ 6104.969769] do_syscall_64+0x51/0x180 [ 6104.969771] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 6104.969773] RIP: 0033:0x7f5a21f18fef [ 6104.9] RSP: 002b:00007ffeefe39010 EFLAGS: 00000293 ORIG_RAX: 0000000000000001 [ 6104.969780] RAX: ffffffffffffffda RBX: 000055c10a7560a0 RCX: 00007f5a21f18fef [ 6104.969781] RDX: 0000000000000008 RSI: 00007ffeefe39060 RDI: 0000000000000012 [ 6104.969782] RBP: 00007ffeefe39060 R08: 0000000000000000 R09: 0000000000000017 [ 6104.969784] R10: 00007ffeefe38d97 R11: 0000000000000293 R12: 0000000000000002 [ 6104.969785] R13: 00007ffeefe39220 R14: 00007ffeefe391a0 R15: 000055c10a72acf0
In the Linux kernel, the following vulnerability has been resolved: fpga: region: add owner module and take its refcount The current implementation of the fpga region assumes that the low-level module registers a driver for the parent device and uses its owner pointer to take the module's refcount. This approach is problematic since it can lead to a null pointer dereference while attempting to get the region during programming if the parent device does not have a driver. To address this problem, add a module owner pointer to the fpga_region struct and use it to take the module's refcount. Modify the functions for registering a region to take an additional owner module parameter and rename them to avoid conflicts. Use the old function names for helper macros that automatically set the module that registers the region as the owner. This ensures compatibility with existing low-level control modules and reduces the chances of registering a region without setting the owner. Also, update the documentation to keep it consistent with the new interface for registering an fpga region.
A null pointer dereference was found in the Linux kernel's Integrated Sensor Hub (ISH) driver. This issue could allow a local user to crash the system.
NVIDIA GPU Driver for Windows and Linux contains a vulnerability in the kernel mode layer, where an unprivileged regular user can cause a NULL-pointer dereference, which may lead to denial of service.
An issue was discovered in drivers/media/test-drivers/vidtv/vidtv_bridge.c in the Linux kernel 6.2. There is a NULL pointer dereference in vidtv_mux_stop_thread. In vidtv_stop_streaming, after dvb->mux=NULL occurs, it executes vidtv_mux_stop_thread(dvb->mux).
NVIDIA GPU Display Driver for Windows and Linux contains a vulnerability in the kernel mode layer, where a NULL-pointer dereference may lead to denial of service.
An issue was discovered in the Linux kernel through 6.1-rc8. dpu_crtc_atomic_check in drivers/gpu/drm/msm/disp/dpu1/dpu_crtc.c lacks check of the return value of kzalloc() and will cause the NULL Pointer Dereference.
In the Linux kernel, the following vulnerability has been resolved: thermal: int340x: Add NULL check for adev Not all devices have an ACPI companion fwnode, so adev might be NULL. This is similar to the commit cd2fd6eab480 ("platform/x86: int3472: Check for adev == NULL"). Add a check for adev not being set and return -ENODEV in that case to avoid a possible NULL pointer deref in int3402_thermal_probe(). Note, under the same directory, int3400_thermal_probe() has such a check. [ rjw: Subject edit, added Fixes: ]
A null pointer dereference vulnerability was found in ath10k_wmi_tlv_op_pull_mgmt_tx_compl_ev() in drivers/net/wireless/ath/ath10k/wmi-tlv.c in the Linux kernel. This issue could be exploited to trigger a denial of service.
In the Linux kernel, the following vulnerability has been resolved: trace_events_hist: add check for return value of 'create_hist_field' Function 'create_hist_field' is called recursively at trace_events_hist.c:1954 and can return NULL-value that's why we have to check it to avoid null pointer dereference. Found by Linux Verification Center (linuxtesting.org) with SVACE.
A NULL pointer dereference flaw was found in the az6027 driver in drivers/media/usb/dev-usb/az6027.c in the Linux Kernel. The message from user space is not checked properly before transferring into the device. This flaw allows a local user to crash the system or potentially cause a denial of service.
A null pointer dereference vulnerability was found in nft_dynset_init() in net/netfilter/nft_dynset.c in nf_tables in the Linux kernel. This issue may allow a local attacker with CAP_NET_ADMIN user privilege to trigger a denial of service.
A NULL pointer dereference flaw was found in the UNIX protocol in net/unix/diag.c In unix_diag_get_exact in the Linux Kernel. The newly allocated skb does not have sk, leading to a NULL pointer. This flaw allows a local user to crash or potentially cause a denial of service.
In the Linux kernel, the following vulnerability has been resolved: net: mvneta: fix calls to page_pool_get_stats Calling page_pool_get_stats in the mvneta driver without checks leads to kernel crashes. First the page pool is only available if the bm is not used. The page pool is also not allocated when the port is stopped. It can also be not allocated in case of errors. The current implementation leads to the following crash calling ethstats on a port that is down or when calling it at the wrong moment: ble to handle kernel NULL pointer dereference at virtual address 00000070 [00000070] *pgd=00000000 Internal error: Oops: 5 [#1] SMP ARM Hardware name: Marvell Armada 380/385 (Device Tree) PC is at page_pool_get_stats+0x18/0x1cc LR is at mvneta_ethtool_get_stats+0xa0/0xe0 [mvneta] pc : [<c0b413cc>] lr : [<bf0a98d8>] psr: a0000013 sp : f1439d48 ip : f1439dc0 fp : 0000001d r10: 00000100 r9 : c4816b80 r8 : f0d75150 r7 : bf0b400c r6 : c238f000 r5 : 00000000 r4 : f1439d68 r3 : c2091040 r2 : ffffffd8 r1 : f1439d68 r0 : 00000000 Flags: NzCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment none Control: 10c5387d Table: 066b004a DAC: 00000051 Register r0 information: NULL pointer Register r1 information: 2-page vmalloc region starting at 0xf1438000 allocated at kernel_clone+0x9c/0x390 Register r2 information: non-paged memory Register r3 information: slab kmalloc-2k start c2091000 pointer offset 64 size 2048 Register r4 information: 2-page vmalloc region starting at 0xf1438000 allocated at kernel_clone+0x9c/0x390 Register r5 information: NULL pointer Register r6 information: slab kmalloc-cg-4k start c238f000 pointer offset 0 size 4096 Register r7 information: 15-page vmalloc region starting at 0xbf0a8000 allocated at load_module+0xa30/0x219c Register r8 information: 1-page vmalloc region starting at 0xf0d75000 allocated at ethtool_get_stats+0x138/0x208 Register r9 information: slab task_struct start c4816b80 pointer offset 0 Register r10 information: non-paged memory Register r11 information: non-paged memory Register r12 information: 2-page vmalloc region starting at 0xf1438000 allocated at kernel_clone+0x9c/0x390 Process snmpd (pid: 733, stack limit = 0x38de3a88) Stack: (0xf1439d48 to 0xf143a000) 9d40: 000000c0 00000001 c238f000 bf0b400c f0d75150 c4816b80 9d60: 00000100 bf0a98d8 00000000 00000000 00000000 00000000 00000000 00000000 9d80: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 9da0: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 9dc0: 00000dc0 5335509c 00000035 c238f000 bf0b2214 01067f50 f0d75000 c0b9b9c8 9de0: 0000001d 00000035 c2212094 5335509c c4816b80 c238f000 c5ad6e00 01067f50 9e00: c1b0be80 c4816b80 00014813 c0b9d7f0 00000000 00000000 0000001d 0000001d 9e20: 00000000 00001200 00000000 00000000 c216ed90 c73943b8 00000000 00000000 9e40: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 9e60: 00000000 c0ad9034 00000000 00000000 00000000 00000000 00000000 00000000 9e80: 00000000 00000000 00000000 5335509c c1b0be80 f1439ee4 00008946 c1b0be80 9ea0: 01067f50 f1439ee3 00000000 00000046 b6d77ae0 c0b383f0 00008946 becc83e8 9ec0: c1b0be80 00000051 0000000b c68ca480 c7172d00 c0ad8ff0 f1439ee3 cf600e40 9ee0: 01600e40 32687465 00000000 00000000 00000000 01067f50 00000000 00000000 9f00: 00000000 5335509c 00008946 00008946 00000000 c68ca480 becc83e8 c05e2de0 9f20: f1439fb0 c03002f0 00000006 5ac3c35a c4816b80 00000006 b6d77ae0 c030caf0 9f40: c4817350 00000014 f1439e1c 0000000c 00000000 00000051 01000000 00000014 9f60: 00003fec f1439edc 00000001 c0372abc b6d77ae0 c0372abc cf600e40 5335509c 9f80: c21e6800 01015c9c 0000000b 00008946 00000036 c03002f0 c4816b80 00000036 9fa0: b6d77ae0 c03000c0 01015c9c 0000000b 0000000b 00008946 becc83e8 00000000 9fc0: 01015c9c 0000000b 00008946 00000036 00000035 010678a0 b6d797ec b6d77ae0 9fe0: b6dbf738 becc838c b6d186d7 b6baa858 40000030 0000000b 00000000 00000000 page_pool_get_s ---truncated---
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Fix peer flow lists handling The cited change refactored mlx5e_tc_del_fdb_peer_flow() to only clear DUP flag when list of peer flows has become empty. However, if any concurrent user holds a reference to a peer flow (for example, the neighbor update workqueue task is updating peer flow's parent encap entry concurrently), then the flow will not be removed from the peer list and, consecutively, DUP flag will remain set. Since mlx5e_tc_del_fdb_peers_flow() calls mlx5e_tc_del_fdb_peer_flow() for every possible peer index the algorithm will try to remove the flow from eswitch instances that it has never peered with causing either NULL pointer dereference when trying to remove the flow peer list head of peer_index that was never initialized or a warning if the list debug config is enabled[0]. Fix the issue by always removing the peer flow from the list even when not releasing the last reference to it. [0]: [ 3102.985806] ------------[ cut here ]------------ [ 3102.986223] list_del corruption, ffff888139110698->next is NULL [ 3102.986757] WARNING: CPU: 2 PID: 22109 at lib/list_debug.c:53 __list_del_entry_valid_or_report+0x4f/0xc0 [ 3102.987561] Modules linked in: act_ct nf_flow_table bonding act_tunnel_key act_mirred act_skbedit vxlan cls_matchall nfnetlink_cttimeout act_gact cls_flower sch_ingress mlx5_vdpa vringh vhost_iotlb vdpa openvswitch nsh xt_MASQUERADE nf_conntrack_netlink nfnetlink iptable_nat xt_addrtype xt_conntrack nf_nat br_netfilter rpcsec_gss_krb5 auth_rpcg ss oid_registry overlay rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi ib_umad rdma_cm ib_ipoib iw_cm ib_cm mlx5_ib ib_uverbs ib_core mlx5_core [last unloaded: bonding] [ 3102.991113] CPU: 2 PID: 22109 Comm: revalidator28 Not tainted 6.6.0-rc6+ #3 [ 3102.991695] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 3102.992605] RIP: 0010:__list_del_entry_valid_or_report+0x4f/0xc0 [ 3102.993122] Code: 39 c2 74 56 48 8b 32 48 39 fe 75 62 48 8b 51 08 48 39 f2 75 73 b8 01 00 00 00 c3 48 89 fe 48 c7 c7 48 fd 0a 82 e8 41 0b ad ff <0f> 0b 31 c0 c3 48 89 fe 48 c7 c7 70 fd 0a 82 e8 2d 0b ad ff 0f 0b [ 3102.994615] RSP: 0018:ffff8881383e7710 EFLAGS: 00010286 [ 3102.995078] RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000000 [ 3102.995670] RDX: 0000000000000001 RSI: ffff88885f89b640 RDI: ffff88885f89b640 [ 3102.997188] DEL flow 00000000be367878 on port 0 [ 3102.998594] RBP: dead000000000122 R08: 0000000000000000 R09: c0000000ffffdfff [ 3102.999604] R10: 0000000000000008 R11: ffff8881383e7598 R12: dead000000000100 [ 3103.000198] R13: 0000000000000002 R14: ffff888139110000 R15: ffff888101901240 [ 3103.000790] FS: 00007f424cde4700(0000) GS:ffff88885f880000(0000) knlGS:0000000000000000 [ 3103.001486] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 3103.001986] CR2: 00007fd42e8dcb70 CR3: 000000011e68a003 CR4: 0000000000370ea0 [ 3103.002596] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 3103.003190] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 3103.003787] Call Trace: [ 3103.004055] <TASK> [ 3103.004297] ? __warn+0x7d/0x130 [ 3103.004623] ? __list_del_entry_valid_or_report+0x4f/0xc0 [ 3103.005094] ? report_bug+0xf1/0x1c0 [ 3103.005439] ? console_unlock+0x4a/0xd0 [ 3103.005806] ? handle_bug+0x3f/0x70 [ 3103.006149] ? exc_invalid_op+0x13/0x60 [ 3103.006531] ? asm_exc_invalid_op+0x16/0x20 [ 3103.007430] ? __list_del_entry_valid_or_report+0x4f/0xc0 [ 3103.007910] mlx5e_tc_del_fdb_peers_flow+0xcf/0x240 [mlx5_core] [ 3103.008463] mlx5e_tc_del_flow+0x46/0x270 [mlx5_core] [ 3103.008944] mlx5e_flow_put+0x26/0x50 [mlx5_core] [ 3103.009401] mlx5e_delete_flower+0x25f/0x380 [mlx5_core] [ 3103.009901] tc_setup_cb_destroy+0xab/0x180 [ 3103.010292] fl_hw_destroy_filter+0x99/0xc0 [cls_flower] [ 3103.010779] __fl_delete+0x2d4/0x2f0 [cls_flower] [ 3103.0 ---truncated---
In the Linux kernel, the following vulnerability has been resolved: IB/IPoIB: Fix legacy IPoIB due to wrong number of queues The cited commit creates child PKEY interfaces over netlink will multiple tx and rx queues, but some devices doesn't support more than 1 tx and 1 rx queues. This causes to a crash when traffic is sent over the PKEY interface due to the parent having a single queue but the child having multiple queues. This patch fixes the number of queues to 1 for legacy IPoIB at the earliest possible point in time. BUG: kernel NULL pointer dereference, address: 000000000000036b PGD 0 P4D 0 Oops: 0000 [#1] SMP CPU: 4 PID: 209665 Comm: python3 Not tainted 6.1.0_for_upstream_min_debug_2022_12_12_17_02 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:kmem_cache_alloc+0xcb/0x450 Code: ce 7e 49 8b 50 08 49 83 78 10 00 4d 8b 28 0f 84 cb 02 00 00 4d 85 ed 0f 84 c2 02 00 00 41 8b 44 24 28 48 8d 4a 01 49 8b 3c 24 <49> 8b 5c 05 00 4c 89 e8 65 48 0f c7 0f 0f 94 c0 84 c0 74 b8 41 8b RSP: 0018:ffff88822acbbab8 EFLAGS: 00010202 RAX: 0000000000000070 RBX: ffff8881c28e3e00 RCX: 00000000064f8dae RDX: 00000000064f8dad RSI: 0000000000000a20 RDI: 0000000000030d00 RBP: 0000000000000a20 R08: ffff8882f5d30d00 R09: ffff888104032f40 R10: ffff88810fade828 R11: 736f6d6570736575 R12: ffff88810081c000 R13: 00000000000002fb R14: ffffffff817fc865 R15: 0000000000000000 FS: 00007f9324ff9700(0000) GS:ffff8882f5d00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000000000036b CR3: 00000001125af004 CR4: 0000000000370ea0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> skb_clone+0x55/0xd0 ip6_finish_output2+0x3fe/0x690 ip6_finish_output+0xfa/0x310 ip6_send_skb+0x1e/0x60 udp_v6_send_skb+0x1e5/0x420 udpv6_sendmsg+0xb3c/0xe60 ? ip_mc_finish_output+0x180/0x180 ? __switch_to_asm+0x3a/0x60 ? __switch_to_asm+0x34/0x60 sock_sendmsg+0x33/0x40 __sys_sendto+0x103/0x160 ? _copy_to_user+0x21/0x30 ? kvm_clock_get_cycles+0xd/0x10 ? ktime_get_ts64+0x49/0xe0 __x64_sys_sendto+0x25/0x30 do_syscall_64+0x3d/0x90 entry_SYSCALL_64_after_hwframe+0x46/0xb0 RIP: 0033:0x7f9374f1ed14 Code: 42 41 f8 ff 44 8b 4c 24 2c 4c 8b 44 24 20 89 c5 44 8b 54 24 28 48 8b 54 24 18 b8 2c 00 00 00 48 8b 74 24 10 8b 7c 24 08 0f 05 <48> 3d 00 f0 ff ff 77 34 89 ef 48 89 44 24 08 e8 68 41 f8 ff 48 8b RSP: 002b:00007f9324ff7bd0 EFLAGS: 00000293 ORIG_RAX: 000000000000002c RAX: ffffffffffffffda RBX: 00007f9324ff7cc8 RCX: 00007f9374f1ed14 RDX: 00000000000002fb RSI: 00007f93000052f0 RDI: 0000000000000030 RBP: 0000000000000000 R08: 00007f9324ff7d40 R09: 000000000000001c R10: 0000000000000000 R11: 0000000000000293 R12: 0000000000000000 R13: 000000012a05f200 R14: 0000000000000001 R15: 00007f9374d57bdc </TASK>
In the Linux kernel, the following vulnerability has been resolved: ALSA: hda: Fix possible null-ptr-deref when assigning a stream While AudioDSP drivers assign streams exclusively of HOST or LINK type, nothing blocks a user to attempt to assign a COUPLED stream. As supplied substream instance may be a stub, what is the case when code-loading, such scenario ends with null-ptr-deref.
In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: Reject sk_msg egress redirects to non-TCP sockets With a SOCKMAP/SOCKHASH map and an sk_msg program user can steer messages sent from one TCP socket (s1) to actually egress from another TCP socket (s2): tcp_bpf_sendmsg(s1) // = sk_prot->sendmsg tcp_bpf_send_verdict(s1) // __SK_REDIRECT case tcp_bpf_sendmsg_redir(s2) tcp_bpf_push_locked(s2) tcp_bpf_push(s2) tcp_rate_check_app_limited(s2) // expects tcp_sock tcp_sendmsg_locked(s2) // ditto There is a hard-coded assumption in the call-chain, that the egress socket (s2) is a TCP socket. However in commit 122e6c79efe1 ("sock_map: Update sock type checks for UDP") we have enabled redirects to non-TCP sockets. This was done for the sake of BPF sk_skb programs. There was no indention to support sk_msg send-to-egress use case. As a result, attempts to send-to-egress through a non-TCP socket lead to a crash due to invalid downcast from sock to tcp_sock: BUG: kernel NULL pointer dereference, address: 000000000000002f ... Call Trace: <TASK> ? show_regs+0x60/0x70 ? __die+0x1f/0x70 ? page_fault_oops+0x80/0x160 ? do_user_addr_fault+0x2d7/0x800 ? rcu_is_watching+0x11/0x50 ? exc_page_fault+0x70/0x1c0 ? asm_exc_page_fault+0x27/0x30 ? tcp_tso_segs+0x14/0xa0 tcp_write_xmit+0x67/0xce0 __tcp_push_pending_frames+0x32/0xf0 tcp_push+0x107/0x140 tcp_sendmsg_locked+0x99f/0xbb0 tcp_bpf_push+0x19d/0x3a0 tcp_bpf_sendmsg_redir+0x55/0xd0 tcp_bpf_send_verdict+0x407/0x550 tcp_bpf_sendmsg+0x1a1/0x390 inet_sendmsg+0x6a/0x70 sock_sendmsg+0x9d/0xc0 ? sockfd_lookup_light+0x12/0x80 __sys_sendto+0x10e/0x160 ? syscall_enter_from_user_mode+0x20/0x60 ? __this_cpu_preempt_check+0x13/0x20 ? lockdep_hardirqs_on+0x82/0x110 __x64_sys_sendto+0x1f/0x30 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd Reject selecting a non-TCP sockets as redirect target from a BPF sk_msg program to prevent the crash. When attempted, user will receive an EACCES error from send/sendto/sendmsg() syscall.
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix possible NULL dereference in amdgpu_ras_query_error_status_helper() Return invalid error code -EINVAL for invalid block id. Fixes the below: drivers/gpu/drm/amd/amdgpu/amdgpu_ras.c:1183 amdgpu_ras_query_error_status_helper() error: we previously assumed 'info' could be null (see line 1176)
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: f_ncm: fix potential NULL ptr deref in ncm_bitrate() In Google internal bug 265639009 we've received an (as yet) unreproducible crash report from an aarch64 GKI 5.10.149-android13 running device. AFAICT the source code is at: https://android.googlesource.com/kernel/common/+/refs/tags/ASB-2022-12-05_13-5.10 The call stack is: ncm_close() -> ncm_notify() -> ncm_do_notify() with the crash at: ncm_do_notify+0x98/0x270 Code: 79000d0b b9000a6c f940012a f9400269 (b9405d4b) Which I believe disassembles to (I don't know ARM assembly, but it looks sane enough to me...): // halfword (16-bit) store presumably to event->wLength (at offset 6 of struct usb_cdc_notification) 0B 0D 00 79 strh w11, [x8, #6] // word (32-bit) store presumably to req->Length (at offset 8 of struct usb_request) 6C 0A 00 B9 str w12, [x19, #8] // x10 (NULL) was read here from offset 0 of valid pointer x9 // IMHO we're reading 'cdev->gadget' and getting NULL // gadget is indeed at offset 0 of struct usb_composite_dev 2A 01 40 F9 ldr x10, [x9] // loading req->buf pointer, which is at offset 0 of struct usb_request 69 02 40 F9 ldr x9, [x19] // x10 is null, crash, appears to be attempt to read cdev->gadget->max_speed 4B 5D 40 B9 ldr w11, [x10, #0x5c] which seems to line up with ncm_do_notify() case NCM_NOTIFY_SPEED code fragment: event->wLength = cpu_to_le16(8); req->length = NCM_STATUS_BYTECOUNT; /* SPEED_CHANGE data is up/down speeds in bits/sec */ data = req->buf + sizeof *event; data[0] = cpu_to_le32(ncm_bitrate(cdev->gadget)); My analysis of registers and NULL ptr deref crash offset (Unable to handle kernel NULL pointer dereference at virtual address 000000000000005c) heavily suggests that the crash is due to 'cdev->gadget' being NULL when executing: data[0] = cpu_to_le32(ncm_bitrate(cdev->gadget)); which calls: ncm_bitrate(NULL) which then calls: gadget_is_superspeed(NULL) which reads ((struct usb_gadget *)NULL)->max_speed and hits a panic. AFAICT, if I'm counting right, the offset of max_speed is indeed 0x5C. (remember there's a GKI KABI reservation of 16 bytes in struct work_struct) It's not at all clear to me how this is all supposed to work... but returning 0 seems much better than panic-ing...
In the Linux kernel, the following vulnerability has been resolved: LoongArch: Set all reserved memblocks on Node#0 at initialization After commit 61167ad5fecdea ("mm: pass nid to reserve_bootmem_region()") we get a panic if DEFERRED_STRUCT_PAGE_INIT is enabled: [ 0.000000] CPU 0 Unable to handle kernel paging request at virtual address 0000000000002b82, era == 90000000040e3f28, ra == 90000000040e3f18 [ 0.000000] Oops[#1]: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 6.5.0+ #733 [ 0.000000] pc 90000000040e3f28 ra 90000000040e3f18 tp 90000000046f4000 sp 90000000046f7c90 [ 0.000000] a0 0000000000000001 a1 0000000000200000 a2 0000000000000040 a3 90000000046f7ca0 [ 0.000000] a4 90000000046f7ca4 a5 0000000000000000 a6 90000000046f7c38 a7 0000000000000000 [ 0.000000] t0 0000000000000002 t1 9000000004b00ac8 t2 90000000040e3f18 t3 90000000040f0800 [ 0.000000] t4 00000000000f0000 t5 80000000ffffe07e t6 0000000000000003 t7 900000047fff5e20 [ 0.000000] t8 aaaaaaaaaaaaaaab u0 0000000000000018 s9 0000000000000000 s0 fffffefffe000000 [ 0.000000] s1 0000000000000000 s2 0000000000000080 s3 0000000000000040 s4 0000000000000000 [ 0.000000] s5 0000000000000000 s6 fffffefffe000000 s7 900000000470b740 s8 9000000004ad4000 [ 0.000000] ra: 90000000040e3f18 reserve_bootmem_region+0xec/0x21c [ 0.000000] ERA: 90000000040e3f28 reserve_bootmem_region+0xfc/0x21c [ 0.000000] CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE) [ 0.000000] PRMD: 00000000 (PPLV0 -PIE -PWE) [ 0.000000] EUEN: 00000000 (-FPE -SXE -ASXE -BTE) [ 0.000000] ECFG: 00070800 (LIE=11 VS=7) [ 0.000000] ESTAT: 00010800 [PIL] (IS=11 ECode=1 EsubCode=0) [ 0.000000] BADV: 0000000000002b82 [ 0.000000] PRID: 0014d000 (Loongson-64bit, Loongson-3A6000) [ 0.000000] Modules linked in: [ 0.000000] Process swapper (pid: 0, threadinfo=(____ptrval____), task=(____ptrval____)) [ 0.000000] Stack : 0000000000000000 9000000002eb5430 0000003a00000020 90000000045ccd00 [ 0.000000] 900000000470e000 90000000002c1918 0000000000000000 9000000004110780 [ 0.000000] 00000000fe6c0000 0000000480000000 9000000004b4e368 9000000004110748 [ 0.000000] 0000000000000000 900000000421ca84 9000000004620000 9000000004564970 [ 0.000000] 90000000046f7d78 9000000002cc9f70 90000000002c1918 900000000470e000 [ 0.000000] 9000000004564970 90000000040bc0e0 90000000046f7d78 0000000000000000 [ 0.000000] 0000000000004000 90000000045ccd00 0000000000000000 90000000002c1918 [ 0.000000] 90000000002c1900 900000000470b700 9000000004b4df78 9000000004620000 [ 0.000000] 90000000046200a8 90000000046200a8 0000000000000000 9000000004218b2c [ 0.000000] 9000000004270008 0000000000000001 0000000000000000 90000000045ccd00 [ 0.000000] ... [ 0.000000] Call Trace: [ 0.000000] [<90000000040e3f28>] reserve_bootmem_region+0xfc/0x21c [ 0.000000] [<900000000421ca84>] memblock_free_all+0x114/0x350 [ 0.000000] [<9000000004218b2c>] mm_core_init+0x138/0x3cc [ 0.000000] [<9000000004200e38>] start_kernel+0x488/0x7a4 [ 0.000000] [<90000000040df0d8>] kernel_entry+0xd8/0xdc [ 0.000000] [ 0.000000] Code: 02eb21ad 00410f4c 380c31ac <262b818d> 6800b70d 02c1c196 0015001c 57fe4bb1 260002cd The reason is early memblock_reserve() in memblock_init() set node id to MAX_NUMNODES, making NODE_DATA(nid) a NULL dereference in the call chain reserve_bootmem_region() -> init_reserved_page(). After memblock_init(), those late calls of memblock_reserve() operate on subregions of memblock .memory regions. As a result, these reserved regions will be set to the correct node at the first iteration of memmap_init_reserved_pages(). So set all reserved memblocks on Node#0 at initialization can avoid this panic.
In the Linux kernel, the following vulnerability has been resolved: usb: hub: Guard against accesses to uninitialized BOS descriptors Many functions in drivers/usb/core/hub.c and drivers/usb/core/hub.h access fields inside udev->bos without checking if it was allocated and initialized. If usb_get_bos_descriptor() fails for whatever reason, udev->bos will be NULL and those accesses will result in a crash: BUG: kernel NULL pointer dereference, address: 0000000000000018 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 5 PID: 17818 Comm: kworker/5:1 Tainted: G W 5.15.108-18910-gab0e1cb584e1 #1 <HASH:1f9e 1> Hardware name: Google Kindred/Kindred, BIOS Google_Kindred.12672.413.0 02/03/2021 Workqueue: usb_hub_wq hub_event RIP: 0010:hub_port_reset+0x193/0x788 Code: 89 f7 e8 20 f7 15 00 48 8b 43 08 80 b8 96 03 00 00 03 75 36 0f b7 88 92 03 00 00 81 f9 10 03 00 00 72 27 48 8b 80 a8 03 00 00 <48> 83 78 18 00 74 19 48 89 df 48 8b 75 b0 ba 02 00 00 00 4c 89 e9 RSP: 0018:ffffab740c53fcf8 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffffa1bc5f678000 RCX: 0000000000000310 RDX: fffffffffffffdff RSI: 0000000000000286 RDI: ffffa1be9655b840 RBP: ffffab740c53fd70 R08: 00001b7d5edaa20c R09: ffffffffb005e060 R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000 R13: ffffab740c53fd3e R14: 0000000000000032 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffffa1be96540000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000018 CR3: 000000022e80c005 CR4: 00000000003706e0 Call Trace: hub_event+0x73f/0x156e ? hub_activate+0x5b7/0x68f process_one_work+0x1a2/0x487 worker_thread+0x11a/0x288 kthread+0x13a/0x152 ? process_one_work+0x487/0x487 ? kthread_associate_blkcg+0x70/0x70 ret_from_fork+0x1f/0x30 Fall back to a default behavior if the BOS descriptor isn't accessible and skip all the functionalities that depend on it: LPM support checks, Super Speed capabilitiy checks, U1/U2 states setup.
In the Linux kernel, the following vulnerability has been resolved: media: hantro: Check whether reset op is defined before use The i.MX8MM/N/P does not define the .reset op since reset of the VPU is done by genpd. Check whether the .reset op is defined before calling it to avoid NULL pointer dereference. Note that the Fixes tag is set to the commit which removed the reset op from i.MX8M Hantro G2 implementation, this is because before this commit all the implementations did define the .reset op.
In the Linux kernel, the following vulnerability has been resolved: HID: betop: check shape of output reports betopff_init() only checks the total sum of the report counts for each report field to be at least 4, but hid_betopff_play() expects 4 report fields. A device advertising an output report with one field and 4 report counts would pass the check but crash the kernel with a NULL pointer dereference in hid_betopff_play().
In the Linux kernel, the following vulnerability has been resolved: bpf: support non-r10 register spill/fill to/from stack in precision tracking Use instruction (jump) history to record instructions that performed register spill/fill to/from stack, regardless if this was done through read-only r10 register, or any other register after copying r10 into it *and* potentially adjusting offset. To make this work reliably, we push extra per-instruction flags into instruction history, encoding stack slot index (spi) and stack frame number in extra 10 bit flags we take away from prev_idx in instruction history. We don't touch idx field for maximum performance, as it's checked most frequently during backtracking. This change removes basically the last remaining practical limitation of precision backtracking logic in BPF verifier. It fixes known deficiencies, but also opens up new opportunities to reduce number of verified states, explored in the subsequent patches. There are only three differences in selftests' BPF object files according to veristat, all in the positive direction (less states). File Program Insns (A) Insns (B) Insns (DIFF) States (A) States (B) States (DIFF) -------------------------------------- ------------- --------- --------- ------------- ---------- ---------- ------------- test_cls_redirect_dynptr.bpf.linked3.o cls_redirect 2987 2864 -123 (-4.12%) 240 231 -9 (-3.75%) xdp_synproxy_kern.bpf.linked3.o syncookie_tc 82848 82661 -187 (-0.23%) 5107 5073 -34 (-0.67%) xdp_synproxy_kern.bpf.linked3.o syncookie_xdp 85116 84964 -152 (-0.18%) 5162 5130 -32 (-0.62%) Note, I avoided renaming jmp_history to more generic insn_hist to minimize number of lines changed and potential merge conflicts between bpf and bpf-next trees. Notice also cur_hist_entry pointer reset to NULL at the beginning of instruction verification loop. This pointer avoids the problem of relying on last jump history entry's insn_idx to determine whether we already have entry for current instruction or not. It can happen that we added jump history entry because current instruction is_jmp_point(), but also we need to add instruction flags for stack access. In this case, we don't want to entries, so we need to reuse last added entry, if it is present. Relying on insn_idx comparison has the same ambiguity problem as the one that was fixed recently in [0], so we avoid that. [0] https://patchwork.kernel.org/project/netdevbpf/patch/20231110002638.4168352-3-andrii@kernel.org/