Limesurvey before 3.17.14 does not enforce SSL/TLS usage in the default configuration.
Mailpit is an email testing tool and API for developers. Prior to version 1.28.3, Mailpit's SMTP server is vulnerable to Header Injection due to an insufficient Regular Expression used to validate `RCPT TO` and `MAIL FROM` addresses. An attacker can inject arbitrary SMTP headers (or corrupt existing ones) by including carriage return characters (`\r`) in the email address. This header injection occurs because the regex intended to filter control characters fails to exclude `\r` and `\n` when used inside a character class. Version 1.28.3 fixes this issue.
Gakido is a Python HTTP client focused on browser impersonation and anti-bot evasion. A vulnerability was discovered in Gakido prior to version 0.1.1 that allowed HTTP header injection through CRLF (Carriage Return Line Feed) sequences in user-supplied header values and names. When making HTTP requests with user-controlled header values containing `\r\n` (CRLF), `\n` (LF), or `\x00` (null byte) characters, an attacker could inject arbitrary HTTP headers into the request. The fix in version 0.1.1 adds a `_sanitize_header()` function that strips `\r`, `\n`, and `\x00` characters from both header names and values before they are included in HTTP requests.
A vulnerability was found in Keycloak-services. Special characters used during e-mail registration may perform SMTP Injection and unexpectedly send short unwanted e-mails. The email is limited to 64 characters (limited local part of the email), so the attack is limited to very shorts emails (subject and little data, the example is 60 chars). This flaw's only direct consequence is an unsolicited email being sent from the Keycloak server. However, this action could be a precursor for more sophisticated attacks.
A security vulnerability has been detected in Ritlabs TinyWeb Server 1.94. This vulnerability affects unknown code of the component Request Handler. The manipulation with the input %0D%0A leads to crlf injection. It is possible to initiate the attack remotely. The exploit has been disclosed publicly and may be used. Upgrading to version 1.99 is able to resolve this issue. The identifier of the patch is d49c3da6a97e950975b18626878f3ee1f082358e. It is suggested to upgrade the affected component. The vendor was contacted early about this disclosure but did not respond in any way.
Pluto is a superset of Lua 5.4 with a focus on general-purpose programming. Scripts passing user-controlled values to http.request header values are affected. An attacker could use this to send arbitrary requests, potentially leveraging authentication tokens provided in the same headers table.
All versions of the package ithewei/libhv are vulnerable to CRLF Injection when untrusted user input is used to set request headers. An attacker can add the \r\n (carriage return line feeds) characters and inject additional headers in the request sent.
aiohttp is an asynchronous HTTP client/server framework for asyncio and Python. Improper validation makes it possible for an attacker to modify the HTTP request (e.g. insert a new header) or even create a new HTTP request if the attacker controls the HTTP method. The vulnerability occurs only if the attacker can control the HTTP method (GET, POST etc.) of the request. If the attacker can control the HTTP version of the request it will be able to modify the request (request smuggling). This issue has been patched in version 3.9.0.
undici is an HTTP/1.1 client, written from scratch for Node.js. It is possible to inject CRLF sequences into request headers in undici in versions less than 5.7.1. A fix was released in version 5.8.0. Sanitizing all HTTP headers from untrusted sources to eliminate `\r\n` is a workaround for this issue.
undici is an HTTP/1.1 client, written from scratch for Node.js.`=< undici@5.8.0` users are vulnerable to _CRLF Injection_ on headers when using unsanitized input as request headers, more specifically, inside the `content-type` header. Example: ``` import { request } from 'undici' const unsanitizedContentTypeInput = 'application/json\r\n\r\nGET /foo2 HTTP/1.1' await request('http://localhost:3000, { method: 'GET', headers: { 'content-type': unsanitizedContentTypeInput }, }) ``` The above snippet will perform two requests in a single `request` API call: 1) `http://localhost:3000/` 2) `http://localhost:3000/foo2` This issue was patched in Undici v5.8.1. Sanitize input when sending content-type headers using user input as a workaround.