Logo
-

Byte Open Security

(ByteOS Network)

Log In

Sign Up

ByteOS

Security
Vulnerability Details
Registries
Custom Views
Weaknesses
Attack Patterns
Filters & Tools
Vulnerability Details :

CVE-2025-37761

Summary
Assigner-Linux
Assigner Org ID-416baaa9-dc9f-4396-8d5f-8c081fb06d67
Published At-01 May, 2025 | 13:07
Updated At-26 May, 2025 | 05:20
Rejected At-
Credits

drm/xe: Fix an out-of-bounds shift when invalidating TLB

In the Linux kernel, the following vulnerability has been resolved: drm/xe: Fix an out-of-bounds shift when invalidating TLB When the size of the range invalidated is larger than rounddown_pow_of_two(ULONG_MAX), The function macro roundup_pow_of_two(length) will hit an out-of-bounds shift [1]. Use a full TLB invalidation for such cases. v2: - Use a define for the range size limit over which we use a full TLB invalidation. (Lucas) - Use a better calculation of the limit. [1]: [ 39.202421] ------------[ cut here ]------------ [ 39.202657] UBSAN: shift-out-of-bounds in ./include/linux/log2.h:57:13 [ 39.202673] shift exponent 64 is too large for 64-bit type 'long unsigned int' [ 39.202688] CPU: 8 UID: 0 PID: 3129 Comm: xe_exec_system_ Tainted: G U 6.14.0+ #10 [ 39.202690] Tainted: [U]=USER [ 39.202690] Hardware name: ASUS System Product Name/PRIME B560M-A AC, BIOS 2001 02/01/2023 [ 39.202691] Call Trace: [ 39.202692] <TASK> [ 39.202695] dump_stack_lvl+0x6e/0xa0 [ 39.202699] ubsan_epilogue+0x5/0x30 [ 39.202701] __ubsan_handle_shift_out_of_bounds.cold+0x61/0xe6 [ 39.202705] xe_gt_tlb_invalidation_range.cold+0x1d/0x3a [xe] [ 39.202800] ? find_held_lock+0x2b/0x80 [ 39.202803] ? mark_held_locks+0x40/0x70 [ 39.202806] xe_svm_invalidate+0x459/0x700 [xe] [ 39.202897] drm_gpusvm_notifier_invalidate+0x4d/0x70 [drm_gpusvm] [ 39.202900] __mmu_notifier_release+0x1f5/0x270 [ 39.202905] exit_mmap+0x40e/0x450 [ 39.202912] __mmput+0x45/0x110 [ 39.202914] exit_mm+0xc5/0x130 [ 39.202916] do_exit+0x21c/0x500 [ 39.202918] ? lockdep_hardirqs_on_prepare+0xdb/0x190 [ 39.202920] do_group_exit+0x36/0xa0 [ 39.202922] get_signal+0x8f8/0x900 [ 39.202926] arch_do_signal_or_restart+0x35/0x100 [ 39.202930] syscall_exit_to_user_mode+0x1fc/0x290 [ 39.202932] do_syscall_64+0xa1/0x180 [ 39.202934] ? do_user_addr_fault+0x59f/0x8a0 [ 39.202937] ? lock_release+0xd2/0x2a0 [ 39.202939] ? do_user_addr_fault+0x5a9/0x8a0 [ 39.202942] ? trace_hardirqs_off+0x4b/0xc0 [ 39.202944] ? clear_bhb_loop+0x25/0x80 [ 39.202946] ? clear_bhb_loop+0x25/0x80 [ 39.202947] ? clear_bhb_loop+0x25/0x80 [ 39.202950] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 39.202952] RIP: 0033:0x7fa945e543e1 [ 39.202961] Code: Unable to access opcode bytes at 0x7fa945e543b7. [ 39.202962] RSP: 002b:00007ffca8fb4170 EFLAGS: 00000293 [ 39.202963] RAX: 000000000000003d RBX: 0000000000000000 RCX: 00007fa945e543e3 [ 39.202964] RDX: 0000000000000000 RSI: 00007ffca8fb41ac RDI: 00000000ffffffff [ 39.202964] RBP: 00007ffca8fb4190 R08: 0000000000000000 R09: 00007fa945f600a0 [ 39.202965] R10: 0000000000000000 R11: 0000000000000293 R12: 0000000000000000 [ 39.202966] R13: 00007fa9460dd310 R14: 00007ffca8fb41ac R15: 0000000000000000 [ 39.202970] </TASK> [ 39.202970] ---[ end trace ]--- (cherry picked from commit b88f48f86500bc0b44b4f73ac66d500a40d320ad)

Vendors
-
Not available
Products
-
Metrics (CVSS)
VersionBase scoreBase severityVector
Weaknesses
Attack Patterns
Solution/Workaround
References
HyperlinkResource Type
EPSS History
Score
Latest Score
-
N/A
No data available for selected date range
Percentile
Latest Percentile
-
N/A
No data available for selected date range
Stakeholder-Specific Vulnerability Categorization (SSVC)
▼Common Vulnerabilities and Exposures (CVE)
cve.org
Assigner:Linux
Assigner Org ID:416baaa9-dc9f-4396-8d5f-8c081fb06d67
Published At:01 May, 2025 | 13:07
Updated At:26 May, 2025 | 05:20
Rejected At:
▼CVE Numbering Authority (CNA)
drm/xe: Fix an out-of-bounds shift when invalidating TLB

In the Linux kernel, the following vulnerability has been resolved: drm/xe: Fix an out-of-bounds shift when invalidating TLB When the size of the range invalidated is larger than rounddown_pow_of_two(ULONG_MAX), The function macro roundup_pow_of_two(length) will hit an out-of-bounds shift [1]. Use a full TLB invalidation for such cases. v2: - Use a define for the range size limit over which we use a full TLB invalidation. (Lucas) - Use a better calculation of the limit. [1]: [ 39.202421] ------------[ cut here ]------------ [ 39.202657] UBSAN: shift-out-of-bounds in ./include/linux/log2.h:57:13 [ 39.202673] shift exponent 64 is too large for 64-bit type 'long unsigned int' [ 39.202688] CPU: 8 UID: 0 PID: 3129 Comm: xe_exec_system_ Tainted: G U 6.14.0+ #10 [ 39.202690] Tainted: [U]=USER [ 39.202690] Hardware name: ASUS System Product Name/PRIME B560M-A AC, BIOS 2001 02/01/2023 [ 39.202691] Call Trace: [ 39.202692] <TASK> [ 39.202695] dump_stack_lvl+0x6e/0xa0 [ 39.202699] ubsan_epilogue+0x5/0x30 [ 39.202701] __ubsan_handle_shift_out_of_bounds.cold+0x61/0xe6 [ 39.202705] xe_gt_tlb_invalidation_range.cold+0x1d/0x3a [xe] [ 39.202800] ? find_held_lock+0x2b/0x80 [ 39.202803] ? mark_held_locks+0x40/0x70 [ 39.202806] xe_svm_invalidate+0x459/0x700 [xe] [ 39.202897] drm_gpusvm_notifier_invalidate+0x4d/0x70 [drm_gpusvm] [ 39.202900] __mmu_notifier_release+0x1f5/0x270 [ 39.202905] exit_mmap+0x40e/0x450 [ 39.202912] __mmput+0x45/0x110 [ 39.202914] exit_mm+0xc5/0x130 [ 39.202916] do_exit+0x21c/0x500 [ 39.202918] ? lockdep_hardirqs_on_prepare+0xdb/0x190 [ 39.202920] do_group_exit+0x36/0xa0 [ 39.202922] get_signal+0x8f8/0x900 [ 39.202926] arch_do_signal_or_restart+0x35/0x100 [ 39.202930] syscall_exit_to_user_mode+0x1fc/0x290 [ 39.202932] do_syscall_64+0xa1/0x180 [ 39.202934] ? do_user_addr_fault+0x59f/0x8a0 [ 39.202937] ? lock_release+0xd2/0x2a0 [ 39.202939] ? do_user_addr_fault+0x5a9/0x8a0 [ 39.202942] ? trace_hardirqs_off+0x4b/0xc0 [ 39.202944] ? clear_bhb_loop+0x25/0x80 [ 39.202946] ? clear_bhb_loop+0x25/0x80 [ 39.202947] ? clear_bhb_loop+0x25/0x80 [ 39.202950] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 39.202952] RIP: 0033:0x7fa945e543e1 [ 39.202961] Code: Unable to access opcode bytes at 0x7fa945e543b7. [ 39.202962] RSP: 002b:00007ffca8fb4170 EFLAGS: 00000293 [ 39.202963] RAX: 000000000000003d RBX: 0000000000000000 RCX: 00007fa945e543e3 [ 39.202964] RDX: 0000000000000000 RSI: 00007ffca8fb41ac RDI: 00000000ffffffff [ 39.202964] RBP: 00007ffca8fb4190 R08: 0000000000000000 R09: 00007fa945f600a0 [ 39.202965] R10: 0000000000000000 R11: 0000000000000293 R12: 0000000000000000 [ 39.202966] R13: 00007fa9460dd310 R14: 00007ffca8fb41ac R15: 0000000000000000 [ 39.202970] </TASK> [ 39.202970] ---[ end trace ]--- (cherry picked from commit b88f48f86500bc0b44b4f73ac66d500a40d320ad)

Affected Products
Vendor
Linux Kernel Organization, IncLinux
Product
Linux
Repo
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
Program Files
  • drivers/gpu/drm/xe/xe_gt_tlb_invalidation.c
Default Status
unaffected
Versions
Affected
  • From 332dd0116c82a75df175a459fa69dda3f23491a7 before 28477f701b63922ff88e9fb13f5519c11cd48b86 (git)
  • From 332dd0116c82a75df175a459fa69dda3f23491a7 before e4715858f87b78ce58cfa03bbe140321edbbaf20 (git)
  • From 332dd0116c82a75df175a459fa69dda3f23491a7 before 7bcfeddb36b77f9fe3b010bb0b282b7618420bba (git)
Vendor
Linux Kernel Organization, IncLinux
Product
Linux
Repo
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
Program Files
  • drivers/gpu/drm/xe/xe_gt_tlb_invalidation.c
Default Status
affected
Versions
Affected
  • 6.8
Unaffected
  • From 0 before 6.8 (semver)
  • From 6.12.25 through 6.12.* (semver)
  • From 6.14.4 through 6.14.* (semver)
  • From 6.15 through * (original_commit_for_fix)
Metrics
VersionBase scoreBase severityVector
Metrics Other Info
Impacts
CAPEC IDDescription
Solutions

Configurations

Workarounds

Exploits

Credits

Timeline
EventDate
Replaced By

Rejected Reason

References
HyperlinkResource
https://git.kernel.org/stable/c/28477f701b63922ff88e9fb13f5519c11cd48b86
N/A
https://git.kernel.org/stable/c/e4715858f87b78ce58cfa03bbe140321edbbaf20
N/A
https://git.kernel.org/stable/c/7bcfeddb36b77f9fe3b010bb0b282b7618420bba
N/A
Hyperlink: https://git.kernel.org/stable/c/28477f701b63922ff88e9fb13f5519c11cd48b86
Resource: N/A
Hyperlink: https://git.kernel.org/stable/c/e4715858f87b78ce58cfa03bbe140321edbbaf20
Resource: N/A
Hyperlink: https://git.kernel.org/stable/c/7bcfeddb36b77f9fe3b010bb0b282b7618420bba
Resource: N/A
Information is not available yet
▼National Vulnerability Database (NVD)
nvd.nist.gov
Source:416baaa9-dc9f-4396-8d5f-8c081fb06d67
Published At:01 May, 2025 | 14:15
Updated At:06 Nov, 2025 | 21:44

In the Linux kernel, the following vulnerability has been resolved: drm/xe: Fix an out-of-bounds shift when invalidating TLB When the size of the range invalidated is larger than rounddown_pow_of_two(ULONG_MAX), The function macro roundup_pow_of_two(length) will hit an out-of-bounds shift [1]. Use a full TLB invalidation for such cases. v2: - Use a define for the range size limit over which we use a full TLB invalidation. (Lucas) - Use a better calculation of the limit. [1]: [ 39.202421] ------------[ cut here ]------------ [ 39.202657] UBSAN: shift-out-of-bounds in ./include/linux/log2.h:57:13 [ 39.202673] shift exponent 64 is too large for 64-bit type 'long unsigned int' [ 39.202688] CPU: 8 UID: 0 PID: 3129 Comm: xe_exec_system_ Tainted: G U 6.14.0+ #10 [ 39.202690] Tainted: [U]=USER [ 39.202690] Hardware name: ASUS System Product Name/PRIME B560M-A AC, BIOS 2001 02/01/2023 [ 39.202691] Call Trace: [ 39.202692] <TASK> [ 39.202695] dump_stack_lvl+0x6e/0xa0 [ 39.202699] ubsan_epilogue+0x5/0x30 [ 39.202701] __ubsan_handle_shift_out_of_bounds.cold+0x61/0xe6 [ 39.202705] xe_gt_tlb_invalidation_range.cold+0x1d/0x3a [xe] [ 39.202800] ? find_held_lock+0x2b/0x80 [ 39.202803] ? mark_held_locks+0x40/0x70 [ 39.202806] xe_svm_invalidate+0x459/0x700 [xe] [ 39.202897] drm_gpusvm_notifier_invalidate+0x4d/0x70 [drm_gpusvm] [ 39.202900] __mmu_notifier_release+0x1f5/0x270 [ 39.202905] exit_mmap+0x40e/0x450 [ 39.202912] __mmput+0x45/0x110 [ 39.202914] exit_mm+0xc5/0x130 [ 39.202916] do_exit+0x21c/0x500 [ 39.202918] ? lockdep_hardirqs_on_prepare+0xdb/0x190 [ 39.202920] do_group_exit+0x36/0xa0 [ 39.202922] get_signal+0x8f8/0x900 [ 39.202926] arch_do_signal_or_restart+0x35/0x100 [ 39.202930] syscall_exit_to_user_mode+0x1fc/0x290 [ 39.202932] do_syscall_64+0xa1/0x180 [ 39.202934] ? do_user_addr_fault+0x59f/0x8a0 [ 39.202937] ? lock_release+0xd2/0x2a0 [ 39.202939] ? do_user_addr_fault+0x5a9/0x8a0 [ 39.202942] ? trace_hardirqs_off+0x4b/0xc0 [ 39.202944] ? clear_bhb_loop+0x25/0x80 [ 39.202946] ? clear_bhb_loop+0x25/0x80 [ 39.202947] ? clear_bhb_loop+0x25/0x80 [ 39.202950] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 39.202952] RIP: 0033:0x7fa945e543e1 [ 39.202961] Code: Unable to access opcode bytes at 0x7fa945e543b7. [ 39.202962] RSP: 002b:00007ffca8fb4170 EFLAGS: 00000293 [ 39.202963] RAX: 000000000000003d RBX: 0000000000000000 RCX: 00007fa945e543e3 [ 39.202964] RDX: 0000000000000000 RSI: 00007ffca8fb41ac RDI: 00000000ffffffff [ 39.202964] RBP: 00007ffca8fb4190 R08: 0000000000000000 R09: 00007fa945f600a0 [ 39.202965] R10: 0000000000000000 R11: 0000000000000293 R12: 0000000000000000 [ 39.202966] R13: 00007fa9460dd310 R14: 00007ffca8fb41ac R15: 0000000000000000 [ 39.202970] </TASK> [ 39.202970] ---[ end trace ]--- (cherry picked from commit b88f48f86500bc0b44b4f73ac66d500a40d320ad)

CISA Catalog
Date AddedDue DateVulnerability NameRequired Action
N/A
Date Added: N/A
Due Date: N/A
Vulnerability Name: N/A
Required Action: N/A
Metrics
TypeVersionBase scoreBase severityVector
Primary3.17.1HIGH
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H
Type: Primary
Version: 3.1
Base score: 7.1
Base severity: HIGH
Vector:
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H
CPE Matches

Linux Kernel Organization, Inc
linux
>>linux_kernel>>Versions from 6.8(inclusive) to 6.12.25(exclusive)
cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:*
Linux Kernel Organization, Inc
linux
>>linux_kernel>>Versions from 6.13(inclusive) to 6.14.4(exclusive)
cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:*
Linux Kernel Organization, Inc
linux
>>linux_kernel>>6.15
cpe:2.3:o:linux:linux_kernel:6.15:rc1:*:*:*:*:*:*
Weaknesses
CWE IDTypeSource
CWE-125Primarynvd@nist.gov
CWE ID: CWE-125
Type: Primary
Source: nvd@nist.gov
Evaluator Description

Evaluator Impact

Evaluator Solution

Vendor Statements

References
HyperlinkSourceResource
https://git.kernel.org/stable/c/28477f701b63922ff88e9fb13f5519c11cd48b86416baaa9-dc9f-4396-8d5f-8c081fb06d67
Patch
https://git.kernel.org/stable/c/7bcfeddb36b77f9fe3b010bb0b282b7618420bba416baaa9-dc9f-4396-8d5f-8c081fb06d67
Patch
https://git.kernel.org/stable/c/e4715858f87b78ce58cfa03bbe140321edbbaf20416baaa9-dc9f-4396-8d5f-8c081fb06d67
Patch
Hyperlink: https://git.kernel.org/stable/c/28477f701b63922ff88e9fb13f5519c11cd48b86
Source: 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Resource:
Patch
Hyperlink: https://git.kernel.org/stable/c/7bcfeddb36b77f9fe3b010bb0b282b7618420bba
Source: 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Resource:
Patch
Hyperlink: https://git.kernel.org/stable/c/e4715858f87b78ce58cfa03bbe140321edbbaf20
Source: 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Resource:
Patch

Change History

0
Information is not available yet

Similar CVEs

803Records found

CVE-2023-53668
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.02% / 5.62%
||
7 Day CHG~0.00%
Published-07 Oct, 2025 | 15:21
Updated-03 Feb, 2026 | 19:10
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
ring-buffer: Fix deadloop issue on reading trace_pipe

In the Linux kernel, the following vulnerability has been resolved: ring-buffer: Fix deadloop issue on reading trace_pipe Soft lockup occurs when reading file 'trace_pipe': watchdog: BUG: soft lockup - CPU#6 stuck for 22s! [cat:4488] [...] RIP: 0010:ring_buffer_empty_cpu+0xed/0x170 RSP: 0018:ffff88810dd6fc48 EFLAGS: 00000246 RAX: 0000000000000000 RBX: 0000000000000246 RCX: ffffffff93d1aaeb RDX: ffff88810a280040 RSI: 0000000000000008 RDI: ffff88811164b218 RBP: ffff88811164b218 R08: 0000000000000000 R09: ffff88815156600f R10: ffffed102a2acc01 R11: 0000000000000001 R12: 0000000051651901 R13: 0000000000000000 R14: ffff888115e49500 R15: 0000000000000000 [...] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f8d853c2000 CR3: 000000010dcd8000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: __find_next_entry+0x1a8/0x4b0 ? peek_next_entry+0x250/0x250 ? down_write+0xa5/0x120 ? down_write_killable+0x130/0x130 trace_find_next_entry_inc+0x3b/0x1d0 tracing_read_pipe+0x423/0xae0 ? tracing_splice_read_pipe+0xcb0/0xcb0 vfs_read+0x16b/0x490 ksys_read+0x105/0x210 ? __ia32_sys_pwrite64+0x200/0x200 ? switch_fpu_return+0x108/0x220 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x61/0xc6 Through the vmcore, I found it's because in tracing_read_pipe(), ring_buffer_empty_cpu() found some buffer is not empty but then it cannot read anything due to "rb_num_of_entries() == 0" always true, Then it infinitely loop the procedure due to user buffer not been filled, see following code path: tracing_read_pipe() { ... ... waitagain: tracing_wait_pipe() // 1. find non-empty buffer here trace_find_next_entry_inc() // 2. loop here try to find an entry __find_next_entry() ring_buffer_empty_cpu(); // 3. find non-empty buffer peek_next_entry() // 4. but peek always return NULL ring_buffer_peek() rb_buffer_peek() rb_get_reader_page() // 5. because rb_num_of_entries() == 0 always true here // then return NULL // 6. user buffer not been filled so goto 'waitgain' // and eventually leads to an deadloop in kernel!!! } By some analyzing, I found that when resetting ringbuffer, the 'entries' of its pages are not all cleared (see rb_reset_cpu()). Then when reducing the ringbuffer, and if some reduced pages exist dirty 'entries' data, they will be added into 'cpu_buffer->overrun' (see rb_remove_pages()), which cause wrong 'overrun' count and eventually cause the deadloop issue. To fix it, we need to clear every pages in rb_reset_cpu().

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2024-38585
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.04% / 10.65%
||
7 Day CHG~0.00%
Published-19 Jun, 2024 | 13:37
Updated-17 Sep, 2025 | 21:06
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
tools/nolibc/stdlib: fix memory error in realloc()

In the Linux kernel, the following vulnerability has been resolved: tools/nolibc/stdlib: fix memory error in realloc() Pass user_p_len to memcpy() instead of heap->len to prevent realloc() from copying an extra sizeof(heap) bytes from beyond the allocated region.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2023-52519
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.02% / 2.99%
||
7 Day CHG~0.00%
Published-02 Mar, 2024 | 21:52
Updated-04 May, 2025 | 07:38
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
HID: intel-ish-hid: ipc: Disable and reenable ACPI GPE bit

In the Linux kernel, the following vulnerability has been resolved: HID: intel-ish-hid: ipc: Disable and reenable ACPI GPE bit The EHL (Elkhart Lake) based platforms provide a OOB (Out of band) service, which allows to wakup device when the system is in S5 (Soft-Off state). This OOB service can be enabled/disabled from BIOS settings. When enabled, the ISH device gets PME wake capability. To enable PME wakeup, driver also needs to enable ACPI GPE bit. On resume, BIOS will clear the wakeup bit. So driver need to re-enable it in resume function to keep the next wakeup capability. But this BIOS clearing of wakeup bit doesn't decrement internal OS GPE reference count, so this reenabling on every resume will cause reference count to overflow. So first disable and reenable ACPI GPE bit using acpi_disable_gpe().

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2024-38606
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.02% / 3.44%
||
7 Day CHG~0.00%
Published-19 Jun, 2024 | 13:48
Updated-04 May, 2025 | 09:15
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
crypto: qat - validate slices count returned by FW

In the Linux kernel, the following vulnerability has been resolved: crypto: qat - validate slices count returned by FW The function adf_send_admin_tl_start() enables the telemetry (TL) feature on a QAT device by sending the ICP_QAT_FW_TL_START message to the firmware. This triggers the FW to start writing TL data to a DMA buffer in memory and returns an array containing the number of accelerators of each type (slices) supported by this HW. The pointer to this array is stored in the adf_tl_hw_data data structure called slice_cnt. The array slice_cnt is then used in the function tl_print_dev_data() to report in debugfs only statistics about the supported accelerators. An incorrect value of the elements in slice_cnt might lead to an out of bounds memory read. At the moment, there isn't an implementation of FW that returns a wrong value, but for robustness validate the slice count array returned by FW.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2022-49395
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.03% / 7.19%
||
7 Day CHG~0.00%
Published-26 Feb, 2025 | 02:11
Updated-01 Oct, 2025 | 20:16
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
um: Fix out-of-bounds read in LDT setup

In the Linux kernel, the following vulnerability has been resolved: um: Fix out-of-bounds read in LDT setup syscall_stub_data() expects the data_count parameter to be the number of longs, not bytes. ================================================================== BUG: KASAN: stack-out-of-bounds in syscall_stub_data+0x70/0xe0 Read of size 128 at addr 000000006411f6f0 by task swapper/1 CPU: 0 PID: 1 Comm: swapper Not tainted 5.18.0+ #18 Call Trace: show_stack.cold+0x166/0x2a7 __dump_stack+0x3a/0x43 dump_stack_lvl+0x1f/0x27 print_report.cold+0xdb/0xf81 kasan_report+0x119/0x1f0 kasan_check_range+0x3a3/0x440 memcpy+0x52/0x140 syscall_stub_data+0x70/0xe0 write_ldt_entry+0xac/0x190 init_new_ldt+0x515/0x960 init_new_context+0x2c4/0x4d0 mm_init.constprop.0+0x5ed/0x760 mm_alloc+0x118/0x170 0x60033f48 do_one_initcall+0x1d7/0x860 0x60003e7b kernel_init+0x6e/0x3d4 new_thread_handler+0x1e7/0x2c0 The buggy address belongs to stack of task swapper/1 and is located at offset 64 in frame: init_new_ldt+0x0/0x960 This frame has 2 objects: [32, 40) 'addr' [64, 80) 'desc' ==================================================================

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2022-49368
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.03% / 9.58%
||
7 Day CHG~0.00%
Published-26 Feb, 2025 | 02:11
Updated-01 Oct, 2025 | 20:16
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
net: ethernet: mtk_eth_soc: out of bounds read in mtk_hwlro_get_fdir_entry()

In the Linux kernel, the following vulnerability has been resolved: net: ethernet: mtk_eth_soc: out of bounds read in mtk_hwlro_get_fdir_entry() The "fsp->location" variable comes from user via ethtool_get_rxnfc(). Check that it is valid to prevent an out of bounds read.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2022-48999
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.02% / 3.75%
||
7 Day CHG~0.00%
Published-21 Oct, 2024 | 20:06
Updated-04 May, 2025 | 08:27
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
ipv4: Handle attempt to delete multipath route when fib_info contains an nh reference

In the Linux kernel, the following vulnerability has been resolved: ipv4: Handle attempt to delete multipath route when fib_info contains an nh reference Gwangun Jung reported a slab-out-of-bounds access in fib_nh_match: fib_nh_match+0xf98/0x1130 linux-6.0-rc7/net/ipv4/fib_semantics.c:961 fib_table_delete+0x5f3/0xa40 linux-6.0-rc7/net/ipv4/fib_trie.c:1753 inet_rtm_delroute+0x2b3/0x380 linux-6.0-rc7/net/ipv4/fib_frontend.c:874 Separate nexthop objects are mutually exclusive with the legacy multipath spec. Fix fib_nh_match to return if the config for the to be deleted route contains a multipath spec while the fib_info is using a nexthop object.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2022-49031
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.01% / 1.58%
||
7 Day CHG~0.00%
Published-21 Oct, 2024 | 20:06
Updated-04 May, 2025 | 08:28
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
iio: health: afe4403: Fix oob read in afe4403_read_raw

In the Linux kernel, the following vulnerability has been resolved: iio: health: afe4403: Fix oob read in afe4403_read_raw KASAN report out-of-bounds read as follows: BUG: KASAN: global-out-of-bounds in afe4403_read_raw+0x42e/0x4c0 Read of size 4 at addr ffffffffc02ac638 by task cat/279 Call Trace: afe4403_read_raw iio_read_channel_info dev_attr_show The buggy address belongs to the variable: afe4403_channel_leds+0x18/0xffffffffffffe9e0 This issue can be reproduced by singe command: $ cat /sys/bus/spi/devices/spi0.0/iio\:device0/in_intensity6_raw The array size of afe4403_channel_leds is less than channels, so access with chan->address cause OOB read in afe4403_read_raw. Fix it by moving access before use it.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-39901
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.02% / 5.44%
||
7 Day CHG~0.00%
Published-01 Oct, 2025 | 07:42
Updated-14 Jan, 2026 | 20:16
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
i40e: remove read access to debugfs files

In the Linux kernel, the following vulnerability has been resolved: i40e: remove read access to debugfs files The 'command' and 'netdev_ops' debugfs files are a legacy debugging interface supported by the i40e driver since its early days by commit 02e9c290814c ("i40e: debugfs interface"). Both of these debugfs files provide a read handler which is mostly useless, and which is implemented with questionable logic. They both use a static 256 byte buffer which is initialized to the empty string. In the case of the 'command' file this buffer is literally never used and simply wastes space. In the case of the 'netdev_ops' file, the last command written is saved here. On read, the files contents are presented as the name of the device followed by a colon and then the contents of their respective static buffer. For 'command' this will always be "<device>: ". For 'netdev_ops', this will be "<device>: <last command written>". But note the buffer is shared between all devices operated by this module. At best, it is mostly meaningless information, and at worse it could be accessed simultaneously as there doesn't appear to be any locking mechanism. We have also recently received multiple reports for both read functions about their use of snprintf and potential overflow that could result in reading arbitrary kernel memory. For the 'command' file, this is definitely impossible, since the static buffer is always zero and never written to. For the 'netdev_ops' file, it does appear to be possible, if the user carefully crafts the command input, it will be copied into the buffer, which could be large enough to cause snprintf to truncate, which then causes the copy_to_user to read beyond the length of the buffer allocated by kzalloc. A minimal fix would be to replace snprintf() with scnprintf() which would cap the return to the number of bytes written, preventing an overflow. A more involved fix would be to drop the mostly useless static buffers, saving 512 bytes and modifying the read functions to stop needing those as input. Instead, lets just completely drop the read access to these files. These are debug interfaces exposed as part of debugfs, and I don't believe that dropping read access will break any script, as the provided output is pretty useless. You can find the netdev name through other more standard interfaces, and the 'netdev_ops' interface can easily result in garbage if you issue simultaneous writes to multiple devices at once. In order to properly remove the i40e_dbg_netdev_ops_buf, we need to refactor its write function to avoid using the static buffer. Instead, use the same logic as the i40e_dbg_command_write, with an allocated buffer. Update the code to use this instead of the static buffer, and ensure we free the buffer on exit. This fixes simultaneous writes to 'netdev_ops' on multiple devices, and allows us to remove the now unused static buffer along with removing the read access.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-38715
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.01% / 2.40%
||
7 Day CHG~0.00%
Published-04 Sep, 2025 | 15:33
Updated-27 Jan, 2026 | 16:26
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
hfs: fix slab-out-of-bounds in hfs_bnode_read()

In the Linux kernel, the following vulnerability has been resolved: hfs: fix slab-out-of-bounds in hfs_bnode_read() This patch introduces is_bnode_offset_valid() method that checks the requested offset value. Also, it introduces check_and_correct_requested_length() method that checks and correct the requested length (if it is necessary). These methods are used in hfs_bnode_read(), hfs_bnode_write(), hfs_bnode_clear(), hfs_bnode_copy(), and hfs_bnode_move() with the goal to prevent the access out of allocated memory and triggering the crash.

Action-Not Available
Vendor-Linux Kernel Organization, IncDebian GNU/Linux
Product-linux_kerneldebian_linuxLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-38680
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.01% / 2.40%
||
7 Day CHG~0.00%
Published-04 Sep, 2025 | 15:32
Updated-08 Jan, 2026 | 22:32
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
media: uvcvideo: Fix 1-byte out-of-bounds read in uvc_parse_format()

In the Linux kernel, the following vulnerability has been resolved: media: uvcvideo: Fix 1-byte out-of-bounds read in uvc_parse_format() The buffer length check before calling uvc_parse_format() only ensured that the buffer has at least 3 bytes (buflen > 2), buf the function accesses buffer[3], requiring at least 4 bytes. This can lead to an out-of-bounds read if the buffer has exactly 3 bytes. Fix it by checking that the buffer has at least 4 bytes in uvc_parse_format().

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-linux_kerneldebian_linuxLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-38713
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.01% / 2.40%
||
7 Day CHG~0.00%
Published-04 Sep, 2025 | 15:33
Updated-27 Jan, 2026 | 16:25
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
hfsplus: fix slab-out-of-bounds read in hfsplus_uni2asc()

In the Linux kernel, the following vulnerability has been resolved: hfsplus: fix slab-out-of-bounds read in hfsplus_uni2asc() The hfsplus_readdir() method is capable to crash by calling hfsplus_uni2asc(): [ 667.121659][ T9805] ================================================================== [ 667.122651][ T9805] BUG: KASAN: slab-out-of-bounds in hfsplus_uni2asc+0x902/0xa10 [ 667.123627][ T9805] Read of size 2 at addr ffff88802592f40c by task repro/9805 [ 667.124578][ T9805] [ 667.124876][ T9805] CPU: 3 UID: 0 PID: 9805 Comm: repro Not tainted 6.16.0-rc3 #1 PREEMPT(full) [ 667.124886][ T9805] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 667.124890][ T9805] Call Trace: [ 667.124893][ T9805] <TASK> [ 667.124896][ T9805] dump_stack_lvl+0x10e/0x1f0 [ 667.124911][ T9805] print_report+0xd0/0x660 [ 667.124920][ T9805] ? __virt_addr_valid+0x81/0x610 [ 667.124928][ T9805] ? __phys_addr+0xe8/0x180 [ 667.124934][ T9805] ? hfsplus_uni2asc+0x902/0xa10 [ 667.124942][ T9805] kasan_report+0xc6/0x100 [ 667.124950][ T9805] ? hfsplus_uni2asc+0x902/0xa10 [ 667.124959][ T9805] hfsplus_uni2asc+0x902/0xa10 [ 667.124966][ T9805] ? hfsplus_bnode_read+0x14b/0x360 [ 667.124974][ T9805] hfsplus_readdir+0x845/0xfc0 [ 667.124984][ T9805] ? __pfx_hfsplus_readdir+0x10/0x10 [ 667.124994][ T9805] ? stack_trace_save+0x8e/0xc0 [ 667.125008][ T9805] ? iterate_dir+0x18b/0xb20 [ 667.125015][ T9805] ? trace_lock_acquire+0x85/0xd0 [ 667.125022][ T9805] ? lock_acquire+0x30/0x80 [ 667.125029][ T9805] ? iterate_dir+0x18b/0xb20 [ 667.125037][ T9805] ? down_read_killable+0x1ed/0x4c0 [ 667.125044][ T9805] ? putname+0x154/0x1a0 [ 667.125051][ T9805] ? __pfx_down_read_killable+0x10/0x10 [ 667.125058][ T9805] ? apparmor_file_permission+0x239/0x3e0 [ 667.125069][ T9805] iterate_dir+0x296/0xb20 [ 667.125076][ T9805] __x64_sys_getdents64+0x13c/0x2c0 [ 667.125084][ T9805] ? __pfx___x64_sys_getdents64+0x10/0x10 [ 667.125091][ T9805] ? __x64_sys_openat+0x141/0x200 [ 667.125126][ T9805] ? __pfx_filldir64+0x10/0x10 [ 667.125134][ T9805] ? do_user_addr_fault+0x7fe/0x12f0 [ 667.125143][ T9805] do_syscall_64+0xc9/0x480 [ 667.125151][ T9805] entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 667.125158][ T9805] RIP: 0033:0x7fa8753b2fc9 [ 667.125164][ T9805] Code: 00 c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 48 [ 667.125172][ T9805] RSP: 002b:00007ffe96f8e0f8 EFLAGS: 00000217 ORIG_RAX: 00000000000000d9 [ 667.125181][ T9805] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fa8753b2fc9 [ 667.125185][ T9805] RDX: 0000000000000400 RSI: 00002000000063c0 RDI: 0000000000000004 [ 667.125190][ T9805] RBP: 00007ffe96f8e110 R08: 00007ffe96f8e110 R09: 00007ffe96f8e110 [ 667.125195][ T9805] R10: 0000000000000000 R11: 0000000000000217 R12: 0000556b1e3b4260 [ 667.125199][ T9805] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 [ 667.125207][ T9805] </TASK> [ 667.125210][ T9805] [ 667.145632][ T9805] Allocated by task 9805: [ 667.145991][ T9805] kasan_save_stack+0x20/0x40 [ 667.146352][ T9805] kasan_save_track+0x14/0x30 [ 667.146717][ T9805] __kasan_kmalloc+0xaa/0xb0 [ 667.147065][ T9805] __kmalloc_noprof+0x205/0x550 [ 667.147448][ T9805] hfsplus_find_init+0x95/0x1f0 [ 667.147813][ T9805] hfsplus_readdir+0x220/0xfc0 [ 667.148174][ T9805] iterate_dir+0x296/0xb20 [ 667.148549][ T9805] __x64_sys_getdents64+0x13c/0x2c0 [ 667.148937][ T9805] do_syscall_64+0xc9/0x480 [ 667.149291][ T9805] entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 667.149809][ T9805] [ 667.150030][ T9805] The buggy address belongs to the object at ffff88802592f000 [ 667.150030][ T9805] which belongs to the cache kmalloc-2k of size 2048 [ 667.151282][ T9805] The buggy address is located 0 bytes to the right of [ 667.151282][ T9805] allocated 1036-byte region [ffff88802592f000, ffff88802592f40c) [ 667.1 ---truncated---

Action-Not Available
Vendor-Linux Kernel Organization, IncDebian GNU/Linux
Product-linux_kerneldebian_linuxLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-38599
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.01% / 1.70%
||
7 Day CHG~0.00%
Published-19 Aug, 2025 | 17:03
Updated-26 Nov, 2025 | 18:01
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
wifi: mt76: mt7996: Fix possible OOB access in mt7996_tx()

In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7996: Fix possible OOB access in mt7996_tx() Fis possible Out-Of-Boundary access in mt7996_tx routine if link_id is set to IEEE80211_LINK_UNSPECIFIED

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-38679
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.01% / 0.91%
||
7 Day CHG~0.00%
Published-04 Sep, 2025 | 15:32
Updated-08 Jan, 2026 | 22:30
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
media: venus: Fix OOB read due to missing payload bound check

In the Linux kernel, the following vulnerability has been resolved: media: venus: Fix OOB read due to missing payload bound check Currently, The event_seq_changed() handler processes a variable number of properties sent by the firmware. The number of properties is indicated by the firmware and used to iterate over the payload. However, the payload size is not being validated against the actual message length. This can lead to out-of-bounds memory access if the firmware provides a property count that exceeds the data available in the payload. Such a condition can result in kernel crashes or potential information leaks if memory beyond the buffer is accessed. Fix this by properly validating the remaining size of the payload before each property access and updating bounds accordingly as properties are parsed. This ensures that property parsing is safely bounded within the received message buffer and protects against malformed or malicious firmware behavior.

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-linux_kerneldebian_linuxLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-38677
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.02% / 3.69%
||
7 Day CHG~0.00%
Published-30 Aug, 2025 | 09:19
Updated-08 Jan, 2026 | 22:30
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
f2fs: fix to avoid out-of-boundary access in dnode page

In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to avoid out-of-boundary access in dnode page As Jiaming Zhang reported: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x1c1/0x2a0 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0x17e/0x800 mm/kasan/report.c:480 kasan_report+0x147/0x180 mm/kasan/report.c:593 data_blkaddr fs/f2fs/f2fs.h:3053 [inline] f2fs_data_blkaddr fs/f2fs/f2fs.h:3058 [inline] f2fs_get_dnode_of_data+0x1a09/0x1c40 fs/f2fs/node.c:855 f2fs_reserve_block+0x53/0x310 fs/f2fs/data.c:1195 prepare_write_begin fs/f2fs/data.c:3395 [inline] f2fs_write_begin+0xf39/0x2190 fs/f2fs/data.c:3594 generic_perform_write+0x2c7/0x910 mm/filemap.c:4112 f2fs_buffered_write_iter fs/f2fs/file.c:4988 [inline] f2fs_file_write_iter+0x1ec8/0x2410 fs/f2fs/file.c:5216 new_sync_write fs/read_write.c:593 [inline] vfs_write+0x546/0xa90 fs/read_write.c:686 ksys_write+0x149/0x250 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xf3/0x3d0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f The root cause is in the corrupted image, there is a dnode has the same node id w/ its inode, so during f2fs_get_dnode_of_data(), it tries to access block address in dnode at offset 934, however it parses the dnode as inode node, so that get_dnode_addr() returns 360, then it tries to access page address from 360 + 934 * 4 = 4096 w/ 4 bytes. To fix this issue, let's add sanity check for node id of all direct nodes during f2fs_get_dnode_of_data().

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-linux_kerneldebian_linuxLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-39922
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.02% / 5.44%
||
7 Day CHG~0.00%
Published-01 Oct, 2025 | 07:55
Updated-14 Jan, 2026 | 18:16
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
ixgbe: fix incorrect map used in eee linkmode

In the Linux kernel, the following vulnerability has been resolved: ixgbe: fix incorrect map used in eee linkmode incorrectly used ixgbe_lp_map in loops intended to populate the supported and advertised EEE linkmode bitmaps based on ixgbe_ls_map. This results in incorrect bit setting and potential out-of-bounds access, since ixgbe_lp_map and ixgbe_ls_map have different sizes and purposes. ixgbe_lp_map[i] -> ixgbe_ls_map[i] Use ixgbe_ls_map for supported and advertised linkmodes, and keep ixgbe_lp_map usage only for link partner (lp_advertised) mapping.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-39680
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.02% / 5.21%
||
7 Day CHG~0.00%
Published-05 Sep, 2025 | 17:20
Updated-25 Nov, 2025 | 21:29
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
i2c: rtl9300: Fix out-of-bounds bug in rtl9300_i2c_smbus_xfer

In the Linux kernel, the following vulnerability has been resolved: i2c: rtl9300: Fix out-of-bounds bug in rtl9300_i2c_smbus_xfer The data->block[0] variable comes from user. Without proper check, the variable may be very large to cause an out-of-bounds bug. Fix this bug by checking the value of data->block[0] first. 1. commit 39244cc75482 ("i2c: ismt: Fix an out-of-bounds bug in ismt_access()") 2. commit 92fbb6d1296f ("i2c: xgene-slimpro: Fix out-of-bounds bug in xgene_slimpro_i2c_xfer()")

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-39757
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.01% / 1.04%
||
7 Day CHG~0.00%
Published-11 Sep, 2025 | 16:52
Updated-09 Jan, 2026 | 18:48
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
ALSA: usb-audio: Validate UAC3 cluster segment descriptors

In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-audio: Validate UAC3 cluster segment descriptors UAC3 class segment descriptors need to be verified whether their sizes match with the declared lengths and whether they fit with the allocated buffer sizes, too. Otherwise malicious firmware may lead to the unexpected OOB accesses.

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-linux_kerneldebian_linuxLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-39760
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.01% / 1.69%
||
7 Day CHG~0.00%
Published-11 Sep, 2025 | 16:52
Updated-23 Jan, 2026 | 02:35
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
usb: core: config: Prevent OOB read in SS endpoint companion parsing

In the Linux kernel, the following vulnerability has been resolved: usb: core: config: Prevent OOB read in SS endpoint companion parsing usb_parse_ss_endpoint_companion() checks descriptor type before length, enabling a potentially odd read outside of the buffer size. Fix this up by checking the size first before looking at any of the fields in the descriptor.

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-debian_linuxlinux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-39719
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.01% / 2.70%
||
7 Day CHG~0.00%
Published-05 Sep, 2025 | 17:21
Updated-07 Jan, 2026 | 19:31
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
iio: imu: bno055: fix OOB access of hw_xlate array

In the Linux kernel, the following vulnerability has been resolved: iio: imu: bno055: fix OOB access of hw_xlate array Fix a potential out-of-bounds array access of the hw_xlate array in bno055.c. In bno055_get_regmask(), hw_xlate was iterated over the length of the vals array instead of the length of the hw_xlate array. In the case of bno055_gyr_scale, the vals array is larger than the hw_xlate array, so this could result in an out-of-bounds access. In practice, this shouldn't happen though because a match should always be found which breaks out of the for loop before it iterates beyond the end of the hw_xlate array. By adding a new hw_xlate_len field to the bno055_sysfs_attr, we can be sure we are iterating over the correct length.

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-linux_kerneldebian_linuxLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-38636
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.01% / 1.54%
||
7 Day CHG~0.00%
Published-22 Aug, 2025 | 16:00
Updated-26 Nov, 2025 | 17:12
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
rv: Use strings in da monitors tracepoints

In the Linux kernel, the following vulnerability has been resolved: rv: Use strings in da monitors tracepoints Using DA monitors tracepoints with KASAN enabled triggers the following warning: BUG: KASAN: global-out-of-bounds in do_trace_event_raw_event_event_da_monitor+0xd6/0x1a0 Read of size 32 at addr ffffffffaada8980 by task ... Call Trace: <TASK> [...] do_trace_event_raw_event_event_da_monitor+0xd6/0x1a0 ? __pfx_do_trace_event_raw_event_event_da_monitor+0x10/0x10 ? trace_event_sncid+0x83/0x200 trace_event_sncid+0x163/0x200 [...] The buggy address belongs to the variable: automaton_snep+0x4e0/0x5e0 This is caused by the tracepoints reading 32 bytes __array instead of __string from the automata definition. Such strings are literals and reading 32 bytes ends up in out of bound memory accesses (e.g. the next automaton's data in this case). The error is harmless as, while printing the string, we stop at the null terminator, but it should still be fixed. Use the __string facilities while defining the tracepoints to avoid reading out of bound memory.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-38736
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.01% / 2.70%
||
7 Day CHG~0.00%
Published-05 Sep, 2025 | 17:20
Updated-08 Jan, 2026 | 15:34
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
net: usb: asix_devices: Fix PHY address mask in MDIO bus initialization

In the Linux kernel, the following vulnerability has been resolved: net: usb: asix_devices: Fix PHY address mask in MDIO bus initialization Syzbot reported shift-out-of-bounds exception on MDIO bus initialization. The PHY address should be masked to 5 bits (0-31). Without this mask, invalid PHY addresses could be used, potentially causing issues with MDIO bus operations. Fix this by masking the PHY address with 0x1f (31 decimal) to ensure it stays within the valid range.

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-linux_kerneldebian_linuxLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-39817
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.01% / 1.04%
||
7 Day CHG-0.01%
Published-16 Sep, 2025 | 13:00
Updated-16 Jan, 2026 | 20:08
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
efivarfs: Fix slab-out-of-bounds in efivarfs_d_compare

In the Linux kernel, the following vulnerability has been resolved: efivarfs: Fix slab-out-of-bounds in efivarfs_d_compare Observed on kernel 6.6 (present on master as well): BUG: KASAN: slab-out-of-bounds in memcmp+0x98/0xd0 Call trace: kasan_check_range+0xe8/0x190 __asan_loadN+0x1c/0x28 memcmp+0x98/0xd0 efivarfs_d_compare+0x68/0xd8 __d_lookup_rcu_op_compare+0x178/0x218 __d_lookup_rcu+0x1f8/0x228 d_alloc_parallel+0x150/0x648 lookup_open.isra.0+0x5f0/0x8d0 open_last_lookups+0x264/0x828 path_openat+0x130/0x3f8 do_filp_open+0x114/0x248 do_sys_openat2+0x340/0x3c0 __arm64_sys_openat+0x120/0x1a0 If dentry->d_name.len < EFI_VARIABLE_GUID_LEN , 'guid' can become negative, leadings to oob. The issue can be triggered by parallel lookups using invalid filename: T1 T2 lookup_open ->lookup simple_lookup d_add // invalid dentry is added to hash list lookup_open d_alloc_parallel __d_lookup_rcu __d_lookup_rcu_op_compare hlist_bl_for_each_entry_rcu // invalid dentry can be retrieved ->d_compare efivarfs_d_compare // oob Fix it by checking 'guid' before cmp.

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-debian_linuxlinux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-39883
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.03% / 6.88%
||
7 Day CHG~0.00%
Published-23 Sep, 2025 | 06:00
Updated-16 Jan, 2026 | 19:26
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
mm/memory-failure: fix VM_BUG_ON_PAGE(PagePoisoned(page)) when unpoison memory

In the Linux kernel, the following vulnerability has been resolved: mm/memory-failure: fix VM_BUG_ON_PAGE(PagePoisoned(page)) when unpoison memory When I did memory failure tests, below panic occurs: page dumped because: VM_BUG_ON_PAGE(PagePoisoned(page)) kernel BUG at include/linux/page-flags.h:616! Oops: invalid opcode: 0000 [#1] PREEMPT SMP NOPTI CPU: 3 PID: 720 Comm: bash Not tainted 6.10.0-rc1-00195-g148743902568 #40 RIP: 0010:unpoison_memory+0x2f3/0x590 RSP: 0018:ffffa57fc8787d60 EFLAGS: 00000246 RAX: 0000000000000037 RBX: 0000000000000009 RCX: ffff9be25fcdc9c8 RDX: 0000000000000000 RSI: 0000000000000027 RDI: ffff9be25fcdc9c0 RBP: 0000000000300000 R08: ffffffffb4956f88 R09: 0000000000009ffb R10: 0000000000000284 R11: ffffffffb4926fa0 R12: ffffe6b00c000000 R13: ffff9bdb453dfd00 R14: 0000000000000000 R15: fffffffffffffffe FS: 00007f08f04e4740(0000) GS:ffff9be25fcc0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000564787a30410 CR3: 000000010d4e2000 CR4: 00000000000006f0 Call Trace: <TASK> unpoison_memory+0x2f3/0x590 simple_attr_write_xsigned.constprop.0.isra.0+0xb3/0x110 debugfs_attr_write+0x42/0x60 full_proxy_write+0x5b/0x80 vfs_write+0xd5/0x540 ksys_write+0x64/0xe0 do_syscall_64+0xb9/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f08f0314887 RSP: 002b:00007ffece710078 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 0000000000000009 RCX: 00007f08f0314887 RDX: 0000000000000009 RSI: 0000564787a30410 RDI: 0000000000000001 RBP: 0000564787a30410 R08: 000000000000fefe R09: 000000007fffffff R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000009 R13: 00007f08f041b780 R14: 00007f08f0417600 R15: 00007f08f0416a00 </TASK> Modules linked in: hwpoison_inject ---[ end trace 0000000000000000 ]--- RIP: 0010:unpoison_memory+0x2f3/0x590 RSP: 0018:ffffa57fc8787d60 EFLAGS: 00000246 RAX: 0000000000000037 RBX: 0000000000000009 RCX: ffff9be25fcdc9c8 RDX: 0000000000000000 RSI: 0000000000000027 RDI: ffff9be25fcdc9c0 RBP: 0000000000300000 R08: ffffffffb4956f88 R09: 0000000000009ffb R10: 0000000000000284 R11: ffffffffb4926fa0 R12: ffffe6b00c000000 R13: ffff9bdb453dfd00 R14: 0000000000000000 R15: fffffffffffffffe FS: 00007f08f04e4740(0000) GS:ffff9be25fcc0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000564787a30410 CR3: 000000010d4e2000 CR4: 00000000000006f0 Kernel panic - not syncing: Fatal exception Kernel Offset: 0x31c00000 from 0xffffffff81000000 (relocation range: 0xffffffff80000000-0xffffffffbfffffff) ---[ end Kernel panic - not syncing: Fatal exception ]--- The root cause is that unpoison_memory() tries to check the PG_HWPoison flags of an uninitialized page. So VM_BUG_ON_PAGE(PagePoisoned(page)) is triggered. This can be reproduced by below steps: 1.Offline memory block: echo offline > /sys/devices/system/memory/memory12/state 2.Get offlined memory pfn: page-types -b n -rlN 3.Write pfn to unpoison-pfn echo <pfn> > /sys/kernel/debug/hwpoison/unpoison-pfn This scenario can be identified by pfn_to_online_page() returning NULL. And ZONE_DEVICE pages are never expected, so we can simply fail if pfn_to_online_page() == NULL to fix the bug.

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-debian_linuxlinux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-39839
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.01% / 1.04%
||
7 Day CHG-0.01%
Published-19 Sep, 2025 | 15:26
Updated-20 Jan, 2026 | 15:31
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
batman-adv: fix OOB read/write in network-coding decode

In the Linux kernel, the following vulnerability has been resolved: batman-adv: fix OOB read/write in network-coding decode batadv_nc_skb_decode_packet() trusts coded_len and checks only against skb->len. XOR starts at sizeof(struct batadv_unicast_packet), reducing payload headroom, and the source skb length is not verified, allowing an out-of-bounds read and a small out-of-bounds write. Validate that coded_len fits within the payload area of both destination and source sk_buffs before XORing.

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-debian_linuxlinux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-39761
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.01% / 1.21%
||
7 Day CHG~0.00%
Published-11 Sep, 2025 | 16:52
Updated-26 Nov, 2025 | 16:25
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
wifi: ath12k: Decrement TID on RX peer frag setup error handling

In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: Decrement TID on RX peer frag setup error handling Currently, TID is not decremented before peer cleanup, during error handling path of ath12k_dp_rx_peer_frag_setup(). This could lead to out-of-bounds access in peer->rx_tid[]. Hence, add a decrement operation for TID, before peer cleanup to ensures proper cleanup and prevents out-of-bounds access issues when the RX peer frag setup fails. Found during code review. Compile tested only.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-39853
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.01% / 0.39%
||
7 Day CHG-0.02%
Published-19 Sep, 2025 | 15:26
Updated-20 Jan, 2026 | 15:16
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
i40e: Fix potential invalid access when MAC list is empty

In the Linux kernel, the following vulnerability has been resolved: i40e: Fix potential invalid access when MAC list is empty list_first_entry() never returns NULL - if the list is empty, it still returns a pointer to an invalid object, leading to potential invalid memory access when dereferenced. Fix this by using list_first_entry_or_null instead of list_first_entry.

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-debian_linuxlinux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-39778
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.07% / 20.58%
||
7 Day CHG+0.04%
Published-18 Apr, 2025 | 07:01
Updated-01 Oct, 2025 | 17:15
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
objtool, nvmet: Fix out-of-bounds stack access in nvmet_ctrl_state_show()

In the Linux kernel, the following vulnerability has been resolved: objtool, nvmet: Fix out-of-bounds stack access in nvmet_ctrl_state_show() The csts_state_names[] array only has six sparse entries, but the iteration code in nvmet_ctrl_state_show() iterates seven, resulting in a potential out-of-bounds stack read. Fix that. Fixes the following warning with an UBSAN kernel: vmlinux.o: warning: objtool: .text.nvmet_ctrl_state_show: unexpected end of section

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-39869
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.03% / 8.57%
||
7 Day CHG~0.00%
Published-23 Sep, 2025 | 06:00
Updated-20 Jan, 2026 | 20:41
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
dmaengine: ti: edma: Fix memory allocation size for queue_priority_map

In the Linux kernel, the following vulnerability has been resolved: dmaengine: ti: edma: Fix memory allocation size for queue_priority_map Fix a critical memory allocation bug in edma_setup_from_hw() where queue_priority_map was allocated with insufficient memory. The code declared queue_priority_map as s8 (*)[2] (pointer to array of 2 s8), but allocated memory using sizeof(s8) instead of the correct size. This caused out-of-bounds memory writes when accessing: queue_priority_map[i][0] = i; queue_priority_map[i][1] = i; The bug manifested as kernel crashes with "Oops - undefined instruction" on ARM platforms (BeagleBoard-X15) during EDMA driver probe, as the memory corruption triggered kernel hardening features on Clang. Change the allocation to use sizeof(*queue_priority_map) which automatically gets the correct size for the 2D array structure.

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-debian_linuxlinux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-39744
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.01% / 1.18%
||
7 Day CHG~0.00%
Published-11 Sep, 2025 | 16:52
Updated-02 Jan, 2026 | 15:32
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
rcu: Fix rcu_read_unlock() deadloop due to IRQ work

In the Linux kernel, the following vulnerability has been resolved: rcu: Fix rcu_read_unlock() deadloop due to IRQ work During rcu_read_unlock_special(), if this happens during irq_exit(), we can lockup if an IPI is issued. This is because the IPI itself triggers the irq_exit() path causing a recursive lock up. This is precisely what Xiongfeng found when invoking a BPF program on the trace_tick_stop() tracepoint As shown in the trace below. Fix by managing the irq_work state correctly. irq_exit() __irq_exit_rcu() /* in_hardirq() returns false after this */ preempt_count_sub(HARDIRQ_OFFSET) tick_irq_exit() tick_nohz_irq_exit() tick_nohz_stop_sched_tick() trace_tick_stop() /* a bpf prog is hooked on this trace point */ __bpf_trace_tick_stop() bpf_trace_run2() rcu_read_unlock_special() /* will send a IPI to itself */ irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu); A simple reproducer can also be obtained by doing the following in tick_irq_exit(). It will hang on boot without the patch: static inline void tick_irq_exit(void) { + rcu_read_lock(); + WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true); + rcu_read_unlock(); + [neeraj: Apply Frederic's suggested fix for PREEMPT_RT]

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-38657
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.02% / 4.21%
||
7 Day CHG~0.00%
Published-22 Aug, 2025 | 16:01
Updated-26 Nov, 2025 | 16:32
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
wifi: rtw89: mcc: prevent shift wrapping in rtw89_core_mlsr_switch()

In the Linux kernel, the following vulnerability has been resolved: wifi: rtw89: mcc: prevent shift wrapping in rtw89_core_mlsr_switch() The "link_id" value comes from the user via debugfs. If it's larger than BITS_PER_LONG then that would result in shift wrapping and potentially an out of bounds access later. In fact, we can limit it to IEEE80211_MLD_MAX_NUM_LINKS (15). Fortunately, only root can write to debugfs files so the security impact is minimal.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-39710
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.01% / 0.81%
||
7 Day CHG~0.00%
Published-05 Sep, 2025 | 17:21
Updated-12 Jan, 2026 | 15:54
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
media: venus: Add a check for packet size after reading from shared memory

In the Linux kernel, the following vulnerability has been resolved: media: venus: Add a check for packet size after reading from shared memory Add a check to ensure that the packet size does not exceed the number of available words after reading the packet header from shared memory. This ensures that the size provided by the firmware is safe to process and prevent potential out-of-bounds memory access.

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-linux_kerneldebian_linuxLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-39840
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.02% / 2.96%
||
7 Day CHG-0.01%
Published-19 Sep, 2025 | 15:26
Updated-14 Jan, 2026 | 20:16
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
audit: fix out-of-bounds read in audit_compare_dname_path()

In the Linux kernel, the following vulnerability has been resolved: audit: fix out-of-bounds read in audit_compare_dname_path() When a watch on dir=/ is combined with an fsnotify event for a single-character name directly under / (e.g., creating /a), an out-of-bounds read can occur in audit_compare_dname_path(). The helper parent_len() returns 1 for "/". In audit_compare_dname_path(), when parentlen equals the full path length (1), the code sets p = path + 1 and pathlen = 1 - 1 = 0. The subsequent loop then dereferences p[pathlen - 1] (i.e., p[-1]), causing an out-of-bounds read. Fix this by adding a pathlen > 0 check to the while loop condition to prevent the out-of-bounds access. [PM: subject tweak, sign-off email fixes]

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-39683
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.01% / 2.40%
||
7 Day CHG~0.00%
Published-05 Sep, 2025 | 17:20
Updated-08 Jan, 2026 | 15:32
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
tracing: Limit access to parser->buffer when trace_get_user failed

In the Linux kernel, the following vulnerability has been resolved: tracing: Limit access to parser->buffer when trace_get_user failed When the length of the string written to set_ftrace_filter exceeds FTRACE_BUFF_MAX, the following KASAN alarm will be triggered: BUG: KASAN: slab-out-of-bounds in strsep+0x18c/0x1b0 Read of size 1 at addr ffff0000d00bd5ba by task ash/165 CPU: 1 UID: 0 PID: 165 Comm: ash Not tainted 6.16.0-g6bcdbd62bd56-dirty Hardware name: linux,dummy-virt (DT) Call trace: show_stack+0x34/0x50 (C) dump_stack_lvl+0xa0/0x158 print_address_description.constprop.0+0x88/0x398 print_report+0xb0/0x280 kasan_report+0xa4/0xf0 __asan_report_load1_noabort+0x20/0x30 strsep+0x18c/0x1b0 ftrace_process_regex.isra.0+0x100/0x2d8 ftrace_regex_release+0x484/0x618 __fput+0x364/0xa58 ____fput+0x28/0x40 task_work_run+0x154/0x278 do_notify_resume+0x1f0/0x220 el0_svc+0xec/0xf0 el0t_64_sync_handler+0xa0/0xe8 el0t_64_sync+0x1ac/0x1b0 The reason is that trace_get_user will fail when processing a string longer than FTRACE_BUFF_MAX, but not set the end of parser->buffer to 0. Then an OOB access will be triggered in ftrace_regex_release-> ftrace_process_regex->strsep->strpbrk. We can solve this problem by limiting access to parser->buffer when trace_get_user failed.

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-linux_kerneldebian_linuxLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-39685
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.01% / 2.70%
||
7 Day CHG~0.00%
Published-05 Sep, 2025 | 17:20
Updated-08 Jan, 2026 | 15:11
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
comedi: pcl726: Prevent invalid irq number

In the Linux kernel, the following vulnerability has been resolved: comedi: pcl726: Prevent invalid irq number The reproducer passed in an irq number(0x80008000) that was too large, which triggered the oob. Added an interrupt number check to prevent users from passing in an irq number that was too large. If `it->options[1]` is 31, then `1 << it->options[1]` is still invalid because it shifts a 1-bit into the sign bit (which is UB in C). Possible solutions include reducing the upper bound on the `it->options[1]` value to 30 or lower, or using `1U << it->options[1]`. The old code would just not attempt to request the IRQ if the `options[1]` value were invalid. And it would still configure the device without interrupts even if the call to `request_irq` returned an error. So it would be better to combine this test with the test below.

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-linux_kerneldebian_linuxLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-38728
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.01% / 2.70%
||
7 Day CHG~0.00%
Published-04 Sep, 2025 | 15:33
Updated-08 Jan, 2026 | 17:31
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
smb3: fix for slab out of bounds on mount to ksmbd

In the Linux kernel, the following vulnerability has been resolved: smb3: fix for slab out of bounds on mount to ksmbd With KASAN enabled, it is possible to get a slab out of bounds during mount to ksmbd due to missing check in parse_server_interfaces() (see below): BUG: KASAN: slab-out-of-bounds in parse_server_interfaces+0x14ee/0x1880 [cifs] Read of size 4 at addr ffff8881433dba98 by task mount/9827 CPU: 5 UID: 0 PID: 9827 Comm: mount Tainted: G OE 6.16.0-rc2-kasan #2 PREEMPT(voluntary) Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE Hardware name: Dell Inc. Precision Tower 3620/0MWYPT, BIOS 2.13.1 06/14/2019 Call Trace: <TASK> dump_stack_lvl+0x9f/0xf0 print_report+0xd1/0x670 __virt_addr_valid+0x22c/0x430 ? parse_server_interfaces+0x14ee/0x1880 [cifs] ? kasan_complete_mode_report_info+0x2a/0x1f0 ? parse_server_interfaces+0x14ee/0x1880 [cifs] kasan_report+0xd6/0x110 parse_server_interfaces+0x14ee/0x1880 [cifs] __asan_report_load_n_noabort+0x13/0x20 parse_server_interfaces+0x14ee/0x1880 [cifs] ? __pfx_parse_server_interfaces+0x10/0x10 [cifs] ? trace_hardirqs_on+0x51/0x60 SMB3_request_interfaces+0x1ad/0x3f0 [cifs] ? __pfx_SMB3_request_interfaces+0x10/0x10 [cifs] ? SMB2_tcon+0x23c/0x15d0 [cifs] smb3_qfs_tcon+0x173/0x2b0 [cifs] ? __pfx_smb3_qfs_tcon+0x10/0x10 [cifs] ? cifs_get_tcon+0x105d/0x2120 [cifs] ? do_raw_spin_unlock+0x5d/0x200 ? cifs_get_tcon+0x105d/0x2120 [cifs] ? __pfx_smb3_qfs_tcon+0x10/0x10 [cifs] cifs_mount_get_tcon+0x369/0xb90 [cifs] ? dfs_cache_find+0xe7/0x150 [cifs] dfs_mount_share+0x985/0x2970 [cifs] ? check_path.constprop.0+0x28/0x50 ? save_trace+0x54/0x370 ? __pfx_dfs_mount_share+0x10/0x10 [cifs] ? __lock_acquire+0xb82/0x2ba0 ? __kasan_check_write+0x18/0x20 cifs_mount+0xbc/0x9e0 [cifs] ? __pfx_cifs_mount+0x10/0x10 [cifs] ? do_raw_spin_unlock+0x5d/0x200 ? cifs_setup_cifs_sb+0x29d/0x810 [cifs] cifs_smb3_do_mount+0x263/0x1990 [cifs]

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-linux_kerneldebian_linuxLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-39786
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.02% / 2.96%
||
7 Day CHG~0.00%
Published-11 Sep, 2025 | 16:56
Updated-25 Nov, 2025 | 18:44
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
iio: adc: ad7173: fix channels index for syscalib_mode

In the Linux kernel, the following vulnerability has been resolved: iio: adc: ad7173: fix channels index for syscalib_mode Fix the index used to look up the channel when accessing the syscalib_mode attribute. The address field is a 0-based index (same as scan_index) that it used to access the channel in the ad7173_channels array throughout the driver. The channels field, on the other hand, may not match the address field depending on the channel configuration specified in the device tree and could result in an out-of-bounds access.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-39943
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.02% / 5.54%
||
7 Day CHG~0.00%
Published-04 Oct, 2025 | 07:31
Updated-27 Jan, 2026 | 19:53
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
ksmbd: smbdirect: validate data_offset and data_length field of smb_direct_data_transfer

In the Linux kernel, the following vulnerability has been resolved: ksmbd: smbdirect: validate data_offset and data_length field of smb_direct_data_transfer If data_offset and data_length of smb_direct_data_transfer struct are invalid, out of bounds issue could happen. This patch validate data_offset and data_length field in recv_done.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-37846
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.03% / 6.32%
||
7 Day CHG~0.00%
Published-09 May, 2025 | 06:41
Updated-17 Nov, 2025 | 12:54
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
arm64: mops: Do not dereference src reg for a set operation

In the Linux kernel, the following vulnerability has been resolved: arm64: mops: Do not dereference src reg for a set operation The source register is not used for SET* and reading it can result in a UBSAN out-of-bounds array access error, specifically when the MOPS exception is taken from a SET* sequence with XZR (reg 31) as the source. Architecturally this is the only case where a src/dst/size field in the ESR can be reported as 31. Prior to 2de451a329cf662b the code in do_el0_mops() was benign as the use of pt_regs_read_reg() prevented the out-of-bounds access.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-37825
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.03% / 9.59%
||
7 Day CHG~0.00%
Published-08 May, 2025 | 06:26
Updated-10 Nov, 2025 | 15:42
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
nvmet: fix out-of-bounds access in nvmet_enable_port

In the Linux kernel, the following vulnerability has been resolved: nvmet: fix out-of-bounds access in nvmet_enable_port When trying to enable a port that has no transport configured yet, nvmet_enable_port() uses NVMF_TRTYPE_MAX (255) to query the transports array, causing an out-of-bounds access: [ 106.058694] BUG: KASAN: global-out-of-bounds in nvmet_enable_port+0x42/0x1da [ 106.058719] Read of size 8 at addr ffffffff89dafa58 by task ln/632 [...] [ 106.076026] nvmet: transport type 255 not supported Since commit 200adac75888, NVMF_TRTYPE_MAX is the default state as configured by nvmet_ports_make(). Avoid this by checking for NVMF_TRTYPE_MAX before proceeding.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-38497
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.01% / 2.40%
||
7 Day CHG~0.00%
Published-28 Jul, 2025 | 11:22
Updated-07 Jan, 2026 | 16:26
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
usb: gadget: configfs: Fix OOB read on empty string write

In the Linux kernel, the following vulnerability has been resolved: usb: gadget: configfs: Fix OOB read on empty string write When writing an empty string to either 'qw_sign' or 'landingPage' sysfs attributes, the store functions attempt to access page[l - 1] before validating that the length 'l' is greater than zero. This patch fixes the vulnerability by adding a check at the beginning of os_desc_qw_sign_store() and webusb_landingPage_store() to handle the zero-length input case gracefully by returning immediately.

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-linux_kerneldebian_linuxLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-38153
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.02% / 5.26%
||
7 Day CHG~0.00%
Published-03 Jul, 2025 | 08:35
Updated-18 Dec, 2025 | 21:08
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
net: usb: aqc111: fix error handling of usbnet read calls

In the Linux kernel, the following vulnerability has been resolved: net: usb: aqc111: fix error handling of usbnet read calls Syzkaller, courtesy of syzbot, identified an error (see report [1]) in aqc111 driver, caused by incomplete sanitation of usb read calls' results. This problem is quite similar to the one fixed in commit 920a9fa27e78 ("net: asix: add proper error handling of usb read errors"). For instance, usbnet_read_cmd() may read fewer than 'size' bytes, even if the caller expected the full amount, and aqc111_read_cmd() will not check its result properly. As [1] shows, this may lead to MAC address in aqc111_bind() being only partly initialized, triggering KMSAN warnings. Fix the issue by verifying that the number of bytes read is as expected and not less. [1] Partial syzbot report: BUG: KMSAN: uninit-value in is_valid_ether_addr include/linux/etherdevice.h:208 [inline] BUG: KMSAN: uninit-value in usbnet_probe+0x2e57/0x4390 drivers/net/usb/usbnet.c:1830 is_valid_ether_addr include/linux/etherdevice.h:208 [inline] usbnet_probe+0x2e57/0x4390 drivers/net/usb/usbnet.c:1830 usb_probe_interface+0xd01/0x1310 drivers/usb/core/driver.c:396 call_driver_probe drivers/base/dd.c:-1 [inline] really_probe+0x4d1/0xd90 drivers/base/dd.c:658 __driver_probe_device+0x268/0x380 drivers/base/dd.c:800 ... Uninit was stored to memory at: dev_addr_mod+0xb0/0x550 net/core/dev_addr_lists.c:582 __dev_addr_set include/linux/netdevice.h:4874 [inline] eth_hw_addr_set include/linux/etherdevice.h:325 [inline] aqc111_bind+0x35f/0x1150 drivers/net/usb/aqc111.c:717 usbnet_probe+0xbe6/0x4390 drivers/net/usb/usbnet.c:1772 usb_probe_interface+0xd01/0x1310 drivers/usb/core/driver.c:396 ... Uninit was stored to memory at: ether_addr_copy include/linux/etherdevice.h:305 [inline] aqc111_read_perm_mac drivers/net/usb/aqc111.c:663 [inline] aqc111_bind+0x794/0x1150 drivers/net/usb/aqc111.c:713 usbnet_probe+0xbe6/0x4390 drivers/net/usb/usbnet.c:1772 usb_probe_interface+0xd01/0x1310 drivers/usb/core/driver.c:396 call_driver_probe drivers/base/dd.c:-1 [inline] ... Local variable buf.i created at: aqc111_read_perm_mac drivers/net/usb/aqc111.c:656 [inline] aqc111_bind+0x221/0x1150 drivers/net/usb/aqc111.c:713 usbnet_probe+0xbe6/0x4390 drivers/net/usb/usbnet.c:1772

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-debian_linuxlinux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-38445
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.02% / 4.18%
||
7 Day CHG~0.00%
Published-25 Jul, 2025 | 15:27
Updated-22 Dec, 2025 | 21:53
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
md/raid1: Fix stack memory use after return in raid1_reshape

In the Linux kernel, the following vulnerability has been resolved: md/raid1: Fix stack memory use after return in raid1_reshape In the raid1_reshape function, newpool is allocated on the stack and assigned to conf->r1bio_pool. This results in conf->r1bio_pool.wait.head pointing to a stack address. Accessing this address later can lead to a kernel panic. Example access path: raid1_reshape() { // newpool is on the stack mempool_t newpool, oldpool; // initialize newpool.wait.head to stack address mempool_init(&newpool, ...); conf->r1bio_pool = newpool; } raid1_read_request() or raid1_write_request() { alloc_r1bio() { mempool_alloc() { // if pool->alloc fails remove_element() { --pool->curr_nr; } } } } mempool_free() { if (pool->curr_nr < pool->min_nr) { // pool->wait.head is a stack address // wake_up() will try to access this invalid address // which leads to a kernel panic return; wake_up(&pool->wait); } } Fix: reinit conf->r1bio_pool.wait after assigning newpool.

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-debian_linuxlinux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-38224
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.01% / 2.17%
||
7 Day CHG~0.00%
Published-04 Jul, 2025 | 13:37
Updated-18 Nov, 2025 | 16:44
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
can: kvaser_pciefd: refine error prone echo_skb_max handling logic

In the Linux kernel, the following vulnerability has been resolved: can: kvaser_pciefd: refine error prone echo_skb_max handling logic echo_skb_max should define the supported upper limit of echo_skb[] allocated inside the netdevice's priv. The corresponding size value provided by this driver to alloc_candev() is KVASER_PCIEFD_CAN_TX_MAX_COUNT which is 17. But later echo_skb_max is rounded up to the nearest power of two (for the max case, that would be 32) and the tx/ack indices calculated further during tx/rx may exceed the upper array boundary. Kasan reported this for the ack case inside kvaser_pciefd_handle_ack_packet(), though the xmit function has actually caught the same thing earlier. BUG: KASAN: slab-out-of-bounds in kvaser_pciefd_handle_ack_packet+0x2d7/0x92a drivers/net/can/kvaser_pciefd.c:1528 Read of size 8 at addr ffff888105e4f078 by task swapper/4/0 CPU: 4 UID: 0 PID: 0 Comm: swapper/4 Not tainted 6.15.0 #12 PREEMPT(voluntary) Call Trace: <IRQ> dump_stack_lvl lib/dump_stack.c:122 print_report mm/kasan/report.c:521 kasan_report mm/kasan/report.c:634 kvaser_pciefd_handle_ack_packet drivers/net/can/kvaser_pciefd.c:1528 kvaser_pciefd_read_packet drivers/net/can/kvaser_pciefd.c:1605 kvaser_pciefd_read_buffer drivers/net/can/kvaser_pciefd.c:1656 kvaser_pciefd_receive_irq drivers/net/can/kvaser_pciefd.c:1684 kvaser_pciefd_irq_handler drivers/net/can/kvaser_pciefd.c:1733 __handle_irq_event_percpu kernel/irq/handle.c:158 handle_irq_event kernel/irq/handle.c:210 handle_edge_irq kernel/irq/chip.c:833 __common_interrupt arch/x86/kernel/irq.c:296 common_interrupt arch/x86/kernel/irq.c:286 </IRQ> Tx max count definitely matters for kvaser_pciefd_tx_avail(), but for seq numbers' generation that's not the case - we're free to calculate them as would be more convenient, not taking tx max count into account. The only downside is that the size of echo_skb[] should correspond to the max seq number (not tx max count), so in some situations a bit more memory would be consumed than could be. Thus make the size of the underlying echo_skb[] sufficient for the rounded max tx value. Found by Linux Verification Center (linuxtesting.org) with Syzkaller.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-38004
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.02% / 5.39%
||
7 Day CHG~0.00%
Published-08 Jun, 2025 | 10:34
Updated-17 Dec, 2025 | 20:03
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
can: bcm: add locking for bcm_op runtime updates

In the Linux kernel, the following vulnerability has been resolved: can: bcm: add locking for bcm_op runtime updates The CAN broadcast manager (CAN BCM) can send a sequence of CAN frames via hrtimer. The content and also the length of the sequence can be changed resp reduced at runtime where the 'currframe' counter is then set to zero. Although this appeared to be a safe operation the updates of 'currframe' can be triggered from user space and hrtimer context in bcm_can_tx(). Anderson Nascimento created a proof of concept that triggered a KASAN slab-out-of-bounds read access which can be prevented with a spin_lock_bh. At the rework of bcm_can_tx() the 'count' variable has been moved into the protected section as this variable can be modified from both contexts too.

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-debian_linuxlinux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-38249
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.02% / 4.04%
||
7 Day CHG~0.00%
Published-09 Jul, 2025 | 10:42
Updated-18 Dec, 2025 | 17:11
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
ALSA: usb-audio: Fix out-of-bounds read in snd_usb_get_audioformat_uac3()

In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-audio: Fix out-of-bounds read in snd_usb_get_audioformat_uac3() In snd_usb_get_audioformat_uac3(), the length value returned from snd_usb_ctl_msg() is used directly for memory allocation without validation. This length is controlled by the USB device. The allocated buffer is cast to a uac3_cluster_header_descriptor and its fields are accessed without verifying that the buffer is large enough. If the device returns a smaller than expected length, this leads to an out-of-bounds read. Add a length check to ensure the buffer is large enough for uac3_cluster_header_descriptor.

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-debian_linuxlinux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-37749
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.02% / 4.36%
||
7 Day CHG~0.00%
Published-01 May, 2025 | 12:55
Updated-04 Nov, 2025 | 18:05
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
net: ppp: Add bound checking for skb data on ppp_sync_txmung

In the Linux kernel, the following vulnerability has been resolved: net: ppp: Add bound checking for skb data on ppp_sync_txmung Ensure we have enough data in linear buffer from skb before accessing initial bytes. This prevents potential out-of-bounds accesses when processing short packets. When ppp_sync_txmung receives an incoming package with an empty payload: (remote) gef➤ p *(struct pppoe_hdr *) (skb->head + skb->network_header) $18 = { type = 0x1, ver = 0x1, code = 0x0, sid = 0x2, length = 0x0, tag = 0xffff8880371cdb96 } from the skb struct (trimmed) tail = 0x16, end = 0x140, head = 0xffff88803346f400 "4", data = 0xffff88803346f416 ":\377", truesize = 0x380, len = 0x0, data_len = 0x0, mac_len = 0xe, hdr_len = 0x0, it is not safe to access data[2]. [pabeni@redhat.com: fixed subj typo]

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-debian_linuxlinux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-37879
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.02% / 4.89%
||
7 Day CHG~0.00%
Published-09 May, 2025 | 06:45
Updated-02 Jan, 2026 | 15:29
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
9p/net: fix improper handling of bogus negative read/write replies

In the Linux kernel, the following vulnerability has been resolved: 9p/net: fix improper handling of bogus negative read/write replies In p9_client_write() and p9_client_read_once(), if the server incorrectly replies with success but a negative write/read count then we would consider written (negative) <= rsize (positive) because both variables were signed. Make variables unsigned to avoid this problem. The reproducer linked below now fails with the following error instead of a null pointer deref: 9pnet: bogus RWRITE count (4294967295 > 3)

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-debian_linuxlinux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-38221
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.01% / 2.23%
||
7 Day CHG~0.00%
Published-04 Jul, 2025 | 13:37
Updated-18 Nov, 2025 | 15:12
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
ext4: fix out of bounds punch offset

In the Linux kernel, the following vulnerability has been resolved: ext4: fix out of bounds punch offset Punching a hole with a start offset that exceeds max_end is not permitted and will result in a negative length in the truncate_inode_partial_folio() function while truncating the page cache, potentially leading to undesirable consequences. A simple reproducer: truncate -s 9895604649994 /mnt/foo xfs_io -c "pwrite 8796093022208 4096" /mnt/foo xfs_io -c "fpunch 8796093022213 25769803777" /mnt/foo kernel BUG at include/linux/highmem.h:275! Oops: invalid opcode: 0000 [#1] SMP PTI CPU: 3 UID: 0 PID: 710 Comm: xfs_io Not tainted 6.15.0-rc3 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014 RIP: 0010:zero_user_segments.constprop.0+0xd7/0x110 RSP: 0018:ffffc90001cf3b38 EFLAGS: 00010287 RAX: 0000000000000005 RBX: ffffea0001485e40 RCX: 0000000000001000 RDX: 000000000040b000 RSI: 0000000000000005 RDI: 000000000040b000 RBP: 000000000040affb R08: ffff888000000000 R09: ffffea0000000000 R10: 0000000000000003 R11: 00000000fffc7fc5 R12: 0000000000000005 R13: 000000000040affb R14: ffffea0001485e40 R15: ffff888031cd3000 FS: 00007f4f63d0b780(0000) GS:ffff8880d337d000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000001ae0b038 CR3: 00000000536aa000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> truncate_inode_partial_folio+0x3dd/0x620 truncate_inode_pages_range+0x226/0x720 ? bdev_getblk+0x52/0x3e0 ? ext4_get_group_desc+0x78/0x150 ? crc32c_arch+0xfd/0x180 ? __ext4_get_inode_loc+0x18c/0x840 ? ext4_inode_csum+0x117/0x160 ? jbd2_journal_dirty_metadata+0x61/0x390 ? __ext4_handle_dirty_metadata+0xa0/0x2b0 ? kmem_cache_free+0x90/0x5a0 ? jbd2_journal_stop+0x1d5/0x550 ? __ext4_journal_stop+0x49/0x100 truncate_pagecache_range+0x50/0x80 ext4_truncate_page_cache_block_range+0x57/0x3a0 ext4_punch_hole+0x1fe/0x670 ext4_fallocate+0x792/0x17d0 ? __count_memcg_events+0x175/0x2a0 vfs_fallocate+0x121/0x560 ksys_fallocate+0x51/0xc0 __x64_sys_fallocate+0x24/0x40 x64_sys_call+0x18d2/0x4170 do_syscall_64+0xa7/0x220 entry_SYSCALL_64_after_hwframe+0x76/0x7e Fix this by filtering out cases where the punching start offset exceeds max_end.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
CVE-2025-38320
Matching Score-10
Assigner-kernel.org
ShareView Details
Matching Score-10
Assigner-kernel.org
CVSS Score-7.1||HIGH
EPSS-0.02% / 4.04%
||
7 Day CHG~0.00%
Published-10 Jul, 2025 | 08:14
Updated-19 Dec, 2025 | 16:44
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
arm64/ptrace: Fix stack-out-of-bounds read in regs_get_kernel_stack_nth()

In the Linux kernel, the following vulnerability has been resolved: arm64/ptrace: Fix stack-out-of-bounds read in regs_get_kernel_stack_nth() KASAN reports a stack-out-of-bounds read in regs_get_kernel_stack_nth(). Call Trace: [ 97.283505] BUG: KASAN: stack-out-of-bounds in regs_get_kernel_stack_nth+0xa8/0xc8 [ 97.284677] Read of size 8 at addr ffff800089277c10 by task 1.sh/2550 [ 97.285732] [ 97.286067] CPU: 7 PID: 2550 Comm: 1.sh Not tainted 6.6.0+ #11 [ 97.287032] Hardware name: linux,dummy-virt (DT) [ 97.287815] Call trace: [ 97.288279] dump_backtrace+0xa0/0x128 [ 97.288946] show_stack+0x20/0x38 [ 97.289551] dump_stack_lvl+0x78/0xc8 [ 97.290203] print_address_description.constprop.0+0x84/0x3c8 [ 97.291159] print_report+0xb0/0x280 [ 97.291792] kasan_report+0x84/0xd0 [ 97.292421] __asan_load8+0x9c/0xc0 [ 97.293042] regs_get_kernel_stack_nth+0xa8/0xc8 [ 97.293835] process_fetch_insn+0x770/0xa30 [ 97.294562] kprobe_trace_func+0x254/0x3b0 [ 97.295271] kprobe_dispatcher+0x98/0xe0 [ 97.295955] kprobe_breakpoint_handler+0x1b0/0x210 [ 97.296774] call_break_hook+0xc4/0x100 [ 97.297451] brk_handler+0x24/0x78 [ 97.298073] do_debug_exception+0xac/0x178 [ 97.298785] el1_dbg+0x70/0x90 [ 97.299344] el1h_64_sync_handler+0xcc/0xe8 [ 97.300066] el1h_64_sync+0x78/0x80 [ 97.300699] kernel_clone+0x0/0x500 [ 97.301331] __arm64_sys_clone+0x70/0x90 [ 97.302084] invoke_syscall+0x68/0x198 [ 97.302746] el0_svc_common.constprop.0+0x11c/0x150 [ 97.303569] do_el0_svc+0x38/0x50 [ 97.304164] el0_svc+0x44/0x1d8 [ 97.304749] el0t_64_sync_handler+0x100/0x130 [ 97.305500] el0t_64_sync+0x188/0x190 [ 97.306151] [ 97.306475] The buggy address belongs to stack of task 1.sh/2550 [ 97.307461] and is located at offset 0 in frame: [ 97.308257] __se_sys_clone+0x0/0x138 [ 97.308910] [ 97.309241] This frame has 1 object: [ 97.309873] [48, 184) 'args' [ 97.309876] [ 97.310749] The buggy address belongs to the virtual mapping at [ 97.310749] [ffff800089270000, ffff800089279000) created by: [ 97.310749] dup_task_struct+0xc0/0x2e8 [ 97.313347] [ 97.313674] The buggy address belongs to the physical page: [ 97.314604] page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x14f69a [ 97.315885] flags: 0x15ffffe00000000(node=1|zone=2|lastcpupid=0xfffff) [ 97.316957] raw: 015ffffe00000000 0000000000000000 dead000000000122 0000000000000000 [ 97.318207] raw: 0000000000000000 0000000000000000 00000001ffffffff 0000000000000000 [ 97.319445] page dumped because: kasan: bad access detected [ 97.320371] [ 97.320694] Memory state around the buggy address: [ 97.321511] ffff800089277b00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 97.322681] ffff800089277b80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 97.323846] >ffff800089277c00: 00 00 f1 f1 f1 f1 f1 f1 00 00 00 00 00 00 00 00 [ 97.325023] ^ [ 97.325683] ffff800089277c80: 00 00 00 00 00 00 00 00 00 f3 f3 f3 f3 f3 f3 f3 [ 97.326856] ffff800089277d00: f3 f3 00 00 00 00 00 00 00 00 00 00 00 00 00 00 This issue seems to be related to the behavior of some gcc compilers and was also fixed on the s390 architecture before: commit d93a855c31b7 ("s390/ptrace: Avoid KASAN false positives in regs_get_kernel_stack_nth()") As described in that commit, regs_get_kernel_stack_nth() has confirmed that `addr` is on the stack, so reading the value at `*addr` should be allowed. Use READ_ONCE_NOCHECK() helper to silence the KASAN check for this case. [will: Use '*addr' as the argument to READ_ONCE_NOCHECK()]

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-debian_linuxlinux_kernelLinux
CWE ID-CWE-125
Out-of-bounds Read
  • Previous
  • 1
  • 2
  • 3
  • 4
  • ...
  • 16
  • 17
  • Next
Details not found