In the Linux kernel, the following vulnerability has been resolved: bpf: Free dynamically allocated bits in bpf_iter_bits_destroy() bpf_iter_bits_destroy() uses "kit->nr_bits <= 64" to check whether the bits are dynamically allocated. However, the check is incorrect and may cause a kmemleak as shown below: unreferenced object 0xffff88812628c8c0 (size 32): comm "swapper/0", pid 1, jiffies 4294727320 hex dump (first 32 bytes): b0 c1 55 f5 81 88 ff ff f0 f0 f0 f0 f0 f0 f0 f0 ..U........... f0 f0 f0 f0 f0 f0 f0 f0 00 00 00 00 00 00 00 00 .............. backtrace (crc 781e32cc): [<00000000c452b4ab>] kmemleak_alloc+0x4b/0x80 [<0000000004e09f80>] __kmalloc_node_noprof+0x480/0x5c0 [<00000000597124d6>] __alloc.isra.0+0x89/0xb0 [<000000004ebfffcd>] alloc_bulk+0x2af/0x720 [<00000000d9c10145>] prefill_mem_cache+0x7f/0xb0 [<00000000ff9738ff>] bpf_mem_alloc_init+0x3e2/0x610 [<000000008b616eac>] bpf_global_ma_init+0x19/0x30 [<00000000fc473efc>] do_one_initcall+0xd3/0x3c0 [<00000000ec81498c>] kernel_init_freeable+0x66a/0x940 [<00000000b119f72f>] kernel_init+0x20/0x160 [<00000000f11ac9a7>] ret_from_fork+0x3c/0x70 [<0000000004671da4>] ret_from_fork_asm+0x1a/0x30 That is because nr_bits will be set as zero in bpf_iter_bits_next() after all bits have been iterated. Fix the issue by setting kit->bit to kit->nr_bits instead of setting kit->nr_bits to zero when the iteration completes in bpf_iter_bits_next(). In addition, use "!nr_bits || bits >= nr_bits" to check whether the iteration is complete and still use "nr_bits > 64" to indicate whether bits are dynamically allocated. The "!nr_bits" check is necessary because bpf_iter_bits_new() may fail before setting kit->nr_bits, and this condition will stop the iteration early instead of accessing the zeroed or freed kit->bits. Considering the initial value of kit->bits is -1 and the type of kit->nr_bits is unsigned int, change the type of kit->nr_bits to int. The potential overflow problem will be handled in the following patch.
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Fix NULL deref in mlx5e_tir_builder_alloc() In mlx5e_tir_builder_alloc() kvzalloc() may return NULL which is dereferenced on the next line in a reference to the modify field. Found by Linux Verification Center (linuxtesting.org) with SVACE.
In the Linux kernel, the following vulnerability has been resolved: signal: restore the override_rlimit logic Prior to commit d64696905554 ("Reimplement RLIMIT_SIGPENDING on top of ucounts") UCOUNT_RLIMIT_SIGPENDING rlimit was not enforced for a class of signals. However now it's enforced unconditionally, even if override_rlimit is set. This behavior change caused production issues. For example, if the limit is reached and a process receives a SIGSEGV signal, sigqueue_alloc fails to allocate the necessary resources for the signal delivery, preventing the signal from being delivered with siginfo. This prevents the process from correctly identifying the fault address and handling the error. From the user-space perspective, applications are unaware that the limit has been reached and that the siginfo is effectively 'corrupted'. This can lead to unpredictable behavior and crashes, as we observed with java applications. Fix this by passing override_rlimit into inc_rlimit_get_ucounts() and skip the comparison to max there if override_rlimit is set. This effectively restores the old behavior.
In the Linux kernel, the following vulnerability has been resolved: net: test for not too small csum_start in virtio_net_hdr_to_skb() syzbot was able to trigger this warning [1], after injecting a malicious packet through af_packet, setting skb->csum_start and thus the transport header to an incorrect value. We can at least make sure the transport header is after the end of the network header (with a estimated minimal size). [1] [ 67.873027] skb len=4096 headroom=16 headlen=14 tailroom=0 mac=(-1,-1) mac_len=0 net=(16,-6) trans=10 shinfo(txflags=0 nr_frags=1 gso(size=0 type=0 segs=0)) csum(0xa start=10 offset=0 ip_summed=3 complete_sw=0 valid=0 level=0) hash(0x0 sw=0 l4=0) proto=0x0800 pkttype=0 iif=0 priority=0x0 mark=0x0 alloc_cpu=10 vlan_all=0x0 encapsulation=0 inner(proto=0x0000, mac=0, net=0, trans=0) [ 67.877172] dev name=veth0_vlan feat=0x000061164fdd09e9 [ 67.877764] sk family=17 type=3 proto=0 [ 67.878279] skb linear: 00000000: 00 00 10 00 00 00 00 00 0f 00 00 00 08 00 [ 67.879128] skb frag: 00000000: 0e 00 07 00 00 00 28 00 08 80 1c 00 04 00 00 02 [ 67.879877] skb frag: 00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 67.880647] skb frag: 00000020: 00 00 02 00 00 00 08 00 1b 00 00 00 00 00 00 00 [ 67.881156] skb frag: 00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 67.881753] skb frag: 00000040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 67.882173] skb frag: 00000050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 67.882790] skb frag: 00000060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 67.883171] skb frag: 00000070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 67.883733] skb frag: 00000080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 67.884206] skb frag: 00000090: 00 00 00 00 00 00 00 00 00 00 69 70 76 6c 61 6e [ 67.884704] skb frag: 000000a0: 31 00 00 00 00 00 00 00 00 00 2b 00 00 00 00 00 [ 67.885139] skb frag: 000000b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 67.885677] skb frag: 000000c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 67.886042] skb frag: 000000d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 67.886408] skb frag: 000000e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 67.887020] skb frag: 000000f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 67.887384] skb frag: 00000100: 00 00 [ 67.887878] ------------[ cut here ]------------ [ 67.887908] offset (-6) >= skb_headlen() (14) [ 67.888445] WARNING: CPU: 10 PID: 2088 at net/core/dev.c:3332 skb_checksum_help (net/core/dev.c:3332 (discriminator 2)) [ 67.889353] Modules linked in: macsec macvtap macvlan hsr wireguard curve25519_x86_64 libcurve25519_generic libchacha20poly1305 chacha_x86_64 libchacha poly1305_x86_64 dummy bridge sr_mod cdrom evdev pcspkr i2c_piix4 9pnet_virtio 9p 9pnet netfs [ 67.890111] CPU: 10 UID: 0 PID: 2088 Comm: b363492833 Not tainted 6.11.0-virtme #1011 [ 67.890183] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 67.890309] RIP: 0010:skb_checksum_help (net/core/dev.c:3332 (discriminator 2)) [ 67.891043] Call Trace: [ 67.891173] <TASK> [ 67.891274] ? __warn (kernel/panic.c:741) [ 67.891320] ? skb_checksum_help (net/core/dev.c:3332 (discriminator 2)) [ 67.891333] ? report_bug (lib/bug.c:180 lib/bug.c:219) [ 67.891348] ? handle_bug (arch/x86/kernel/traps.c:239) [ 67.891363] ? exc_invalid_op (arch/x86/kernel/traps.c:260 (discriminator 1)) [ 67.891372] ? asm_exc_invalid_op (./arch/x86/include/asm/idtentry.h:621) [ 67.891388] ? skb_checksum_help (net/core/dev.c:3332 (discriminator 2)) [ 67.891399] ? skb_checksum_help (net/core/dev.c:3332 (discriminator 2)) [ 67.891416] ip_do_fragment (net/ipv4/ip_output.c:777 (discriminator 1)) [ 67.891448] ? __ip_local_out (./include/linux/skbuff.h:1146 ./include/net/l3mdev.h:196 ./include/net/l3mdev.h:213 ne ---truncated---
In the Linux kernel, the following vulnerability has been resolved: sched/numa: Fix the potential null pointer dereference in task_numa_work() When running stress-ng-vm-segv test, we found a null pointer dereference error in task_numa_work(). Here is the backtrace: [323676.066985] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000020 ...... [323676.067108] CPU: 35 PID: 2694524 Comm: stress-ng-vm-se ...... [323676.067113] pstate: 23401009 (nzCv daif +PAN -UAO +TCO +DIT +SSBS BTYPE=--) [323676.067115] pc : vma_migratable+0x1c/0xd0 [323676.067122] lr : task_numa_work+0x1ec/0x4e0 [323676.067127] sp : ffff8000ada73d20 [323676.067128] x29: ffff8000ada73d20 x28: 0000000000000000 x27: 000000003e89f010 [323676.067130] x26: 0000000000080000 x25: ffff800081b5c0d8 x24: ffff800081b27000 [323676.067133] x23: 0000000000010000 x22: 0000000104d18cc0 x21: ffff0009f7158000 [323676.067135] x20: 0000000000000000 x19: 0000000000000000 x18: ffff8000ada73db8 [323676.067138] x17: 0001400000000000 x16: ffff800080df40b0 x15: 0000000000000035 [323676.067140] x14: ffff8000ada73cc8 x13: 1fffe0017cc72001 x12: ffff8000ada73cc8 [323676.067142] x11: ffff80008001160c x10: ffff000be639000c x9 : ffff8000800f4ba4 [323676.067145] x8 : ffff000810375000 x7 : ffff8000ada73974 x6 : 0000000000000001 [323676.067147] x5 : 0068000b33e26707 x4 : 0000000000000001 x3 : ffff0009f7158000 [323676.067149] x2 : 0000000000000041 x1 : 0000000000004400 x0 : 0000000000000000 [323676.067152] Call trace: [323676.067153] vma_migratable+0x1c/0xd0 [323676.067155] task_numa_work+0x1ec/0x4e0 [323676.067157] task_work_run+0x78/0xd8 [323676.067161] do_notify_resume+0x1ec/0x290 [323676.067163] el0_svc+0x150/0x160 [323676.067167] el0t_64_sync_handler+0xf8/0x128 [323676.067170] el0t_64_sync+0x17c/0x180 [323676.067173] Code: d2888001 910003fd f9000bf3 aa0003f3 (f9401000) [323676.067177] SMP: stopping secondary CPUs [323676.070184] Starting crashdump kernel... stress-ng-vm-segv in stress-ng is used to stress test the SIGSEGV error handling function of the system, which tries to cause a SIGSEGV error on return from unmapping the whole address space of the child process. Normally this program will not cause kernel crashes. But before the munmap system call returns to user mode, a potential task_numa_work() for numa balancing could be added and executed. In this scenario, since the child process has no vma after munmap, the vma_next() in task_numa_work() will return a null pointer even if the vma iterator restarts from 0. Recheck the vma pointer before dereferencing it in task_numa_work().
In the Linux kernel, the following vulnerability has been resolved: mptcp: pm: fix UaF read in mptcp_pm_nl_rm_addr_or_subflow Syzkaller reported this splat: ================================================================== BUG: KASAN: slab-use-after-free in mptcp_pm_nl_rm_addr_or_subflow+0xb44/0xcc0 net/mptcp/pm_netlink.c:881 Read of size 4 at addr ffff8880569ac858 by task syz.1.2799/14662 CPU: 0 UID: 0 PID: 14662 Comm: syz.1.2799 Not tainted 6.12.0-rc2-syzkaller-00307-g36c254515dc6 #0 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:377 [inline] print_report+0xc3/0x620 mm/kasan/report.c:488 kasan_report+0xd9/0x110 mm/kasan/report.c:601 mptcp_pm_nl_rm_addr_or_subflow+0xb44/0xcc0 net/mptcp/pm_netlink.c:881 mptcp_pm_nl_rm_subflow_received net/mptcp/pm_netlink.c:914 [inline] mptcp_nl_remove_id_zero_address+0x305/0x4a0 net/mptcp/pm_netlink.c:1572 mptcp_pm_nl_del_addr_doit+0x5c9/0x770 net/mptcp/pm_netlink.c:1603 genl_family_rcv_msg_doit+0x202/0x2f0 net/netlink/genetlink.c:1115 genl_family_rcv_msg net/netlink/genetlink.c:1195 [inline] genl_rcv_msg+0x565/0x800 net/netlink/genetlink.c:1210 netlink_rcv_skb+0x165/0x410 net/netlink/af_netlink.c:2551 genl_rcv+0x28/0x40 net/netlink/genetlink.c:1219 netlink_unicast_kernel net/netlink/af_netlink.c:1331 [inline] netlink_unicast+0x53c/0x7f0 net/netlink/af_netlink.c:1357 netlink_sendmsg+0x8b8/0xd70 net/netlink/af_netlink.c:1901 sock_sendmsg_nosec net/socket.c:729 [inline] __sock_sendmsg net/socket.c:744 [inline] ____sys_sendmsg+0x9ae/0xb40 net/socket.c:2607 ___sys_sendmsg+0x135/0x1e0 net/socket.c:2661 __sys_sendmsg+0x117/0x1f0 net/socket.c:2690 do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline] __do_fast_syscall_32+0x73/0x120 arch/x86/entry/common.c:386 do_fast_syscall_32+0x32/0x80 arch/x86/entry/common.c:411 entry_SYSENTER_compat_after_hwframe+0x84/0x8e RIP: 0023:0xf7fe4579 Code: b8 01 10 06 03 74 b4 01 10 07 03 74 b0 01 10 08 03 74 d8 01 00 00 00 00 00 00 00 00 00 00 00 00 00 51 52 55 89 e5 0f 34 cd 80 <5d> 5a 59 c3 90 90 90 90 8d b4 26 00 00 00 00 8d b4 26 00 00 00 00 RSP: 002b:00000000f574556c EFLAGS: 00000296 ORIG_RAX: 0000000000000172 RAX: ffffffffffffffda RBX: 000000000000000b RCX: 0000000020000140 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000296 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 </TASK> Allocated by task 5387: kasan_save_stack+0x33/0x60 mm/kasan/common.c:47 kasan_save_track+0x14/0x30 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:377 [inline] __kasan_kmalloc+0xaa/0xb0 mm/kasan/common.c:394 kmalloc_noprof include/linux/slab.h:878 [inline] kzalloc_noprof include/linux/slab.h:1014 [inline] subflow_create_ctx+0x87/0x2a0 net/mptcp/subflow.c:1803 subflow_ulp_init+0xc3/0x4d0 net/mptcp/subflow.c:1956 __tcp_set_ulp net/ipv4/tcp_ulp.c:146 [inline] tcp_set_ulp+0x326/0x7f0 net/ipv4/tcp_ulp.c:167 mptcp_subflow_create_socket+0x4ae/0x10a0 net/mptcp/subflow.c:1764 __mptcp_subflow_connect+0x3cc/0x1490 net/mptcp/subflow.c:1592 mptcp_pm_create_subflow_or_signal_addr+0xbda/0x23a0 net/mptcp/pm_netlink.c:642 mptcp_pm_nl_fully_established net/mptcp/pm_netlink.c:650 [inline] mptcp_pm_nl_work+0x3a1/0x4f0 net/mptcp/pm_netlink.c:943 mptcp_worker+0x15a/0x1240 net/mptcp/protocol.c:2777 process_one_work+0x958/0x1b30 kernel/workqueue.c:3229 process_scheduled_works kernel/workqueue.c:3310 [inline] worker_thread+0x6c8/0xf00 kernel/workqueue.c:3391 kthread+0x2c1/0x3a0 kernel/kthread.c:389 ret_from_fork+0x45/0x80 arch/x86/ke ---truncated---
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check null pointers before multiple uses [WHAT & HOW] Poniters, such as stream_enc and dc->bw_vbios, are null checked previously in the same function, so Coverity warns "implies that stream_enc and dc->bw_vbios might be null". They are used multiple times in the subsequent code and need to be checked. This fixes 10 FORWARD_NULL issues reported by Coverity.
In the Linux kernel, the following vulnerability has been resolved: arm64: probes: Fix uprobes for big-endian kernels The arm64 uprobes code is broken for big-endian kernels as it doesn't convert the in-memory instruction encoding (which is always little-endian) into the kernel's native endianness before analyzing and simulating instructions. This may result in a few distinct problems: * The kernel may may erroneously reject probing an instruction which can safely be probed. * The kernel may erroneously erroneously permit stepping an instruction out-of-line when that instruction cannot be stepped out-of-line safely. * The kernel may erroneously simulate instruction incorrectly dur to interpretting the byte-swapped encoding. The endianness mismatch isn't caught by the compiler or sparse because: * The arch_uprobe::{insn,ixol} fields are encoded as arrays of u8, so the compiler and sparse have no idea these contain a little-endian 32-bit value. The core uprobes code populates these with a memcpy() which similarly does not handle endianness. * While the uprobe_opcode_t type is an alias for __le32, both arch_uprobe_analyze_insn() and arch_uprobe_skip_sstep() cast from u8[] to the similarly-named probe_opcode_t, which is an alias for u32. Hence there is no endianness conversion warning. Fix this by changing the arch_uprobe::{insn,ixol} fields to __le32 and adding the appropriate __le32_to_cpu() conversions prior to consuming the instruction encoding. The core uprobes copies these fields as opaque ranges of bytes, and so is unaffected by this change. At the same time, remove MAX_UINSN_BYTES and consistently use AARCH64_INSN_SIZE for clarity. Tested with the following: | #include <stdio.h> | #include <stdbool.h> | | #define noinline __attribute__((noinline)) | | static noinline void *adrp_self(void) | { | void *addr; | | asm volatile( | " adrp %x0, adrp_self\n" | " add %x0, %x0, :lo12:adrp_self\n" | : "=r" (addr)); | } | | | int main(int argc, char *argv) | { | void *ptr = adrp_self(); | bool equal = (ptr == adrp_self); | | printf("adrp_self => %p\n" | "adrp_self() => %p\n" | "%s\n", | adrp_self, ptr, equal ? "EQUAL" : "NOT EQUAL"); | | return 0; | } .... where the adrp_self() function was compiled to: | 00000000004007e0 <adrp_self>: | 4007e0: 90000000 adrp x0, 400000 <__ehdr_start> | 4007e4: 911f8000 add x0, x0, #0x7e0 | 4007e8: d65f03c0 ret Before this patch, the ADRP is not recognized, and is assumed to be steppable, resulting in corruption of the result: | # ./adrp-self | adrp_self => 0x4007e0 | adrp_self() => 0x4007e0 | EQUAL | # echo 'p /root/adrp-self:0x007e0' > /sys/kernel/tracing/uprobe_events | # echo 1 > /sys/kernel/tracing/events/uprobes/enable | # ./adrp-self | adrp_self => 0x4007e0 | adrp_self() => 0xffffffffff7e0 | NOT EQUAL After this patch, the ADRP is correctly recognized and simulated: | # ./adrp-self | adrp_self => 0x4007e0 | adrp_self() => 0x4007e0 | EQUAL | # | # echo 'p /root/adrp-self:0x007e0' > /sys/kernel/tracing/uprobe_events | # echo 1 > /sys/kernel/tracing/events/uprobes/enable | # ./adrp-self | adrp_self => 0x4007e0 | adrp_self() => 0x4007e0 | EQUAL
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: fix a UBSAN warning in DML2.1 When programming phantom pipe, since cursor_width is explicity set to 0, this causes calculation logic to trigger overflow for an unsigned int triggering the kernel's UBSAN check as below: [ 40.962845] UBSAN: shift-out-of-bounds in /tmp/amd.EfpumTkO/amd/amdgpu/../display/dc/dml2/dml21/src/dml2_core/dml2_core_dcn4_calcs.c:3312:34 [ 40.962849] shift exponent 4294967170 is too large for 32-bit type 'unsigned int' [ 40.962852] CPU: 1 PID: 1670 Comm: gnome-shell Tainted: G W OE 6.5.0-41-generic #41~22.04.2-Ubuntu [ 40.962854] Hardware name: Gigabyte Technology Co., Ltd. X670E AORUS PRO X/X670E AORUS PRO X, BIOS F21 01/10/2024 [ 40.962856] Call Trace: [ 40.962857] <TASK> [ 40.962860] dump_stack_lvl+0x48/0x70 [ 40.962870] dump_stack+0x10/0x20 [ 40.962872] __ubsan_handle_shift_out_of_bounds+0x1ac/0x360 [ 40.962878] calculate_cursor_req_attributes.cold+0x1b/0x28 [amdgpu] [ 40.963099] dml_core_mode_support+0x6b91/0x16bc0 [amdgpu] [ 40.963327] ? srso_alias_return_thunk+0x5/0x7f [ 40.963331] ? CalculateWatermarksMALLUseAndDRAMSpeedChangeSupport+0x18b8/0x2790 [amdgpu] [ 40.963534] ? srso_alias_return_thunk+0x5/0x7f [ 40.963536] ? dml_core_mode_support+0xb3db/0x16bc0 [amdgpu] [ 40.963730] dml2_core_calcs_mode_support_ex+0x2c/0x90 [amdgpu] [ 40.963906] ? srso_alias_return_thunk+0x5/0x7f [ 40.963909] ? dml2_core_calcs_mode_support_ex+0x2c/0x90 [amdgpu] [ 40.964078] core_dcn4_mode_support+0x72/0xbf0 [amdgpu] [ 40.964247] dml2_top_optimization_perform_optimization_phase+0x1d3/0x2a0 [amdgpu] [ 40.964420] dml2_build_mode_programming+0x23d/0x750 [amdgpu] [ 40.964587] dml21_validate+0x274/0x770 [amdgpu] [ 40.964761] ? srso_alias_return_thunk+0x5/0x7f [ 40.964763] ? resource_append_dpp_pipes_for_plane_composition+0x27c/0x3b0 [amdgpu] [ 40.964942] dml2_validate+0x504/0x750 [amdgpu] [ 40.965117] ? dml21_copy+0x95/0xb0 [amdgpu] [ 40.965291] ? srso_alias_return_thunk+0x5/0x7f [ 40.965295] dcn401_validate_bandwidth+0x4e/0x70 [amdgpu] [ 40.965491] update_planes_and_stream_state+0x38d/0x5c0 [amdgpu] [ 40.965672] update_planes_and_stream_v3+0x52/0x1e0 [amdgpu] [ 40.965845] ? srso_alias_return_thunk+0x5/0x7f [ 40.965849] dc_update_planes_and_stream+0x71/0xb0 [amdgpu] Fix this by adding a guard for checking cursor width before triggering the size calculation.
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: add list empty check to avoid null pointer issue Add list empty check to avoid null pointer issues in some corner cases. - list_for_each_entry_safe()
In the Linux kernel, the following vulnerability has been resolved: drm/connector: hdmi: Fix memory leak in drm_display_mode_from_cea_vic() modprobe drm_connector_test and then rmmod drm_connector_test, the following memory leak occurs. The `mode` allocated in drm_mode_duplicate() called by drm_display_mode_from_cea_vic() is not freed, which cause the memory leak: unreferenced object 0xffffff80cb0ee400 (size 128): comm "kunit_try_catch", pid 1948, jiffies 4294950339 hex dump (first 32 bytes): 14 44 02 00 80 07 d8 07 04 08 98 08 00 00 38 04 .D............8. 3c 04 41 04 65 04 00 00 05 00 00 00 00 00 00 00 <.A.e........... backtrace (crc 90e9585c): [<00000000ec42e3d7>] kmemleak_alloc+0x34/0x40 [<00000000d0ef055a>] __kmalloc_cache_noprof+0x26c/0x2f4 [<00000000c2062161>] drm_mode_duplicate+0x44/0x19c [<00000000f96c74aa>] drm_display_mode_from_cea_vic+0x88/0x98 [<00000000d8f2c8b4>] 0xffffffdc982a4868 [<000000005d164dbc>] kunit_try_run_case+0x13c/0x3ac [<000000006fb23398>] kunit_generic_run_threadfn_adapter+0x80/0xec [<000000006ea56ca0>] kthread+0x2e8/0x374 [<000000000676063f>] ret_from_fork+0x10/0x20 ...... Free `mode` by using drm_kunit_display_mode_from_cea_vic() to fix it.
In the Linux kernel, the following vulnerability has been resolved: scsi: target: core: Fix null-ptr-deref in target_alloc_device() There is a null-ptr-deref issue reported by KASAN: BUG: KASAN: null-ptr-deref in target_alloc_device+0xbc4/0xbe0 [target_core_mod] ... kasan_report+0xb9/0xf0 target_alloc_device+0xbc4/0xbe0 [target_core_mod] core_dev_setup_virtual_lun0+0xef/0x1f0 [target_core_mod] target_core_init_configfs+0x205/0x420 [target_core_mod] do_one_initcall+0xdd/0x4e0 ... entry_SYSCALL_64_after_hwframe+0x76/0x7e In target_alloc_device(), if allocing memory for dev queues fails, then dev will be freed by dev->transport->free_device(), but dev->transport is not initialized at that time, which will lead to a null pointer reference problem. Fixing this bug by freeing dev with hba->backend->ops->free_device().
In the Linux kernel, the following vulnerability has been resolved: btrfs: reinitialize delayed ref list after deleting it from the list At insert_delayed_ref() if we need to update the action of an existing ref to BTRFS_DROP_DELAYED_REF, we delete the ref from its ref head's ref_add_list using list_del(), which leaves the ref's add_list member not reinitialized, as list_del() sets the next and prev members of the list to LIST_POISON1 and LIST_POISON2, respectively. If later we end up calling drop_delayed_ref() against the ref, which can happen during merging or when destroying delayed refs due to a transaction abort, we can trigger a crash since at drop_delayed_ref() we call list_empty() against the ref's add_list, which returns false since the list was not reinitialized after the list_del() and as a consequence we call list_del() again at drop_delayed_ref(). This results in an invalid list access since the next and prev members are set to poison pointers, resulting in a splat if CONFIG_LIST_HARDENED and CONFIG_DEBUG_LIST are set or invalid poison pointer dereferences otherwise. So fix this by deleting from the list with list_del_init() instead.
In the Linux kernel, the following vulnerability has been resolved: vhost/scsi: null-ptr-dereference in vhost_scsi_get_req() Since commit 3f8ca2e115e5 ("vhost/scsi: Extract common handling code from control queue handler") a null pointer dereference bug can be triggered when guest sends an SCSI AN request. In vhost_scsi_ctl_handle_vq(), `vc.target` is assigned with `&v_req.tmf.lun[1]` within a switch-case block and is then passed to vhost_scsi_get_req() which extracts `vc->req` and `tpg`. However, for a `VIRTIO_SCSI_T_AN_*` request, tpg is not required, so `vc.target` is set to NULL in this branch. Later, in vhost_scsi_get_req(), `vc->target` is dereferenced without being checked, leading to a null pointer dereference bug. This bug can be triggered from guest. When this bug occurs, the vhost_worker process is killed while holding `vq->mutex` and the corresponding tpg will remain occupied indefinitely. Below is the KASAN report: Oops: general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN NOPTI KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] CPU: 1 PID: 840 Comm: poc Not tainted 6.10.0+ #1 Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 RIP: 0010:vhost_scsi_get_req+0x165/0x3a0 Code: 00 fc ff df 48 89 fa 48 c1 ea 03 80 3c 02 00 0f 85 2b 02 00 00 48 b8 00 00 00 00 00 fc ff df 4d 8b 65 30 4c 89 e2 48 c1 ea 03 <0f> b6 04 02 4c 89 e2 83 e2 07 38 d0 7f 08 84 c0 0f 85 be 01 00 00 RSP: 0018:ffff888017affb50 EFLAGS: 00010246 RAX: dffffc0000000000 RBX: ffff88801b000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff888017affcb8 RBP: ffff888017affb80 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: ffff888017affc88 R14: ffff888017affd1c R15: ffff888017993000 FS: 000055556e076500(0000) GS:ffff88806b100000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000200027c0 CR3: 0000000010ed0004 CR4: 0000000000370ef0 Call Trace: <TASK> ? show_regs+0x86/0xa0 ? die_addr+0x4b/0xd0 ? exc_general_protection+0x163/0x260 ? asm_exc_general_protection+0x27/0x30 ? vhost_scsi_get_req+0x165/0x3a0 vhost_scsi_ctl_handle_vq+0x2a4/0xca0 ? __pfx_vhost_scsi_ctl_handle_vq+0x10/0x10 ? __switch_to+0x721/0xeb0 ? __schedule+0xda5/0x5710 ? __kasan_check_write+0x14/0x30 ? _raw_spin_lock+0x82/0xf0 vhost_scsi_ctl_handle_kick+0x52/0x90 vhost_run_work_list+0x134/0x1b0 vhost_task_fn+0x121/0x350 ... </TASK> ---[ end trace 0000000000000000 ]--- Let's add a check in vhost_scsi_get_req. [whitespace fixes]
In the Linux kernel, the following vulnerability has been resolved: uprobes: fix kernel info leak via "[uprobes]" vma xol_add_vma() maps the uninitialized page allocated by __create_xol_area() into userspace. On some architectures (x86) this memory is readable even without VM_READ, VM_EXEC results in the same pgprot_t as VM_EXEC|VM_READ, although this doesn't really matter, debugger can read this memory anyway.
In the Linux kernel, the following vulnerability has been resolved: net: add more sanity checks to qdisc_pkt_len_init() One path takes care of SKB_GSO_DODGY, assuming skb->len is bigger than hdr_len. virtio_net_hdr_to_skb() does not fully dissect TCP headers, it only make sure it is at least 20 bytes. It is possible for an user to provide a malicious 'GSO' packet, total length of 80 bytes. - 20 bytes of IPv4 header - 60 bytes TCP header - a small gso_size like 8 virtio_net_hdr_to_skb() would declare this packet as a normal GSO packet, because it would see 40 bytes of payload, bigger than gso_size. We need to make detect this case to not underflow qdisc_skb_cb(skb)->pkt_len.
In the Linux kernel, the following vulnerability has been resolved: ksmbd: add refcnt to ksmbd_conn struct When sending an oplock break request, opinfo->conn is used, But freed ->conn can be used on multichannel. This patch add a reference count to the ksmbd_conn struct so that it can be freed when it is no longer used.
In the Linux kernel, the following vulnerability has been resolved: ext4: update orig_path in ext4_find_extent() In ext4_find_extent(), if the path is not big enough, we free it and set *orig_path to NULL. But after reallocating and successfully initializing the path, we don't update *orig_path, in which case the caller gets a valid path but a NULL ppath, and this may cause a NULL pointer dereference or a path memory leak. For example: ext4_split_extent path = *ppath = 2000 ext4_find_extent if (depth > path[0].p_maxdepth) kfree(path = 2000); *orig_path = path = NULL; path = kcalloc() = 3000 ext4_split_extent_at(*ppath = NULL) path = *ppath; ex = path[depth].p_ext; // NULL pointer dereference! ================================================================== BUG: kernel NULL pointer dereference, address: 0000000000000010 CPU: 6 UID: 0 PID: 576 Comm: fsstress Not tainted 6.11.0-rc2-dirty #847 RIP: 0010:ext4_split_extent_at+0x6d/0x560 Call Trace: <TASK> ext4_split_extent.isra.0+0xcb/0x1b0 ext4_ext_convert_to_initialized+0x168/0x6c0 ext4_ext_handle_unwritten_extents+0x325/0x4d0 ext4_ext_map_blocks+0x520/0xdb0 ext4_map_blocks+0x2b0/0x690 ext4_iomap_begin+0x20e/0x2c0 [...] ================================================================== Therefore, *orig_path is updated when the extent lookup succeeds, so that the caller can safely use path or *ppath.
In the Linux kernel, the following vulnerability has been resolved: KVM: arm64: Fix shift-out-of-bounds bug Fix a shift-out-of-bounds bug reported by UBSAN when running VM with MTE enabled host kernel. UBSAN: shift-out-of-bounds in arch/arm64/kvm/sys_regs.c:1988:14 shift exponent 33 is too large for 32-bit type 'int' CPU: 26 UID: 0 PID: 7629 Comm: qemu-kvm Not tainted 6.12.0-rc2 #34 Hardware name: IEI NF5280R7/Mitchell MB, BIOS 00.00. 2024-10-12 09:28:54 10/14/2024 Call trace: dump_backtrace+0xa0/0x128 show_stack+0x20/0x38 dump_stack_lvl+0x74/0x90 dump_stack+0x18/0x28 __ubsan_handle_shift_out_of_bounds+0xf8/0x1e0 reset_clidr+0x10c/0x1c8 kvm_reset_sys_regs+0x50/0x1c8 kvm_reset_vcpu+0xec/0x2b0 __kvm_vcpu_set_target+0x84/0x158 kvm_vcpu_set_target+0x138/0x168 kvm_arch_vcpu_ioctl_vcpu_init+0x40/0x2b0 kvm_arch_vcpu_ioctl+0x28c/0x4b8 kvm_vcpu_ioctl+0x4bc/0x7a8 __arm64_sys_ioctl+0xb4/0x100 invoke_syscall+0x70/0x100 el0_svc_common.constprop.0+0x48/0xf0 do_el0_svc+0x24/0x38 el0_svc+0x3c/0x158 el0t_64_sync_handler+0x120/0x130 el0t_64_sync+0x194/0x198
In the Linux kernel, the following vulnerability has been resolved: bpftool: Fix undefined behavior in qsort(NULL, 0, ...) When netfilter has no entry to display, qsort is called with qsort(NULL, 0, ...). This results in undefined behavior, as UBSan reports: net.c:827:2: runtime error: null pointer passed as argument 1, which is declared to never be null Although the C standard does not explicitly state whether calling qsort with a NULL pointer when the size is 0 constitutes undefined behavior, Section 7.1.4 of the C standard (Use of library functions) mentions: "Each of the following statements applies unless explicitly stated otherwise in the detailed descriptions that follow: If an argument to a function has an invalid value (such as a value outside the domain of the function, or a pointer outside the address space of the program, or a null pointer, or a pointer to non-modifiable storage when the corresponding parameter is not const-qualified) or a type (after promotion) not expected by a function with variable number of arguments, the behavior is undefined." To avoid this, add an early return when nf_link_info is NULL to prevent calling qsort with a NULL pointer.
In the Linux kernel, the following vulnerability has been resolved: ext4: fix access to uninitialised lock in fc replay path The following kernel trace can be triggered with fstest generic/629 when executed against a filesystem with fast-commit feature enabled: INFO: trying to register non-static key. The code is fine but needs lockdep annotation, or maybe you didn't initialize this object before use? turning off the locking correctness validator. CPU: 0 PID: 866 Comm: mount Not tainted 6.10.0+ #11 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-3-gd478f380-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x66/0x90 register_lock_class+0x759/0x7d0 __lock_acquire+0x85/0x2630 ? __find_get_block+0xb4/0x380 lock_acquire+0xd1/0x2d0 ? __ext4_journal_get_write_access+0xd5/0x160 _raw_spin_lock+0x33/0x40 ? __ext4_journal_get_write_access+0xd5/0x160 __ext4_journal_get_write_access+0xd5/0x160 ext4_reserve_inode_write+0x61/0xb0 __ext4_mark_inode_dirty+0x79/0x270 ? ext4_ext_replay_set_iblocks+0x2f8/0x450 ext4_ext_replay_set_iblocks+0x330/0x450 ext4_fc_replay+0x14c8/0x1540 ? jread+0x88/0x2e0 ? rcu_is_watching+0x11/0x40 do_one_pass+0x447/0xd00 jbd2_journal_recover+0x139/0x1b0 jbd2_journal_load+0x96/0x390 ext4_load_and_init_journal+0x253/0xd40 ext4_fill_super+0x2cc6/0x3180 ... In the replay path there's an attempt to lock sbi->s_bdev_wb_lock in function ext4_check_bdev_write_error(). Unfortunately, at this point this spinlock has not been initialized yet. Moving it's initialization to an earlier point in __ext4_fill_super() fixes this splat.
In the Linux kernel, the following vulnerability has been resolved: mailbox: bcm2835: Fix timeout during suspend mode During noirq suspend phase the Raspberry Pi power driver suffer of firmware property timeouts. The reason is that the IRQ of the underlying BCM2835 mailbox is disabled and rpi_firmware_property_list() will always run into a timeout [1]. Since the VideoCore side isn't consider as a wakeup source, set the IRQF_NO_SUSPEND flag for the mailbox IRQ in order to keep it enabled during suspend-resume cycle. [1] PM: late suspend of devices complete after 1.754 msecs WARNING: CPU: 0 PID: 438 at drivers/firmware/raspberrypi.c:128 rpi_firmware_property_list+0x204/0x22c Firmware transaction 0x00028001 timeout Modules linked in: CPU: 0 PID: 438 Comm: bash Tainted: G C 6.9.3-dirty #17 Hardware name: BCM2835 Call trace: unwind_backtrace from show_stack+0x18/0x1c show_stack from dump_stack_lvl+0x34/0x44 dump_stack_lvl from __warn+0x88/0xec __warn from warn_slowpath_fmt+0x7c/0xb0 warn_slowpath_fmt from rpi_firmware_property_list+0x204/0x22c rpi_firmware_property_list from rpi_firmware_property+0x68/0x8c rpi_firmware_property from rpi_firmware_set_power+0x54/0xc0 rpi_firmware_set_power from _genpd_power_off+0xe4/0x148 _genpd_power_off from genpd_sync_power_off+0x7c/0x11c genpd_sync_power_off from genpd_finish_suspend+0xcc/0xe0 genpd_finish_suspend from dpm_run_callback+0x78/0xd0 dpm_run_callback from device_suspend_noirq+0xc0/0x238 device_suspend_noirq from dpm_suspend_noirq+0xb0/0x168 dpm_suspend_noirq from suspend_devices_and_enter+0x1b8/0x5ac suspend_devices_and_enter from pm_suspend+0x254/0x2e4 pm_suspend from state_store+0xa8/0xd4 state_store from kernfs_fop_write_iter+0x154/0x1a0 kernfs_fop_write_iter from vfs_write+0x12c/0x184 vfs_write from ksys_write+0x78/0xc0 ksys_write from ret_fast_syscall+0x0/0x54 Exception stack(0xcc93dfa8 to 0xcc93dff0) [...] PM: noirq suspend of devices complete after 3095.584 msecs
In the Linux kernel, the following vulnerability has been resolved: net: Fix an unsafe loop on the list The kernel may crash when deleting a genetlink family if there are still listeners for that family: Oops: Kernel access of bad area, sig: 11 [#1] ... NIP [c000000000c080bc] netlink_update_socket_mc+0x3c/0xc0 LR [c000000000c0f764] __netlink_clear_multicast_users+0x74/0xc0 Call Trace: __netlink_clear_multicast_users+0x74/0xc0 genl_unregister_family+0xd4/0x2d0 Change the unsafe loop on the list to a safe one, because inside the loop there is an element removal from this list.
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Pass non-null to dcn20_validate_apply_pipe_split_flags [WHAT & HOW] "dcn20_validate_apply_pipe_split_flags" dereferences merge, and thus it cannot be a null pointer. Let's pass a valid pointer to avoid null dereference. This fixes 2 FORWARD_NULL issues reported by Coverity.
In the Linux kernel, the following vulnerability has been resolved: io_uring: fix memleak in io_init_wq_offload() I got memory leak report when doing fuzz test: BUG: memory leak unreferenced object 0xffff888107310a80 (size 96): comm "syz-executor.6", pid 4610, jiffies 4295140240 (age 20.135s) hex dump (first 32 bytes): 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 ad 4e ad de ff ff ff ff 00 00 00 00 .....N.......... backtrace: [<000000001974933b>] kmalloc include/linux/slab.h:591 [inline] [<000000001974933b>] kzalloc include/linux/slab.h:721 [inline] [<000000001974933b>] io_init_wq_offload fs/io_uring.c:7920 [inline] [<000000001974933b>] io_uring_alloc_task_context+0x466/0x640 fs/io_uring.c:7955 [<0000000039d0800d>] __io_uring_add_tctx_node+0x256/0x360 fs/io_uring.c:9016 [<000000008482e78c>] io_uring_add_tctx_node fs/io_uring.c:9052 [inline] [<000000008482e78c>] __do_sys_io_uring_enter fs/io_uring.c:9354 [inline] [<000000008482e78c>] __se_sys_io_uring_enter fs/io_uring.c:9301 [inline] [<000000008482e78c>] __x64_sys_io_uring_enter+0xabc/0xc20 fs/io_uring.c:9301 [<00000000b875f18f>] do_syscall_x64 arch/x86/entry/common.c:50 [inline] [<00000000b875f18f>] do_syscall_64+0x3b/0x90 arch/x86/entry/common.c:80 [<000000006b0a8484>] entry_SYSCALL_64_after_hwframe+0x44/0xae CPU0 CPU1 io_uring_enter io_uring_enter io_uring_add_tctx_node io_uring_add_tctx_node __io_uring_add_tctx_node __io_uring_add_tctx_node io_uring_alloc_task_context io_uring_alloc_task_context io_init_wq_offload io_init_wq_offload hash = kzalloc hash = kzalloc ctx->hash_map = hash ctx->hash_map = hash <- one of the hash is leaked When calling io_uring_enter() in parallel, the 'hash_map' will be leaked, add uring_lock to protect 'hash_map'.
In the Linux kernel, the following vulnerability has been resolved: net: fec: don't save PTP state if PTP is unsupported Some platforms (such as i.MX25 and i.MX27) do not support PTP, so on these platforms fec_ptp_init() is not called and the related members in fep are not initialized. However, fec_ptp_save_state() is called unconditionally, which causes the kernel to panic. Therefore, add a condition so that fec_ptp_save_state() is not called if PTP is not supported.
In the Linux kernel, the following vulnerability has been resolved: ACPI: PRM: Find EFI_MEMORY_RUNTIME block for PRM handler and context PRMT needs to find the correct type of block to translate the PA-VA mapping for EFI runtime services. The issue arises because the PRMT is finding a block of type EFI_CONVENTIONAL_MEMORY, which is not appropriate for runtime services as described in Section 2.2.2 (Runtime Services) of the UEFI Specification [1]. Since the PRM handler is a type of runtime service, this causes an exception when the PRM handler is called. [Firmware Bug]: Unable to handle paging request in EFI runtime service WARNING: CPU: 22 PID: 4330 at drivers/firmware/efi/runtime-wrappers.c:341 __efi_queue_work+0x11c/0x170 Call trace: Let PRMT find a block with EFI_MEMORY_RUNTIME for PRM handler and PRM context. If no suitable block is found, a warning message will be printed, but the procedure continues to manage the next PRM handler. However, if the PRM handler is actually called without proper allocation, it would result in a failure during error handling. By using the correct memory types for runtime services, ensure that the PRM handler and the context are properly mapped in the virtual address space during runtime, preventing the paging request error. The issue is really that only memory that has been remapped for runtime by the firmware can be used by the PRM handler, and so the region needs to have the EFI_MEMORY_RUNTIME attribute. [ rjw: Subject and changelog edits ]
In the Linux kernel, the following vulnerability has been resolved: netfilter: br_netfilter: fix panic with metadata_dst skb Fix a kernel panic in the br_netfilter module when sending untagged traffic via a VxLAN device. This happens during the check for fragmentation in br_nf_dev_queue_xmit. It is dependent on: 1) the br_netfilter module being loaded; 2) net.bridge.bridge-nf-call-iptables set to 1; 3) a bridge with a VxLAN (single-vxlan-device) netdevice as a bridge port; 4) untagged frames with size higher than the VxLAN MTU forwarded/flooded When forwarding the untagged packet to the VxLAN bridge port, before the netfilter hooks are called, br_handle_egress_vlan_tunnel is called and changes the skb_dst to the tunnel dst. The tunnel_dst is a metadata type of dst, i.e., skb_valid_dst(skb) is false, and metadata->dst.dev is NULL. Then in the br_netfilter hooks, in br_nf_dev_queue_xmit, there's a check for frames that needs to be fragmented: frames with higher MTU than the VxLAN device end up calling br_nf_ip_fragment, which in turns call ip_skb_dst_mtu. The ip_dst_mtu tries to use the skb_dst(skb) as if it was a valid dst with valid dst->dev, thus the crash. This case was never supported in the first place, so drop the packet instead. PING 10.0.0.2 (10.0.0.2) from 0.0.0.0 h1-eth0: 2000(2028) bytes of data. [ 176.291791] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000110 [ 176.292101] Mem abort info: [ 176.292184] ESR = 0x0000000096000004 [ 176.292322] EC = 0x25: DABT (current EL), IL = 32 bits [ 176.292530] SET = 0, FnV = 0 [ 176.292709] EA = 0, S1PTW = 0 [ 176.292862] FSC = 0x04: level 0 translation fault [ 176.293013] Data abort info: [ 176.293104] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 [ 176.293488] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 176.293787] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 176.293995] user pgtable: 4k pages, 48-bit VAs, pgdp=0000000043ef5000 [ 176.294166] [0000000000000110] pgd=0000000000000000, p4d=0000000000000000 [ 176.294827] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP [ 176.295252] Modules linked in: vxlan ip6_udp_tunnel udp_tunnel veth br_netfilter bridge stp llc ipv6 crct10dif_ce [ 176.295923] CPU: 0 PID: 188 Comm: ping Not tainted 6.8.0-rc3-g5b3fbd61b9d1 #2 [ 176.296314] Hardware name: linux,dummy-virt (DT) [ 176.296535] pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 176.296808] pc : br_nf_dev_queue_xmit+0x390/0x4ec [br_netfilter] [ 176.297382] lr : br_nf_dev_queue_xmit+0x2ac/0x4ec [br_netfilter] [ 176.297636] sp : ffff800080003630 [ 176.297743] x29: ffff800080003630 x28: 0000000000000008 x27: ffff6828c49ad9f8 [ 176.298093] x26: ffff6828c49ad000 x25: 0000000000000000 x24: 00000000000003e8 [ 176.298430] x23: 0000000000000000 x22: ffff6828c4960b40 x21: ffff6828c3b16d28 [ 176.298652] x20: ffff6828c3167048 x19: ffff6828c3b16d00 x18: 0000000000000014 [ 176.298926] x17: ffffb0476322f000 x16: ffffb7e164023730 x15: 0000000095744632 [ 176.299296] x14: ffff6828c3f1c880 x13: 0000000000000002 x12: ffffb7e137926a70 [ 176.299574] x11: 0000000000000001 x10: ffff6828c3f1c898 x9 : 0000000000000000 [ 176.300049] x8 : ffff6828c49bf070 x7 : 0008460f18d5f20e x6 : f20e0100bebafeca [ 176.300302] x5 : ffff6828c7f918fe x4 : ffff6828c49bf070 x3 : 0000000000000000 [ 176.300586] x2 : 0000000000000000 x1 : ffff6828c3c7ad00 x0 : ffff6828c7f918f0 [ 176.300889] Call trace: [ 176.301123] br_nf_dev_queue_xmit+0x390/0x4ec [br_netfilter] [ 176.301411] br_nf_post_routing+0x2a8/0x3e4 [br_netfilter] [ 176.301703] nf_hook_slow+0x48/0x124 [ 176.302060] br_forward_finish+0xc8/0xe8 [bridge] [ 176.302371] br_nf_hook_thresh+0x124/0x134 [br_netfilter] [ 176.302605] br_nf_forward_finish+0x118/0x22c [br_netfilter] [ 176.302824] br_nf_forward_ip.part.0+0x264/0x290 [br_netfilter] [ 176.303136] br_nf_forward+0x2b8/0x4e0 [br_netfilter] [ 176.303359] nf_hook_slow+0x48/0x124 [ 176.303 ---truncated---
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add NULL check for clk_mgr and clk_mgr->funcs in dcn401_init_hw This commit addresses a potential null pointer dereference issue in the `dcn401_init_hw` function. The issue could occur when `dc->clk_mgr` or `dc->clk_mgr->funcs` is null. The fix adds a check to ensure `dc->clk_mgr` and `dc->clk_mgr->funcs` is not null before accessing its functions. This prevents a potential null pointer dereference. Reported by smatch: drivers/gpu/drm/amd/amdgpu/../display/dc/hwss/dcn401/dcn401_hwseq.c:416 dcn401_init_hw() error: we previously assumed 'dc->clk_mgr' could be null (see line 225)
In the Linux kernel, the following vulnerability has been resolved: USB: gadget: dummy-hcd: Fix "task hung" problem The syzbot fuzzer has been encountering "task hung" problems ever since the dummy-hcd driver was changed to use hrtimers instead of regular timers. It turns out that the problems are caused by a subtle difference between the timer_pending() and hrtimer_active() APIs. The changeover blindly replaced the first by the second. However, timer_pending() returns True when the timer is queued but not when its callback is running, whereas hrtimer_active() returns True when the hrtimer is queued _or_ its callback is running. This difference occasionally caused dummy_urb_enqueue() to think that the callback routine had not yet started when in fact it was almost finished. As a result the hrtimer was not restarted, which made it impossible for the driver to dequeue later the URB that was just enqueued. This caused usb_kill_urb() to hang, and things got worse from there. Since hrtimers have no API for telling when they are queued and the callback isn't running, the driver must keep track of this for itself. That's what this patch does, adding a new "timer_pending" flag and setting or clearing it at the appropriate times.
In the Linux kernel, the following vulnerability has been resolved: drm/msm/adreno: Assign msm_gpu->pdev earlier to avoid nullptrs There are some cases, such as the one uncovered by Commit 46d4efcccc68 ("drm/msm/a6xx: Avoid a nullptr dereference when speedbin setting fails") where msm_gpu_cleanup() : platform_set_drvdata(gpu->pdev, NULL); is called on gpu->pdev == NULL, as the GPU device has not been fully initialized yet. Turns out that there's more than just the aforementioned path that causes this to happen (e.g. the case when there's speedbin data in the catalog, but opp-supported-hw is missing in DT). Assigning msm_gpu->pdev earlier seems like the least painful solution to this, therefore do so. Patchwork: https://patchwork.freedesktop.org/patch/602742/
In the Linux kernel, the following vulnerability has been resolved: drm/xe/oa: Fix overflow in oa batch buffer By default xe_bb_create_job() appends a MI_BATCH_BUFFER_END to batch buffer, this is not a problem if batch buffer is only used once but oa reuses the batch buffer for the same metric and at each call it appends a MI_BATCH_BUFFER_END, printing the warning below and then overflowing. [ 381.072016] ------------[ cut here ]------------ [ 381.072019] xe 0000:00:02.0: [drm] Assertion `bb->len * 4 + bb_prefetch(q->gt) <= size` failed! platform: LUNARLAKE subplatform: 1 graphics: Xe2_LPG / Xe2_HPG 20.04 step B0 media: Xe2_LPM / Xe2_HPM 20.00 step B0 tile: 0 VRAM 0 B GT: 0 type 1 So here checking if batch buffer already have MI_BATCH_BUFFER_END if not append it. v2: - simply fix, suggestion from Ashutosh (cherry picked from commit 9ba0e0f30ca42a98af3689460063edfb6315718a)
In the Linux kernel, the following vulnerability has been resolved: be2net: fix potential memory leak in be_xmit() The be_xmit() returns NETDEV_TX_OK without freeing skb in case of be_xmit_enqueue() fails, add dev_kfree_skb_any() to fix it.
In the Linux kernel, the following vulnerability has been resolved: bpf: Use raw_spinlock_t in ringbuf The function __bpf_ringbuf_reserve is invoked from a tracepoint, which disables preemption. Using spinlock_t in this context can lead to a "sleep in atomic" warning in the RT variant. This issue is illustrated in the example below: BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48 in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 556208, name: test_progs preempt_count: 1, expected: 0 RCU nest depth: 1, expected: 1 INFO: lockdep is turned off. Preemption disabled at: [<ffffd33a5c88ea44>] migrate_enable+0xc0/0x39c CPU: 7 PID: 556208 Comm: test_progs Tainted: G Hardware name: Qualcomm SA8775P Ride (DT) Call trace: dump_backtrace+0xac/0x130 show_stack+0x1c/0x30 dump_stack_lvl+0xac/0xe8 dump_stack+0x18/0x30 __might_resched+0x3bc/0x4fc rt_spin_lock+0x8c/0x1a4 __bpf_ringbuf_reserve+0xc4/0x254 bpf_ringbuf_reserve_dynptr+0x5c/0xdc bpf_prog_ac3d15160d62622a_test_read_write+0x104/0x238 trace_call_bpf+0x238/0x774 perf_call_bpf_enter.isra.0+0x104/0x194 perf_syscall_enter+0x2f8/0x510 trace_sys_enter+0x39c/0x564 syscall_trace_enter+0x220/0x3c0 do_el0_svc+0x138/0x1dc el0_svc+0x54/0x130 el0t_64_sync_handler+0x134/0x150 el0t_64_sync+0x17c/0x180 Switch the spinlock to raw_spinlock_t to avoid this error.
In the Linux kernel, the following vulnerability has been resolved: iommu/vt-d: Fix incorrect pci_for_each_dma_alias() for non-PCI devices Previously, the domain_context_clear() function incorrectly called pci_for_each_dma_alias() to set up context entries for non-PCI devices. This could lead to kernel hangs or other unexpected behavior. Add a check to only call pci_for_each_dma_alias() for PCI devices. For non-PCI devices, domain_context_clear_one() is called directly.
In the Linux kernel, the following vulnerability has been resolved: media: v4l2-tpg: prevent the risk of a division by zero As reported by Coverity, the logic at tpg_precalculate_line() blindly rescales the buffer even when scaled_witdh is equal to zero. If this ever happens, this will cause a division by zero. Instead, add a WARN_ON_ONCE() to trigger such cases and return without doing any precalculation.
In the Linux kernel, the following vulnerability has been resolved: tracing/timerlat: Drop interface_lock in stop_kthread() stop_kthread() is the offline callback for "trace/osnoise:online", since commit 5bfbcd1ee57b ("tracing/timerlat: Add interface_lock around clearing of kthread in stop_kthread()"), the following ABBA deadlock scenario is introduced: T1 | T2 [BP] | T3 [AP] osnoise_hotplug_workfn() | work_for_cpu_fn() | cpuhp_thread_fun() | _cpu_down() | osnoise_cpu_die() mutex_lock(&interface_lock) | | stop_kthread() | cpus_write_lock() | mutex_lock(&interface_lock) cpus_read_lock() | cpuhp_kick_ap() | As the interface_lock here in just for protecting the "kthread" field of the osn_var, use xchg() instead to fix this issue. Also use for_each_online_cpu() back in stop_per_cpu_kthreads() as it can take cpu_read_lock() again.
In the Linux kernel, the following vulnerability has been resolved: media: cx24116: prevent overflows on SNR calculus as reported by Coverity, if reading SNR registers fail, a negative number will be returned, causing an underflow when reading SNR registers. Prevent that.
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check null pointers before using dc->clk_mgr [WHY & HOW] dc->clk_mgr is null checked previously in the same function, indicating it might be null. Passing "dc" to "dc->hwss.apply_idle_power_optimizations", which dereferences null "dc->clk_mgr". (The function pointer resolves to "dcn35_apply_idle_power_optimizations".) This fixes 1 FORWARD_NULL issue reported by Coverity.
In the Linux kernel, the following vulnerability has been resolved: fork: only invoke khugepaged, ksm hooks if no error There is no reason to invoke these hooks early against an mm that is in an incomplete state. The change in commit d24062914837 ("fork: use __mt_dup() to duplicate maple tree in dup_mmap()") makes this more pertinent as we may be in a state where entries in the maple tree are not yet consistent. Their placement early in dup_mmap() only appears to have been meaningful for early error checking, and since functionally it'd require a very small allocation to fail (in practice 'too small to fail') that'd only occur in the most dire circumstances, meaning the fork would fail or be OOM'd in any case. Since both khugepaged and KSM tracking are there to provide optimisations to memory performance rather than critical functionality, it doesn't really matter all that much if, under such dire memory pressure, we fail to register an mm with these. As a result, we follow the example of commit d2081b2bf819 ("mm: khugepaged: make khugepaged_enter() void function") and make ksm_fork() a void function also. We only expose the mm to these functions once we are done with them and only if no error occurred in the fork operation.
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix potential deadlock with newly created symlinks Syzbot reported that page_symlink(), called by nilfs_symlink(), triggers memory reclamation involving the filesystem layer, which can result in circular lock dependencies among the reader/writer semaphore nilfs->ns_segctor_sem, s_writers percpu_rwsem (intwrite) and the fs_reclaim pseudo lock. This is because after commit 21fc61c73c39 ("don't put symlink bodies in pagecache into highmem"), the gfp flags of the page cache for symbolic links are overwritten to GFP_KERNEL via inode_nohighmem(). This is not a problem for symlinks read from the backing device, because the __GFP_FS flag is dropped after inode_nohighmem() is called. However, when a new symlink is created with nilfs_symlink(), the gfp flags remain overwritten to GFP_KERNEL. Then, memory allocation called from page_symlink() etc. triggers memory reclamation including the FS layer, which may call nilfs_evict_inode() or nilfs_dirty_inode(). And these can cause a deadlock if they are called while nilfs->ns_segctor_sem is held: Fix this issue by dropping the __GFP_FS flag from the page cache GFP flags of newly created symlinks in the same way that nilfs_new_inode() and __nilfs_read_inode() do, as a workaround until we adopt nofs allocation scope consistently or improve the locking constraints.
In the Linux kernel, the following vulnerability has been resolved: drm/amd: Guard against bad data for ATIF ACPI method If a BIOS provides bad data in response to an ATIF method call this causes a NULL pointer dereference in the caller. ``` ? show_regs (arch/x86/kernel/dumpstack.c:478 (discriminator 1)) ? __die (arch/x86/kernel/dumpstack.c:423 arch/x86/kernel/dumpstack.c:434) ? page_fault_oops (arch/x86/mm/fault.c:544 (discriminator 2) arch/x86/mm/fault.c:705 (discriminator 2)) ? do_user_addr_fault (arch/x86/mm/fault.c:440 (discriminator 1) arch/x86/mm/fault.c:1232 (discriminator 1)) ? acpi_ut_update_object_reference (drivers/acpi/acpica/utdelete.c:642) ? exc_page_fault (arch/x86/mm/fault.c:1542) ? asm_exc_page_fault (./arch/x86/include/asm/idtentry.h:623) ? amdgpu_atif_query_backlight_caps.constprop.0 (drivers/gpu/drm/amd/amdgpu/amdgpu_acpi.c:387 (discriminator 2)) amdgpu ? amdgpu_atif_query_backlight_caps.constprop.0 (drivers/gpu/drm/amd/amdgpu/amdgpu_acpi.c:386 (discriminator 1)) amdgpu ``` It has been encountered on at least one system, so guard for it. (cherry picked from commit c9b7c809b89f24e9372a4e7f02d64c950b07fdee)
In the Linux kernel, the following vulnerability has been resolved: drm/tests: hdmi: Fix memory leaks in drm_display_mode_from_cea_vic() modprobe drm_hdmi_state_helper_test and then rmmod it, the following memory leak occurs. The `mode` allocated in drm_mode_duplicate() called by drm_display_mode_from_cea_vic() is not freed, which cause the memory leak: unreferenced object 0xffffff80ccd18100 (size 128): comm "kunit_try_catch", pid 1851, jiffies 4295059695 hex dump (first 32 bytes): 57 62 00 00 80 02 90 02 f0 02 20 03 00 00 e0 01 Wb........ ..... ea 01 ec 01 0d 02 00 00 0a 00 00 00 00 00 00 00 ................ backtrace (crc c2f1aa95): [<000000000f10b11b>] kmemleak_alloc+0x34/0x40 [<000000001cd4cf73>] __kmalloc_cache_noprof+0x26c/0x2f4 [<00000000f1f3cffa>] drm_mode_duplicate+0x44/0x19c [<000000008cbeef13>] drm_display_mode_from_cea_vic+0x88/0x98 [<0000000019daaacf>] 0xffffffedc11ae69c [<000000000aad0f85>] kunit_try_run_case+0x13c/0x3ac [<00000000a9210bac>] kunit_generic_run_threadfn_adapter+0x80/0xec [<000000000a0b2e9e>] kthread+0x2e8/0x374 [<00000000bd668858>] ret_from_fork+0x10/0x20 ...... Free `mode` by using drm_kunit_display_mode_from_cea_vic() to fix it.
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Disable PSR-SU on Parade 08-01 TCON too Stuart Hayhurst has found that both at bootup and fullscreen VA-API video is leading to black screens for around 1 second and kernel WARNING [1] traces when calling dmub_psr_enable() with Parade 08-01 TCON. These symptoms all go away with PSR-SU disabled for this TCON, so disable it for now while DMUB traces [2] from the failure can be analyzed and the failure state properly root caused. (cherry picked from commit afb634a6823d8d9db23c5fb04f79c5549349628b)
In the Linux kernel, the following vulnerability has been resolved: exfat: fix memory leak in exfat_load_bitmap() If the first directory entry in the root directory is not a bitmap directory entry, 'bh' will not be released and reassigned, which will cause a memory leak.
In the Linux kernel, the following vulnerability has been resolved: mm/damon/core: avoid overflow in damon_feed_loop_next_input() damon_feed_loop_next_input() is inefficient and fragile to overflows. Specifically, 'score_goal_diff_bp' calculation can overflow when 'score' is high. The calculation is actually unnecessary at all because 'goal' is a constant of value 10,000. Calculation of 'compensation' is again fragile to overflow. Final calculation of return value for under-achiving case is again fragile to overflow when the current score is under-achieving the target. Add two corner cases handling at the beginning of the function to make the body easier to read, and rewrite the body of the function to avoid overflows and the unnecessary bp value calcuation.
In the Linux kernel, the following vulnerability has been resolved: pinctrl: stm32: check devm_kasprintf() returned value devm_kasprintf() can return a NULL pointer on failure but this returned value is not checked. Fix this lack and check the returned value. Found by code review.
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check null pointer before try to access it [why & how] Change the order of the pipe_ctx->plane_state check to ensure that plane_state is not null before accessing it.
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add null check for top_pipe_to_program in commit_planes_for_stream This commit addresses a null pointer dereference issue in the `commit_planes_for_stream` function at line 4140. The issue could occur when `top_pipe_to_program` is null. The fix adds a check to ensure `top_pipe_to_program` is not null before accessing its stream_res. This prevents a null pointer dereference. Reported by smatch: drivers/gpu/drm/amd/amdgpu/../display/dc/core/dc.c:4140 commit_planes_for_stream() error: we previously assumed 'top_pipe_to_program' could be null (see line 3906)
In the Linux kernel, the following vulnerability has been resolved: bpf: Check the validity of nr_words in bpf_iter_bits_new() Check the validity of nr_words in bpf_iter_bits_new(). Without this check, when multiplication overflow occurs for nr_bits (e.g., when nr_words = 0x0400-0001, nr_bits becomes 64), stack corruption may occur due to bpf_probe_read_kernel_common(..., nr_bytes = 0x2000-0008). Fix it by limiting the maximum value of nr_words to 511. The value is derived from the current implementation of BPF memory allocator. To ensure compatibility if the BPF memory allocator's size limitation changes in the future, use the helper bpf_mem_alloc_check_size() to check whether nr_bytes is too larger. And return -E2BIG instead of -ENOMEM for oversized nr_bytes.