In the Linux kernel, the following vulnerability has been resolved: xfrm: state: fix out-of-bounds read during lookup lookup and resize can run in parallel. The xfrm_state_hash_generation seqlock ensures a retry, but the hash functions can observe a hmask value that is too large for the new hlist array. rehash does: rcu_assign_pointer(net->xfrm.state_bydst, ndst) [..] net->xfrm.state_hmask = nhashmask; While state lookup does: h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family); hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h, bydst) { This is only safe in case the update to state_bydst is larger than net->xfrm.xfrm_state_hmask (or if the lookup function gets serialized via state spinlock again). Fix this by prefetching state_hmask and the associated pointers. The xfrm_state_hash_generation seqlock retry will ensure that the pointer and the hmask will be consistent. The existing helpers, like xfrm_dst_hash(), are now unsafe for RCU side, add lockdep assertions to document that they are only safe for insert side. xfrm_state_lookup_byaddr() uses the spinlock rather than RCU. AFAICS this is an oversight from back when state lookup was converted to RCU, this lock should be replaced with RCU in a future patch.
In the Linux kernel, the following vulnerability has been resolved: dm array: fix releasing a faulty array block twice in dm_array_cursor_end When dm_bm_read_lock() fails due to locking or checksum errors, it releases the faulty block implicitly while leaving an invalid output pointer behind. The caller of dm_bm_read_lock() should not operate on this invalid dm_block pointer, or it will lead to undefined result. For example, the dm_array_cursor incorrectly caches the invalid pointer on reading a faulty array block, causing a double release in dm_array_cursor_end(), then hitting the BUG_ON in dm-bufio cache_put(). Reproduce steps: 1. initialize a cache device dmsetup create cmeta --table "0 8192 linear /dev/sdc 0" dmsetup create cdata --table "0 65536 linear /dev/sdc 8192" dmsetup create corig --table "0 524288 linear /dev/sdc $262144" dd if=/dev/zero of=/dev/mapper/cmeta bs=4k count=1 dmsetup create cache --table "0 524288 cache /dev/mapper/cmeta \ /dev/mapper/cdata /dev/mapper/corig 128 2 metadata2 writethrough smq 0" 2. wipe the second array block offline dmsteup remove cache cmeta cdata corig mapping_root=$(dd if=/dev/sdc bs=1c count=8 skip=192 \ 2>/dev/null | hexdump -e '1/8 "%u\n"') ablock=$(dd if=/dev/sdc bs=1c count=8 skip=$((4096*mapping_root+2056)) \ 2>/dev/null | hexdump -e '1/8 "%u\n"') dd if=/dev/zero of=/dev/sdc bs=4k count=1 seek=$ablock 3. try reopen the cache device dmsetup create cmeta --table "0 8192 linear /dev/sdc 0" dmsetup create cdata --table "0 65536 linear /dev/sdc 8192" dmsetup create corig --table "0 524288 linear /dev/sdc $262144" dmsetup create cache --table "0 524288 cache /dev/mapper/cmeta \ /dev/mapper/cdata /dev/mapper/corig 128 2 metadata2 writethrough smq 0" Kernel logs: (snip) device-mapper: array: array_block_check failed: blocknr 0 != wanted 10 device-mapper: block manager: array validator check failed for block 10 device-mapper: array: get_ablock failed device-mapper: cache metadata: dm_array_cursor_next for mapping failed ------------[ cut here ]------------ kernel BUG at drivers/md/dm-bufio.c:638! Fix by setting the cached block pointer to NULL on errors. In addition to the reproducer described above, this fix can be verified using the "array_cursor/damaged" test in dm-unit: dm-unit run /pdata/array_cursor/damaged --kernel-dir <KERNEL_DIR>
In the Linux kernel, the following vulnerability has been resolved: netfs: Fix enomem handling in buffered reads If netfs_read_to_pagecache() gets an error from either ->prepare_read() or from netfs_prepare_read_iterator(), it needs to decrement ->nr_outstanding, cancel the subrequest and break out of the issuing loop. Currently, it only does this for two of the cases, but there are two more that aren't handled. Fix this by moving the handling to a common place and jumping to it from all four places. This is in preference to inserting a wrapper around netfs_prepare_read_iterator() as proposed by Dmitry Antipov[1].
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix Out-of-Bounds Read in ksmbd_vfs_stream_read An offset from client could be a negative value, It could lead to an out-of-bounds read from the stream_buf. Note that this issue is coming when setting 'vfs objects = streams_xattr parameter' in ksmbd.conf.
In the Linux kernel, the following vulnerability has been resolved: netfilter: x_tables: fix LED ID check in led_tg_check() Syzbot has reported the following BUG detected by KASAN: BUG: KASAN: slab-out-of-bounds in strlen+0x58/0x70 Read of size 1 at addr ffff8881022da0c8 by task repro/5879 ... Call Trace: <TASK> dump_stack_lvl+0x241/0x360 ? __pfx_dump_stack_lvl+0x10/0x10 ? __pfx__printk+0x10/0x10 ? _printk+0xd5/0x120 ? __virt_addr_valid+0x183/0x530 ? __virt_addr_valid+0x183/0x530 print_report+0x169/0x550 ? __virt_addr_valid+0x183/0x530 ? __virt_addr_valid+0x183/0x530 ? __virt_addr_valid+0x45f/0x530 ? __phys_addr+0xba/0x170 ? strlen+0x58/0x70 kasan_report+0x143/0x180 ? strlen+0x58/0x70 strlen+0x58/0x70 kstrdup+0x20/0x80 led_tg_check+0x18b/0x3c0 xt_check_target+0x3bb/0xa40 ? __pfx_xt_check_target+0x10/0x10 ? stack_depot_save_flags+0x6e4/0x830 ? nft_target_init+0x174/0xc30 nft_target_init+0x82d/0xc30 ? __pfx_nft_target_init+0x10/0x10 ? nf_tables_newrule+0x1609/0x2980 ? nf_tables_newrule+0x1609/0x2980 ? rcu_is_watching+0x15/0xb0 ? nf_tables_newrule+0x1609/0x2980 ? nf_tables_newrule+0x1609/0x2980 ? __kmalloc_noprof+0x21a/0x400 nf_tables_newrule+0x1860/0x2980 ? __pfx_nf_tables_newrule+0x10/0x10 ? __nla_parse+0x40/0x60 nfnetlink_rcv+0x14e5/0x2ab0 ? __pfx_validate_chain+0x10/0x10 ? __pfx_nfnetlink_rcv+0x10/0x10 ? __lock_acquire+0x1384/0x2050 ? netlink_deliver_tap+0x2e/0x1b0 ? __pfx_lock_release+0x10/0x10 ? netlink_deliver_tap+0x2e/0x1b0 netlink_unicast+0x7f8/0x990 ? __pfx_netlink_unicast+0x10/0x10 ? __virt_addr_valid+0x183/0x530 ? __check_object_size+0x48e/0x900 netlink_sendmsg+0x8e4/0xcb0 ? __pfx_netlink_sendmsg+0x10/0x10 ? aa_sock_msg_perm+0x91/0x160 ? __pfx_netlink_sendmsg+0x10/0x10 __sock_sendmsg+0x223/0x270 ____sys_sendmsg+0x52a/0x7e0 ? __pfx_____sys_sendmsg+0x10/0x10 __sys_sendmsg+0x292/0x380 ? __pfx___sys_sendmsg+0x10/0x10 ? lockdep_hardirqs_on_prepare+0x43d/0x780 ? __pfx_lockdep_hardirqs_on_prepare+0x10/0x10 ? exc_page_fault+0x590/0x8c0 ? do_syscall_64+0xb6/0x230 do_syscall_64+0xf3/0x230 entry_SYSCALL_64_after_hwframe+0x77/0x7f ... </TASK> Since an invalid (without '\0' byte at all) byte sequence may be passed from userspace, add an extra check to ensure that such a sequence is rejected as possible ID and so never passed to 'kstrdup()' and further.
In the Linux kernel, the following vulnerability has been resolved: x86/CPU/AMD: Terminate the erratum_1386_microcode array The erratum_1386_microcode array requires an empty entry at the end. Otherwise x86_match_cpu_with_stepping() will continue iterate the array after it ended. Add an empty entry to erratum_1386_microcode to its end.
In the Linux kernel, the following vulnerability has been resolved: binder: fix OOB in binder_add_freeze_work() In binder_add_freeze_work() we iterate over the proc->nodes with the proc->inner_lock held. However, this lock is temporarily dropped to acquire the node->lock first (lock nesting order). This can race with binder_deferred_release() which removes the nodes from the proc->nodes rbtree and adds them into binder_dead_nodes list. This leads to a broken iteration in binder_add_freeze_work() as rb_next() will use data from binder_dead_nodes, triggering an out-of-bounds access: ================================================================== BUG: KASAN: global-out-of-bounds in rb_next+0xfc/0x124 Read of size 8 at addr ffffcb84285f7170 by task freeze/660 CPU: 8 UID: 0 PID: 660 Comm: freeze Not tainted 6.11.0-07343-ga727812a8d45 #18 Hardware name: linux,dummy-virt (DT) Call trace: rb_next+0xfc/0x124 binder_add_freeze_work+0x344/0x534 binder_ioctl+0x1e70/0x25ac __arm64_sys_ioctl+0x124/0x190 The buggy address belongs to the variable: binder_dead_nodes+0x10/0x40 [...] ================================================================== This is possible because proc->nodes (rbtree) and binder_dead_nodes (list) share entries in binder_node through a union: struct binder_node { [...] union { struct rb_node rb_node; struct hlist_node dead_node; }; Fix the race by checking that the proc is still alive. If not, simply break out of the iteration.
In the Linux kernel, the following vulnerability has been resolved: jfs: fix shift-out-of-bounds in dbSplit When dmt_budmin is less than zero, it causes errors in the later stages. Added a check to return an error beforehand in dbAllocCtl itself.
A use-after-free flaw was found in nfsd4_ssc_setup_dul in fs/nfsd/nfs4proc.c in the NFS filesystem in the Linux Kernel. This issue could allow a local attacker to crash the system or it may lead to a kernel information leak problem.
A slab-out-of-bound read problem was found in brcmf_get_assoc_ies in drivers/net/wireless/broadcom/brcm80211/brcmfmac/cfg80211.c in the Linux Kernel. This issue could occur when assoc_info->req_len data is bigger than the size of the buffer, defined as WL_EXTRA_BUF_MAX, leading to a denial of service.
A use-after-free flaw was found in vhost_net_set_backend in drivers/vhost/net.c in virtio network subcomponent in the Linux kernel due to a double fget. This flaw could allow a local attacker to crash the system, and could even lead to a kernel information leak problem.
In the Linux kernel, the following vulnerability has been resolved: media: mgb4: protect driver against spectre Frequency range is set from sysfs via frequency_range_store(), being vulnerable to spectre, as reported by smatch: drivers/media/pci/mgb4/mgb4_cmt.c:231 mgb4_cmt_set_vin_freq_range() warn: potential spectre issue 'cmt_vals_in' [r] drivers/media/pci/mgb4/mgb4_cmt.c:238 mgb4_cmt_set_vin_freq_range() warn: possible spectre second half. 'reg_set' Fix it.
In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-audio: Fix out of bounds reads when finding clock sources The current USB-audio driver code doesn't check bLength of each descriptor at traversing for clock descriptors. That is, when a device provides a bogus descriptor with a shorter bLength, the driver might hit out-of-bounds reads. For addressing it, this patch adds sanity checks to the validator functions for the clock descriptor traversal. When the descriptor length is shorter than expected, it's skipped in the loop. For the clock source and clock multiplier descriptors, we can just check bLength against the sizeof() of each descriptor type. OTOH, the clock selector descriptor of UAC2 and UAC3 has an array of bNrInPins elements and two more fields at its tail, hence those have to be checked in addition to the sizeof() check.
In the Linux kernel, the following vulnerability has been resolved: crypto: qat/qat_4xxx - fix off by one in uof_get_name() The fw_objs[] array has "num_objs" elements so the > needs to be >= to prevent an out of bounds read.
NVIDIA GPU Display Driver for Linux contains a vulnerability in a kernel mode layer handler, which may lead to denial of service or information disclosure.
In the Linux kernel, the following vulnerability has been resolved: regmap: maple: Fix cache corruption in regcache_maple_drop() When keeping the upper end of a cache block entry, the entry[] array must be indexed by the offset from the base register of the block, i.e. max - mas.index. The code was indexing entry[] by only the register address, leading to an out-of-bounds access that copied some part of the kernel memory over the cache contents. This bug was not detected by the regmap KUnit test because it only tests with a block of registers starting at 0, so mas.index == 0.
In the Linux kernel, the following vulnerability has been resolved: virtio_net: Add hash_key_length check Add hash_key_length check in virtnet_probe() to avoid possible out of bound errors when setting/reading the hash key.
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_devcd_dump: fix out-of-bounds via dev_coredumpv Currently both dev_coredumpv and skb_put_data in hci_devcd_dump use hdev->dump.head. However, dev_coredumpv can free the buffer. From dev_coredumpm_timeout documentation, which is used by dev_coredumpv: > Creates a new device coredump for the given device. If a previous one hasn't > been read yet, the new coredump is discarded. The data lifetime is determined > by the device coredump framework and when it is no longer needed the @free > function will be called to free the data. If the data has not been read by the userspace yet, dev_coredumpv will discard new buffer, freeing hdev->dump.head. This leads to vmalloc-out-of-bounds error when skb_put_data tries to access hdev->dump.head. A crash report from syzbot illustrates this: ================================================================== BUG: KASAN: vmalloc-out-of-bounds in skb_put_data include/linux/skbuff.h:2752 [inline] BUG: KASAN: vmalloc-out-of-bounds in hci_devcd_dump+0x142/0x240 net/bluetooth/coredump.c:258 Read of size 140 at addr ffffc90004ed5000 by task kworker/u9:2/5844 CPU: 1 UID: 0 PID: 5844 Comm: kworker/u9:2 Not tainted 6.14.0-syzkaller-10892-g4e82c87058f4 #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/12/2025 Workqueue: hci0 hci_devcd_timeout Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:408 [inline] print_report+0xc3/0x670 mm/kasan/report.c:521 kasan_report+0xe0/0x110 mm/kasan/report.c:634 check_region_inline mm/kasan/generic.c:183 [inline] kasan_check_range+0xef/0x1a0 mm/kasan/generic.c:189 __asan_memcpy+0x23/0x60 mm/kasan/shadow.c:105 skb_put_data include/linux/skbuff.h:2752 [inline] hci_devcd_dump+0x142/0x240 net/bluetooth/coredump.c:258 hci_devcd_timeout+0xb5/0x2e0 net/bluetooth/coredump.c:413 process_one_work+0x9cc/0x1b70 kernel/workqueue.c:3238 process_scheduled_works kernel/workqueue.c:3319 [inline] worker_thread+0x6c8/0xf10 kernel/workqueue.c:3400 kthread+0x3c2/0x780 kernel/kthread.c:464 ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:153 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245 </TASK> The buggy address ffffc90004ed5000 belongs to a vmalloc virtual mapping Memory state around the buggy address: ffffc90004ed4f00: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 ffffc90004ed4f80: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 >ffffc90004ed5000: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 ^ ffffc90004ed5080: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 ffffc90004ed5100: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 ================================================================== To avoid this issue, reorder dev_coredumpv to be called after skb_put_data that does not free the data.
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Adjust VSDB parser for replay feature At some point, the IEEE ID identification for the replay check in the AMD EDID was added. However, this check causes the following out-of-bounds issues when using KASAN: [ 27.804016] BUG: KASAN: slab-out-of-bounds in amdgpu_dm_update_freesync_caps+0xefa/0x17a0 [amdgpu] [ 27.804788] Read of size 1 at addr ffff8881647fdb00 by task systemd-udevd/383 ... [ 27.821207] Memory state around the buggy address: [ 27.821215] ffff8881647fda00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 27.821224] ffff8881647fda80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 27.821234] >ffff8881647fdb00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 27.821243] ^ [ 27.821250] ffff8881647fdb80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 27.821259] ffff8881647fdc00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 27.821268] ================================================================== This is caused because the ID extraction happens outside of the range of the edid lenght. This commit addresses this issue by considering the amd_vsdb_block size. (cherry picked from commit b7e381b1ccd5e778e3d9c44c669ad38439a861d8)
In the Linux kernel, the following vulnerability has been resolved: igb: Fix potential invalid memory access in igb_init_module() The pci_register_driver() can fail and when this happened, the dca_notifier needs to be unregistered, otherwise the dca_notifier can be called when igb fails to install, resulting to invalid memory access.
In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: Fix potential shift-out-of-bounds in brcmf_fw_alloc_request() This patch fixes a shift-out-of-bounds in brcmfmac that occurs in BIT(chiprev) when a 'chiprev' provided by the device is too large. It should also not be equal to or greater than BITS_PER_TYPE(u32) as we do bitwise AND with a u32 variable and BIT(chiprev). The patch adds a check that makes the function return NULL if that is the case. Note that the NULL case is later handled by the bus-specific caller, brcmf_usb_probe_cb() or brcmf_usb_reset_resume(), for example. Found by a modified version of syzkaller. UBSAN: shift-out-of-bounds in drivers/net/wireless/broadcom/brcm80211/brcmfmac/firmware.c shift exponent 151055786 is too large for 64-bit type 'long unsigned int' CPU: 0 PID: 1885 Comm: kworker/0:2 Tainted: G O 5.14.0+ #132 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014 Workqueue: usb_hub_wq hub_event Call Trace: dump_stack_lvl+0x57/0x7d ubsan_epilogue+0x5/0x40 __ubsan_handle_shift_out_of_bounds.cold+0x53/0xdb ? lock_chain_count+0x20/0x20 brcmf_fw_alloc_request.cold+0x19/0x3ea ? brcmf_fw_get_firmwares+0x250/0x250 ? brcmf_usb_ioctl_resp_wait+0x1a7/0x1f0 brcmf_usb_get_fwname+0x114/0x1a0 ? brcmf_usb_reset_resume+0x120/0x120 ? number+0x6c4/0x9a0 brcmf_c_process_clm_blob+0x168/0x590 ? put_dec+0x90/0x90 ? enable_ptr_key_workfn+0x20/0x20 ? brcmf_common_pd_remove+0x50/0x50 ? rcu_read_lock_sched_held+0xa1/0xd0 brcmf_c_preinit_dcmds+0x673/0xc40 ? brcmf_c_set_joinpref_default+0x100/0x100 ? rcu_read_lock_sched_held+0xa1/0xd0 ? rcu_read_lock_bh_held+0xb0/0xb0 ? lock_acquire+0x19d/0x4e0 ? find_held_lock+0x2d/0x110 ? brcmf_usb_deq+0x1cc/0x260 ? mark_held_locks+0x9f/0xe0 ? lockdep_hardirqs_on_prepare+0x273/0x3e0 ? _raw_spin_unlock_irqrestore+0x47/0x50 ? trace_hardirqs_on+0x1c/0x120 ? brcmf_usb_deq+0x1a7/0x260 ? brcmf_usb_rx_fill_all+0x5a/0xf0 brcmf_attach+0x246/0xd40 ? wiphy_new_nm+0x1476/0x1d50 ? kmemdup+0x30/0x40 brcmf_usb_probe+0x12de/0x1690 ? brcmf_usbdev_qinit.constprop.0+0x470/0x470 usb_probe_interface+0x25f/0x710 really_probe+0x1be/0xa90 __driver_probe_device+0x2ab/0x460 ? usb_match_id.part.0+0x88/0xc0 driver_probe_device+0x49/0x120 __device_attach_driver+0x18a/0x250 ? driver_allows_async_probing+0x120/0x120 bus_for_each_drv+0x123/0x1a0 ? bus_rescan_devices+0x20/0x20 ? lockdep_hardirqs_on_prepare+0x273/0x3e0 ? trace_hardirqs_on+0x1c/0x120 __device_attach+0x207/0x330 ? device_bind_driver+0xb0/0xb0 ? kobject_uevent_env+0x230/0x12c0 bus_probe_device+0x1a2/0x260 device_add+0xa61/0x1ce0 ? __mutex_unlock_slowpath+0xe7/0x660 ? __fw_devlink_link_to_suppliers+0x550/0x550 usb_set_configuration+0x984/0x1770 ? kernfs_create_link+0x175/0x230 usb_generic_driver_probe+0x69/0x90 usb_probe_device+0x9c/0x220 really_probe+0x1be/0xa90 __driver_probe_device+0x2ab/0x460 driver_probe_device+0x49/0x120 __device_attach_driver+0x18a/0x250 ? driver_allows_async_probing+0x120/0x120 bus_for_each_drv+0x123/0x1a0 ? bus_rescan_devices+0x20/0x20 ? lockdep_hardirqs_on_prepare+0x273/0x3e0 ? trace_hardirqs_on+0x1c/0x120 __device_attach+0x207/0x330 ? device_bind_driver+0xb0/0xb0 ? kobject_uevent_env+0x230/0x12c0 bus_probe_device+0x1a2/0x260 device_add+0xa61/0x1ce0 ? __fw_devlink_link_to_suppliers+0x550/0x550 usb_new_device.cold+0x463/0xf66 ? hub_disconnect+0x400/0x400 ? _raw_spin_unlock_irq+0x24/0x30 hub_event+0x10d5/0x3330 ? hub_port_debounce+0x280/0x280 ? __lock_acquire+0x1671/0x5790 ? wq_calc_node_cpumask+0x170/0x2a0 ? lock_release+0x640/0x640 ? rcu_read_lock_sched_held+0xa1/0xd0 ? rcu_read_lock_bh_held+0xb0/0xb0 ? lockdep_hardirqs_on_prepare+0x273/0x3e0 process_one_work+0x873/0x13e0 ? lock_release+0x640/0x640 ? pwq_dec_nr_in_flight+0x320/0x320 ? rwlock_bug.part.0+0x90/0x90 worker_thread+0x8b/0xd10 ? __kthread_parkme+0xd9/0x1d0 ? pr ---truncated---
In the Linux kernel, the following vulnerability has been resolved: fs: jfs: fix shift-out-of-bounds in dbDiscardAG This should be applied to most URSAN bugs found recently by syzbot, by guarding the dbMount. As syzbot feeding rubbish into the bmap descriptor.
In the Linux kernel, the following vulnerability has been resolved: i2c: ismt: Fix an out-of-bounds bug in ismt_access() When the driver does not check the data from the user, the variable 'data->block[0]' may be very large to cause an out-of-bounds bug. The following log can reveal it: [ 33.995542] i2c i2c-1: ioctl, cmd=0x720, arg=0x7ffcb3dc3a20 [ 33.995978] ismt_smbus 0000:00:05.0: I2C_SMBUS_BLOCK_DATA: WRITE [ 33.996475] ================================================================== [ 33.996995] BUG: KASAN: out-of-bounds in ismt_access.cold+0x374/0x214b [ 33.997473] Read of size 18446744073709551615 at addr ffff88810efcfdb1 by task ismt_poc/485 [ 33.999450] Call Trace: [ 34.001849] memcpy+0x20/0x60 [ 34.002077] ismt_access.cold+0x374/0x214b [ 34.003382] __i2c_smbus_xfer+0x44f/0xfb0 [ 34.004007] i2c_smbus_xfer+0x10a/0x390 [ 34.004291] i2cdev_ioctl_smbus+0x2c8/0x710 [ 34.005196] i2cdev_ioctl+0x5ec/0x74c Fix this bug by checking the size of 'data->block[0]' first.
In the Linux kernel, the following vulnerability has been resolved: crypto: arm64/poly1305 - fix a read out-of-bound A kasan error was reported during fuzzing: BUG: KASAN: slab-out-of-bounds in neon_poly1305_blocks.constprop.0+0x1b4/0x250 [poly1305_neon] Read of size 4 at addr ffff0010e293f010 by task syz-executor.5/1646715 CPU: 4 PID: 1646715 Comm: syz-executor.5 Kdump: loaded Not tainted 5.10.0.aarch64 #1 Hardware name: Huawei TaiShan 2280 /BC11SPCD, BIOS 1.59 01/31/2019 Call trace: dump_backtrace+0x0/0x394 show_stack+0x34/0x4c arch/arm64/kernel/stacktrace.c:196 __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x158/0x1e4 lib/dump_stack.c:118 print_address_description.constprop.0+0x68/0x204 mm/kasan/report.c:387 __kasan_report+0xe0/0x140 mm/kasan/report.c:547 kasan_report+0x44/0xe0 mm/kasan/report.c:564 check_memory_region_inline mm/kasan/generic.c:187 [inline] __asan_load4+0x94/0xd0 mm/kasan/generic.c:252 neon_poly1305_blocks.constprop.0+0x1b4/0x250 [poly1305_neon] neon_poly1305_do_update+0x6c/0x15c [poly1305_neon] neon_poly1305_update+0x9c/0x1c4 [poly1305_neon] crypto_shash_update crypto/shash.c:131 [inline] shash_finup_unaligned+0x84/0x15c crypto/shash.c:179 crypto_shash_finup+0x8c/0x140 crypto/shash.c:193 shash_digest_unaligned+0xb8/0xe4 crypto/shash.c:201 crypto_shash_digest+0xa4/0xfc crypto/shash.c:217 crypto_shash_tfm_digest+0xb4/0x150 crypto/shash.c:229 essiv_skcipher_setkey+0x164/0x200 [essiv] crypto_skcipher_setkey+0xb0/0x160 crypto/skcipher.c:612 skcipher_setkey+0x3c/0x50 crypto/algif_skcipher.c:305 alg_setkey+0x114/0x2a0 crypto/af_alg.c:220 alg_setsockopt+0x19c/0x210 crypto/af_alg.c:253 __sys_setsockopt+0x190/0x2e0 net/socket.c:2123 __do_sys_setsockopt net/socket.c:2134 [inline] __se_sys_setsockopt net/socket.c:2131 [inline] __arm64_sys_setsockopt+0x78/0x94 net/socket.c:2131 __invoke_syscall arch/arm64/kernel/syscall.c:36 [inline] invoke_syscall+0x64/0x100 arch/arm64/kernel/syscall.c:48 el0_svc_common.constprop.0+0x220/0x230 arch/arm64/kernel/syscall.c:155 do_el0_svc+0xb4/0xd4 arch/arm64/kernel/syscall.c:217 el0_svc+0x24/0x3c arch/arm64/kernel/entry-common.c:353 el0_sync_handler+0x160/0x164 arch/arm64/kernel/entry-common.c:369 el0_sync+0x160/0x180 arch/arm64/kernel/entry.S:683 This error can be reproduced by the following code compiled as ko on a system with kasan enabled: #include <linux/module.h> #include <linux/crypto.h> #include <crypto/hash.h> #include <crypto/poly1305.h> char test_data[] = "\x00\x01\x02\x03\x04\x05\x06\x07" "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f" "\x10\x11\x12\x13\x14\x15\x16\x17" "\x18\x19\x1a\x1b\x1c\x1d\x1e"; int init(void) { struct crypto_shash *tfm = NULL; char *data = NULL, *out = NULL; tfm = crypto_alloc_shash("poly1305", 0, 0); data = kmalloc(POLY1305_KEY_SIZE - 1, GFP_KERNEL); out = kmalloc(POLY1305_DIGEST_SIZE, GFP_KERNEL); memcpy(data, test_data, POLY1305_KEY_SIZE - 1); crypto_shash_tfm_digest(tfm, data, POLY1305_KEY_SIZE - 1, out); kfree(data); kfree(out); return 0; } void deinit(void) { } module_init(init) module_exit(deinit) MODULE_LICENSE("GPL"); The root cause of the bug sits in neon_poly1305_blocks. The logic neon_poly1305_blocks() performed is that if it was called with both s[] and r[] uninitialized, it will first try to initialize them with the data from the first "block" that it believed to be 32 bytes in length. First 16 bytes are used as the key and the next 16 bytes for s[]. This would lead to the aforementioned read out-of-bound. However, after calling poly1305_init_arch(), only 16 bytes were deducted from the input and s[] is initialized yet again with the following 16 bytes. The second initialization of s[] is certainly redundent which indicates that the first initialization should be for r[] only. This patch fixes the issue by calling poly1305_init_arm64() instead o ---truncated---
In the Linux kernel, the following vulnerability has been resolved: powercap: intel_rapl: fix UBSAN shift-out-of-bounds issue When value < time_unit, the parameter of ilog2() will be zero and the return value is -1. u64(-1) is too large for shift exponent and then will trigger shift-out-of-bounds: shift exponent 18446744073709551615 is too large for 32-bit type 'int' Call Trace: rapl_compute_time_window_core rapl_write_data_raw set_time_window store_constraint_time_window_us
In the Linux kernel, the following vulnerability has been resolved: md-raid10: fix KASAN warning There's a KASAN warning in raid10_remove_disk when running the lvm test lvconvert-raid-reshape.sh. We fix this warning by verifying that the value "number" is valid. BUG: KASAN: slab-out-of-bounds in raid10_remove_disk+0x61/0x2a0 [raid10] Read of size 8 at addr ffff889108f3d300 by task mdX_raid10/124682 CPU: 3 PID: 124682 Comm: mdX_raid10 Not tainted 5.19.0-rc6 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x34/0x44 print_report.cold+0x45/0x57a ? __lock_text_start+0x18/0x18 ? raid10_remove_disk+0x61/0x2a0 [raid10] kasan_report+0xa8/0xe0 ? raid10_remove_disk+0x61/0x2a0 [raid10] raid10_remove_disk+0x61/0x2a0 [raid10] Buffer I/O error on dev dm-76, logical block 15344, async page read ? __mutex_unlock_slowpath.constprop.0+0x1e0/0x1e0 remove_and_add_spares+0x367/0x8a0 [md_mod] ? super_written+0x1c0/0x1c0 [md_mod] ? mutex_trylock+0xac/0x120 ? _raw_spin_lock+0x72/0xc0 ? _raw_spin_lock_bh+0xc0/0xc0 md_check_recovery+0x848/0x960 [md_mod] raid10d+0xcf/0x3360 [raid10] ? sched_clock_cpu+0x185/0x1a0 ? rb_erase+0x4d4/0x620 ? var_wake_function+0xe0/0xe0 ? psi_group_change+0x411/0x500 ? preempt_count_sub+0xf/0xc0 ? _raw_spin_lock_irqsave+0x78/0xc0 ? __lock_text_start+0x18/0x18 ? raid10_sync_request+0x36c0/0x36c0 [raid10] ? preempt_count_sub+0xf/0xc0 ? _raw_spin_unlock_irqrestore+0x19/0x40 ? del_timer_sync+0xa9/0x100 ? try_to_del_timer_sync+0xc0/0xc0 ? _raw_spin_lock_irqsave+0x78/0xc0 ? __lock_text_start+0x18/0x18 ? _raw_spin_unlock_irq+0x11/0x24 ? __list_del_entry_valid+0x68/0xa0 ? finish_wait+0xa3/0x100 md_thread+0x161/0x260 [md_mod] ? unregister_md_personality+0xa0/0xa0 [md_mod] ? _raw_spin_lock_irqsave+0x78/0xc0 ? prepare_to_wait_event+0x2c0/0x2c0 ? unregister_md_personality+0xa0/0xa0 [md_mod] kthread+0x148/0x180 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x1f/0x30 </TASK> Allocated by task 124495: kasan_save_stack+0x1e/0x40 __kasan_kmalloc+0x80/0xa0 setup_conf+0x140/0x5c0 [raid10] raid10_run+0x4cd/0x740 [raid10] md_run+0x6f9/0x1300 [md_mod] raid_ctr+0x2531/0x4ac0 [dm_raid] dm_table_add_target+0x2b0/0x620 [dm_mod] table_load+0x1c8/0x400 [dm_mod] ctl_ioctl+0x29e/0x560 [dm_mod] dm_compat_ctl_ioctl+0x7/0x20 [dm_mod] __do_compat_sys_ioctl+0xfa/0x160 do_syscall_64+0x90/0xc0 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Last potentially related work creation: kasan_save_stack+0x1e/0x40 __kasan_record_aux_stack+0x9e/0xc0 kvfree_call_rcu+0x84/0x480 timerfd_release+0x82/0x140 L __fput+0xfa/0x400 task_work_run+0x80/0xc0 exit_to_user_mode_prepare+0x155/0x160 syscall_exit_to_user_mode+0x12/0x40 do_syscall_64+0x42/0xc0 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Second to last potentially related work creation: kasan_save_stack+0x1e/0x40 __kasan_record_aux_stack+0x9e/0xc0 kvfree_call_rcu+0x84/0x480 timerfd_release+0x82/0x140 __fput+0xfa/0x400 task_work_run+0x80/0xc0 exit_to_user_mode_prepare+0x155/0x160 syscall_exit_to_user_mode+0x12/0x40 do_syscall_64+0x42/0xc0 entry_SYSCALL_64_after_hwframe+0x46/0xb0 The buggy address belongs to the object at ffff889108f3d200 which belongs to the cache kmalloc-256 of size 256 The buggy address is located 0 bytes to the right of 256-byte region [ffff889108f3d200, ffff889108f3d300) The buggy address belongs to the physical page: page:000000007ef2a34c refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x1108f3c head:000000007ef2a34c order:2 compound_mapcount:0 compound_pincount:0 flags: 0x4000000000010200(slab|head|zone=2) raw: 4000000000010200 0000000000000000 dead000000000001 ffff889100042b40 raw: 0000000000000000 0000000080200020 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff889108f3d200: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff889108f3d280: 00 00 ---truncated---
In the Linux kernel, the following vulnerability has been resolved: dm cache: fix out-of-bounds access to the dirty bitset when resizing dm-cache checks the dirty bits of the cache blocks to be dropped when shrinking the fast device, but an index bug in bitset iteration causes out-of-bounds access. Reproduce steps: 1. create a cache device of 1024 cache blocks (128 bytes dirty bitset) dmsetup create cmeta --table "0 8192 linear /dev/sdc 0" dmsetup create cdata --table "0 131072 linear /dev/sdc 8192" dmsetup create corig --table "0 524288 linear /dev/sdc 262144" dd if=/dev/zero of=/dev/mapper/cmeta bs=4k count=1 oflag=direct dmsetup create cache --table "0 524288 cache /dev/mapper/cmeta \ /dev/mapper/cdata /dev/mapper/corig 128 2 metadata2 writethrough smq 0" 2. shrink the fast device to 512 cache blocks, triggering out-of-bounds access to the dirty bitset (offset 0x80) dmsetup suspend cache dmsetup reload cdata --table "0 65536 linear /dev/sdc 8192" dmsetup resume cdata dmsetup resume cache KASAN reports: BUG: KASAN: vmalloc-out-of-bounds in cache_preresume+0x269/0x7b0 Read of size 8 at addr ffffc900000f3080 by task dmsetup/131 (...snip...) The buggy address belongs to the virtual mapping at [ffffc900000f3000, ffffc900000f5000) created by: cache_ctr+0x176a/0x35f0 (...snip...) Memory state around the buggy address: ffffc900000f2f80: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 ffffc900000f3000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffffc900000f3080: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 ^ ffffc900000f3100: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 ffffc900000f3180: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 Fix by making the index post-incremented.
In the Linux kernel, the following vulnerability has been resolved: thunderbolt: Fix KASAN reported stack out-of-bounds read in tb_retimer_scan() KASAN reported following issue: BUG: KASAN: stack-out-of-bounds in tb_retimer_scan+0xffe/0x1550 [thunderbolt] Read of size 4 at addr ffff88810111fc1c by task kworker/u56:0/11 CPU: 0 UID: 0 PID: 11 Comm: kworker/u56:0 Tainted: G U 6.11.0+ #1387 Tainted: [U]=USER Workqueue: thunderbolt0 tb_handle_hotplug [thunderbolt] Call Trace: <TASK> dump_stack_lvl+0x6c/0x90 print_report+0xd1/0x630 kasan_report+0xdb/0x110 __asan_report_load4_noabort+0x14/0x20 tb_retimer_scan+0xffe/0x1550 [thunderbolt] tb_scan_port+0xa6f/0x2060 [thunderbolt] tb_handle_hotplug+0x17b1/0x3080 [thunderbolt] process_one_work+0x626/0x1100 worker_thread+0x6c8/0xfa0 kthread+0x2c8/0x3a0 ret_from_fork+0x3a/0x80 ret_from_fork_asm+0x1a/0x30 This happens because the loop variable still gets incremented by one so max becomes 3 instead of 2, and this makes the second loop read past the the array declared on the stack. Fix this by assigning to max directly in the loop body.
In the Linux kernel, the following vulnerability has been resolved: bpf: Propagate error from htab_lock_bucket() to userspace In __htab_map_lookup_and_delete_batch() if htab_lock_bucket() returns -EBUSY, it will go to next bucket. Going to next bucket may not only skip the elements in current bucket silently, but also incur out-of-bound memory access or expose kernel memory to userspace if current bucket_cnt is greater than bucket_size or zero. Fixing it by stopping batch operation and returning -EBUSY when htab_lock_bucket() fails, and the application can retry or skip the busy batch as needed.
In the Linux kernel, the following vulnerability has been resolved: media: imx-jpeg: Align upwards buffer size The hardware can support any image size WxH, with arbitrary W (image width) and H (image height) dimensions. Align upwards buffer size for both encoder and decoder. and leave the picture resolution unchanged. For decoder, the risk of memory out of bounds can be avoided. For both encoder and decoder, the driver will lift the limitation of resolution alignment. For example, the decoder can support jpeg whose resolution is 227x149 the encoder can support nv12 1080P, won't change it to 1920x1072.
In the Linux kernel, the following vulnerability has been resolved: x86/entry_32: Clear CPU buffers after register restore in NMI return CPU buffers are currently cleared after call to exc_nmi, but before register state is restored. This may be okay for MDS mitigation but not for RDFS. Because RDFS mitigation requires CPU buffers to be cleared when registers don't have any sensitive data. Move CLEAR_CPU_BUFFERS after RESTORE_ALL_NMI.
In the Linux kernel, the following vulnerability has been resolved: tracing: Fix reading strings from synthetic events The follow commands caused a crash: # cd /sys/kernel/tracing # echo 's:open char file[]' > dynamic_events # echo 'hist:keys=common_pid:file=filename:onchange($file).trace(open,$file)' > events/syscalls/sys_enter_openat/trigger' # echo 1 > events/synthetic/open/enable BOOM! The problem is that the synthetic event field "char file[]" will read the value given to it as a string without any memory checks to make sure the address is valid. The above example will pass in the user space address and the sythetic event code will happily call strlen() on it and then strscpy() where either one will cause an oops when accessing user space addresses. Use the helper functions from trace_kprobe and trace_eprobe that can read strings safely (and actually succeed when the address is from user space and the memory is mapped in). Now the above can show: packagekitd-1721 [000] ...2. 104.597170: open: file=/usr/lib/rpm/fileattrs/cmake.attr in:imjournal-978 [006] ...2. 104.599642: open: file=/var/lib/rsyslog/imjournal.state.tmp packagekitd-1721 [000] ...2. 104.626308: open: file=/usr/lib/rpm/fileattrs/debuginfo.attr
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check correct bounds for stream encoder instances for DCN303 [Why & How] eng_id for DCN303 cannot be more than 1, since we have only two instances of stream encoders. Check the correct boundary condition for engine ID for DCN303 prevent the potential out of bounds access.
In the Linux kernel, the following vulnerability has been resolved: selinux: Add boundary check in put_entry() Just like next_entry(), boundary check is necessary to prevent memory out-of-bound access.
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt76x0: fix oob access in mt76x0_phy_get_target_power After 'commit ba45841ca5eb ("wifi: mt76: mt76x02: simplify struct mt76x02_rate_power")', mt76x02 relies on ht[0-7] rate_power data for vht mcs{0,7}, while it uses vth[0-1] rate_power for vht mcs {8,9}. Fix a possible out-of-bound access in mt76x0_phy_get_target_power routine.
In the Linux kernel, the following vulnerability has been resolved: binfmt_misc: fix shift-out-of-bounds in check_special_flags UBSAN reported a shift-out-of-bounds warning: left shift of 1 by 31 places cannot be represented in type 'int' Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x8d/0xcf lib/dump_stack.c:106 ubsan_epilogue+0xa/0x44 lib/ubsan.c:151 __ubsan_handle_shift_out_of_bounds+0x1e7/0x208 lib/ubsan.c:322 check_special_flags fs/binfmt_misc.c:241 [inline] create_entry fs/binfmt_misc.c:456 [inline] bm_register_write+0x9d3/0xa20 fs/binfmt_misc.c:654 vfs_write+0x11e/0x580 fs/read_write.c:582 ksys_write+0xcf/0x120 fs/read_write.c:637 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x34/0x80 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x4194e1 Since the type of Node's flags is unsigned long, we should define these macros with same type too.
In the Linux kernel, the following vulnerability has been resolved: dm raid: fix address sanitizer warning in raid_status There is this warning when using a kernel with the address sanitizer and running this testsuite: https://gitlab.com/cki-project/kernel-tests/-/tree/main/storage/swraid/scsi_raid ================================================================== BUG: KASAN: slab-out-of-bounds in raid_status+0x1747/0x2820 [dm_raid] Read of size 4 at addr ffff888079d2c7e8 by task lvcreate/13319 CPU: 0 PID: 13319 Comm: lvcreate Not tainted 5.18.0-0.rc3.<snip> #1 Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011 Call Trace: <TASK> dump_stack_lvl+0x6a/0x9c print_address_description.constprop.0+0x1f/0x1e0 print_report.cold+0x55/0x244 kasan_report+0xc9/0x100 raid_status+0x1747/0x2820 [dm_raid] dm_ima_measure_on_table_load+0x4b8/0xca0 [dm_mod] table_load+0x35c/0x630 [dm_mod] ctl_ioctl+0x411/0x630 [dm_mod] dm_ctl_ioctl+0xa/0x10 [dm_mod] __x64_sys_ioctl+0x12a/0x1a0 do_syscall_64+0x5b/0x80 The warning is caused by reading conf->max_nr_stripes in raid_status. The code in raid_status reads mddev->private, casts it to struct r5conf and reads the entry max_nr_stripes. However, if we have different raid type than 4/5/6, mddev->private doesn't point to struct r5conf; it may point to struct r0conf, struct r1conf, struct r10conf or struct mpconf. If we cast a pointer to one of these structs to struct r5conf, we will be reading invalid memory and KASAN warns about it. Fix this bug by reading struct r5conf only if raid type is 4, 5 or 6.
In the Linux kernel, the following vulnerability has been resolved: tools/power turbostat: Fix file pointer leak Currently if a fscanf fails then an early return leaks an open file pointer. Fix this by fclosing the file before the return. Detected using static analysis with cppcheck: tools/power/x86/turbostat/turbostat.c:2039:3: error: Resource leak: fp [resourceLeak]
In the Linux kernel, the following vulnerability has been resolved: habanalabs/gaudi: fix shift out of bounds When validating NIC queues, queue offset calculation must be performed only for NIC queues.
In the Linux kernel, the following vulnerability has been resolved: ext4: fix potential out of bound read in ext4_fc_replay_scan() For scan loop must ensure that at least EXT4_FC_TAG_BASE_LEN space. If remain space less than EXT4_FC_TAG_BASE_LEN which will lead to out of bound read when mounting corrupt file system image. ADD_RANGE/HEAD/TAIL is needed to add extra check when do journal scan, as this three tags will read data during scan, tag length couldn't less than data length which will read.
In the Linux kernel, the following vulnerability has been resolved: wifi: rtlwifi: Fix global-out-of-bounds bug in _rtl8812ae_phy_set_txpower_limit() There is a global-out-of-bounds reported by KASAN: BUG: KASAN: global-out-of-bounds in _rtl8812ae_eq_n_byte.part.0+0x3d/0x84 [rtl8821ae] Read of size 1 at addr ffffffffa0773c43 by task NetworkManager/411 CPU: 6 PID: 411 Comm: NetworkManager Tainted: G D 6.1.0-rc8+ #144 e15588508517267d37 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), Call Trace: <TASK> ... kasan_report+0xbb/0x1c0 _rtl8812ae_eq_n_byte.part.0+0x3d/0x84 [rtl8821ae] rtl8821ae_phy_bb_config.cold+0x346/0x641 [rtl8821ae] rtl8821ae_hw_init+0x1f5e/0x79b0 [rtl8821ae] ... </TASK> The root cause of the problem is that the comparison order of "prate_section" in _rtl8812ae_phy_set_txpower_limit() is wrong. The _rtl8812ae_eq_n_byte() is used to compare the first n bytes of the two strings from tail to head, which causes the problem. In the _rtl8812ae_phy_set_txpower_limit(), it was originally intended to meet this requirement by carefully designing the comparison order. For example, "pregulation" and "pbandwidth" are compared in order of length from small to large, first is 3 and last is 4. However, the comparison order of "prate_section" dose not obey such order requirement, therefore when "prate_section" is "HT", when comparing from tail to head, it will lead to access out of bounds in _rtl8812ae_eq_n_byte(). As mentioned above, the _rtl8812ae_eq_n_byte() has the same function as strcmp(), so just strcmp() is enough. Fix it by removing _rtl8812ae_eq_n_byte() and use strcmp() barely. Although it can be fixed by adjusting the comparison order of "prate_section", this may cause the value of "rate_section" to not be from 0 to 5. In addition, commit "21e4b0726dc6" not only moved driver from staging to regular tree, but also added setting txpower limit function during the driver config phase, so the problem was introduced by this commit.
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix shift-out-of-bounds/overflow in nilfs_sb2_bad_offset() Patch series "nilfs2: fix UBSAN shift-out-of-bounds warnings on mount time". The first patch fixes a bug reported by syzbot, and the second one fixes the remaining bug of the same kind. Although they are triggered by the same super block data anomaly, I divided it into the above two because the details of the issues and how to fix it are different. Both are required to eliminate the shift-out-of-bounds issues at mount time. This patch (of 2): If the block size exponent information written in an on-disk superblock is corrupted, nilfs_sb2_bad_offset helper function can trigger shift-out-of-bounds warning followed by a kernel panic (if panic_on_warn is set): shift exponent 38983 is too large for 64-bit type 'unsigned long long' Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106 ubsan_epilogue lib/ubsan.c:151 [inline] __ubsan_handle_shift_out_of_bounds+0x33d/0x3b0 lib/ubsan.c:322 nilfs_sb2_bad_offset fs/nilfs2/the_nilfs.c:449 [inline] nilfs_load_super_block+0xdf5/0xe00 fs/nilfs2/the_nilfs.c:523 init_nilfs+0xb7/0x7d0 fs/nilfs2/the_nilfs.c:577 nilfs_fill_super+0xb1/0x5d0 fs/nilfs2/super.c:1047 nilfs_mount+0x613/0x9b0 fs/nilfs2/super.c:1317 ... In addition, since nilfs_sb2_bad_offset() performs multiplication without considering the upper bound, the computation may overflow if the disk layout parameters are not normal. This fixes these issues by inserting preliminary sanity checks for those parameters and by converting the comparison from one involving multiplication and left bit-shifting to one using division and right bit-shifting.
In the Linux kernel, the following vulnerability has been resolved: s390/cio: fix out-of-bounds access on cio_ignore free The channel-subsystem-driver scans for newly available devices whenever device-IDs are removed from the cio_ignore list using a command such as: echo free >/proc/cio_ignore Since an I/O device scan might interfer with running I/Os, commit 172da89ed0ea ("s390/cio: avoid excessive path-verification requests") introduced an optimization to exclude online devices from the scan. The newly added check for online devices incorrectly assumes that an I/O-subchannel's drvdata points to a struct io_subchannel_private. For devices that are bound to a non-default I/O subchannel driver, such as the vfio_ccw driver, this results in an out-of-bounds read access during each scan. Fix this by changing the scan logic to rely on a driver-independent online indication. For this we can use struct subchannel->config.ena, which is the driver's requested subchannel-enabled state. Since I/Os can only be started on enabled subchannels, this matches the intent of the original optimization of not scanning devices where I/O might be running.
In the Linux kernel, the following vulnerability has been resolved: wifi: wil6210: debugfs: fix info leak in wil_write_file_wmi() The simple_write_to_buffer() function will succeed if even a single byte is initialized. However, we need to initialize the whole buffer to prevent information leaks. Just use memdup_user().
In the Linux kernel, the following vulnerability has been resolved: slip: make slhc_remember() more robust against malicious packets syzbot found that slhc_remember() was missing checks against malicious packets [1]. slhc_remember() only checked the size of the packet was at least 20, which is not good enough. We need to make sure the packet includes the IPv4 and TCP header that are supposed to be carried. Add iph and th pointers to make the code more readable. [1] BUG: KMSAN: uninit-value in slhc_remember+0x2e8/0x7b0 drivers/net/slip/slhc.c:666 slhc_remember+0x2e8/0x7b0 drivers/net/slip/slhc.c:666 ppp_receive_nonmp_frame+0xe45/0x35e0 drivers/net/ppp/ppp_generic.c:2455 ppp_receive_frame drivers/net/ppp/ppp_generic.c:2372 [inline] ppp_do_recv+0x65f/0x40d0 drivers/net/ppp/ppp_generic.c:2212 ppp_input+0x7dc/0xe60 drivers/net/ppp/ppp_generic.c:2327 pppoe_rcv_core+0x1d3/0x720 drivers/net/ppp/pppoe.c:379 sk_backlog_rcv+0x13b/0x420 include/net/sock.h:1113 __release_sock+0x1da/0x330 net/core/sock.c:3072 release_sock+0x6b/0x250 net/core/sock.c:3626 pppoe_sendmsg+0x2b8/0xb90 drivers/net/ppp/pppoe.c:903 sock_sendmsg_nosec net/socket.c:729 [inline] __sock_sendmsg+0x30f/0x380 net/socket.c:744 ____sys_sendmsg+0x903/0xb60 net/socket.c:2602 ___sys_sendmsg+0x28d/0x3c0 net/socket.c:2656 __sys_sendmmsg+0x3c1/0x960 net/socket.c:2742 __do_sys_sendmmsg net/socket.c:2771 [inline] __se_sys_sendmmsg net/socket.c:2768 [inline] __x64_sys_sendmmsg+0xbc/0x120 net/socket.c:2768 x64_sys_call+0xb6e/0x3ba0 arch/x86/include/generated/asm/syscalls_64.h:308 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcd/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Uninit was created at: slab_post_alloc_hook mm/slub.c:4091 [inline] slab_alloc_node mm/slub.c:4134 [inline] kmem_cache_alloc_node_noprof+0x6bf/0xb80 mm/slub.c:4186 kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:587 __alloc_skb+0x363/0x7b0 net/core/skbuff.c:678 alloc_skb include/linux/skbuff.h:1322 [inline] sock_wmalloc+0xfe/0x1a0 net/core/sock.c:2732 pppoe_sendmsg+0x3a7/0xb90 drivers/net/ppp/pppoe.c:867 sock_sendmsg_nosec net/socket.c:729 [inline] __sock_sendmsg+0x30f/0x380 net/socket.c:744 ____sys_sendmsg+0x903/0xb60 net/socket.c:2602 ___sys_sendmsg+0x28d/0x3c0 net/socket.c:2656 __sys_sendmmsg+0x3c1/0x960 net/socket.c:2742 __do_sys_sendmmsg net/socket.c:2771 [inline] __se_sys_sendmmsg net/socket.c:2768 [inline] __x64_sys_sendmmsg+0xbc/0x120 net/socket.c:2768 x64_sys_call+0xb6e/0x3ba0 arch/x86/include/generated/asm/syscalls_64.h:308 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcd/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f CPU: 0 UID: 0 PID: 5460 Comm: syz.2.33 Not tainted 6.12.0-rc2-syzkaller-00006-g87d6aab2389e #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
In the Linux kernel, the following vulnerability has been resolved: net: wwan: fix global oob in wwan_rtnl_policy The variable wwan_rtnl_link_ops assign a *bigger* maxtype which leads to a global out-of-bounds read when parsing the netlink attributes. Exactly same bug cause as the oob fixed in commit b33fb5b801c6 ("net: qualcomm: rmnet: fix global oob in rmnet_policy"). ================================================================== BUG: KASAN: global-out-of-bounds in validate_nla lib/nlattr.c:388 [inline] BUG: KASAN: global-out-of-bounds in __nla_validate_parse+0x19d7/0x29a0 lib/nlattr.c:603 Read of size 1 at addr ffffffff8b09cb60 by task syz.1.66276/323862 CPU: 0 PID: 323862 Comm: syz.1.66276 Not tainted 6.1.70 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x177/0x231 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:284 [inline] print_report+0x14f/0x750 mm/kasan/report.c:395 kasan_report+0x139/0x170 mm/kasan/report.c:495 validate_nla lib/nlattr.c:388 [inline] __nla_validate_parse+0x19d7/0x29a0 lib/nlattr.c:603 __nla_parse+0x3c/0x50 lib/nlattr.c:700 nla_parse_nested_deprecated include/net/netlink.h:1269 [inline] __rtnl_newlink net/core/rtnetlink.c:3514 [inline] rtnl_newlink+0x7bc/0x1fd0 net/core/rtnetlink.c:3623 rtnetlink_rcv_msg+0x794/0xef0 net/core/rtnetlink.c:6122 netlink_rcv_skb+0x1de/0x420 net/netlink/af_netlink.c:2508 netlink_unicast_kernel net/netlink/af_netlink.c:1326 [inline] netlink_unicast+0x74b/0x8c0 net/netlink/af_netlink.c:1352 netlink_sendmsg+0x882/0xb90 net/netlink/af_netlink.c:1874 sock_sendmsg_nosec net/socket.c:716 [inline] __sock_sendmsg net/socket.c:728 [inline] ____sys_sendmsg+0x5cc/0x8f0 net/socket.c:2499 ___sys_sendmsg+0x21c/0x290 net/socket.c:2553 __sys_sendmsg net/socket.c:2582 [inline] __do_sys_sendmsg net/socket.c:2591 [inline] __se_sys_sendmsg+0x19e/0x270 net/socket.c:2589 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x45/0x90 arch/x86/entry/common.c:81 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f67b19a24ad RSP: 002b:00007f67b17febb8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00007f67b1b45f80 RCX: 00007f67b19a24ad RDX: 0000000000000000 RSI: 0000000020005e40 RDI: 0000000000000004 RBP: 00007f67b1a1e01d R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 00007ffd2513764f R14: 00007ffd251376e0 R15: 00007f67b17fed40 </TASK> The buggy address belongs to the variable: wwan_rtnl_policy+0x20/0x40 The buggy address belongs to the physical page: page:ffffea00002c2700 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0xb09c flags: 0xfff00000001000(reserved|node=0|zone=1|lastcpupid=0x7ff) raw: 00fff00000001000 ffffea00002c2708 ffffea00002c2708 0000000000000000 raw: 0000000000000000 0000000000000000 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected page_owner info is not present (never set?) Memory state around the buggy address: ffffffff8b09ca00: 05 f9 f9 f9 05 f9 f9 f9 00 01 f9 f9 00 01 f9 f9 ffffffff8b09ca80: 00 00 00 05 f9 f9 f9 f9 00 00 03 f9 f9 f9 f9 f9 >ffffffff8b09cb00: 00 00 00 00 05 f9 f9 f9 00 00 00 00 f9 f9 f9 f9 ^ ffffffff8b09cb80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ================================================================== According to the comment of `nla_parse_nested_deprecated`, use correct size `IFLA_WWAN_MAX` here to fix this issue.
In the Linux kernel, the following vulnerability has been resolved: drm/fb-helper: Fix out-of-bounds access Clip memory range to screen-buffer size to avoid out-of-bounds access in fbdev deferred I/O's damage handling. Fbdev's deferred I/O can only track pages. From the range of pages, the damage handler computes the clipping rectangle for the display update. If the fbdev screen buffer ends near the beginning of a page, that page could contain more scanlines. The damage handler would then track these non-existing scanlines as dirty and provoke an out-of-bounds access during the screen update. Hence, clip the maximum memory range to the size of the screen buffer. While at it, rename the variables min/max to min_off/max_off in drm_fb_helper_deferred_io(). This avoids confusion with the macros of the same name.
In the Linux kernel, the following vulnerability has been resolved: usb: typec: fix potential out of bounds in ucsi_ccg_update_set_new_cam_cmd() The "*cmd" variable can be controlled by the user via debugfs. That means "new_cam" can be as high as 255 while the size of the uc->updated[] array is UCSI_MAX_ALTMODES (30). The call tree is: ucsi_cmd() // val comes from simple_attr_write_xsigned() -> ucsi_send_command() -> ucsi_send_command_common() -> ucsi_run_command() // calls ucsi->ops->sync_control() -> ucsi_ccg_sync_control()
In the Linux kernel, the following vulnerability has been resolved: dm cache: fix potential out-of-bounds access on the first resume Out-of-bounds access occurs if the fast device is expanded unexpectedly before the first-time resume of the cache table. This happens because expanding the fast device requires reloading the cache table for cache_create to allocate new in-core data structures that fit the new size, and the check in cache_preresume is not performed during the first resume, leading to the issue. Reproduce steps: 1. prepare component devices: dmsetup create cmeta --table "0 8192 linear /dev/sdc 0" dmsetup create cdata --table "0 65536 linear /dev/sdc 8192" dmsetup create corig --table "0 524288 linear /dev/sdc 262144" dd if=/dev/zero of=/dev/mapper/cmeta bs=4k count=1 oflag=direct 2. load a cache table of 512 cache blocks, and deliberately expand the fast device before resuming the cache, making the in-core data structures inadequate. dmsetup create cache --notable dmsetup reload cache --table "0 524288 cache /dev/mapper/cmeta \ /dev/mapper/cdata /dev/mapper/corig 128 2 metadata2 writethrough smq 0" dmsetup reload cdata --table "0 131072 linear /dev/sdc 8192" dmsetup resume cdata dmsetup resume cache 3. suspend the cache to write out the in-core dirty bitset and hint array, leading to out-of-bounds access to the dirty bitset at offset 0x40: dmsetup suspend cache KASAN reports: BUG: KASAN: vmalloc-out-of-bounds in is_dirty_callback+0x2b/0x80 Read of size 8 at addr ffffc90000085040 by task dmsetup/90 (...snip...) The buggy address belongs to the virtual mapping at [ffffc90000085000, ffffc90000087000) created by: cache_ctr+0x176a/0x35f0 (...snip...) Memory state around the buggy address: ffffc90000084f00: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 ffffc90000084f80: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 >ffffc90000085000: 00 00 00 00 00 00 00 00 f8 f8 f8 f8 f8 f8 f8 f8 ^ ffffc90000085080: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 ffffc90000085100: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 Fix by checking the size change on the first resume.
In the Linux kernel, the following vulnerability has been resolved: KVM: nSVM: Ignore nCR3[4:0] when loading PDPTEs from memory Ignore nCR3[4:0] when loading PDPTEs from memory for nested SVM, as bits 4:0 of CR3 are ignored when PAE paging is used, and thus VMRUN doesn't enforce 32-byte alignment of nCR3. In the absolute worst case scenario, failure to ignore bits 4:0 can result in an out-of-bounds read, e.g. if the target page is at the end of a memslot, and the VMM isn't using guard pages. Per the APM: The CR3 register points to the base address of the page-directory-pointer table. The page-directory-pointer table is aligned on a 32-byte boundary, with the low 5 address bits 4:0 assumed to be 0. And the SDM's much more explicit: 4:0 Ignored Note, KVM gets this right when loading PDPTRs, it's only the nSVM flow that is broken.