In the Linux kernel before 4.17, hns_roce_alloc_ucontext in drivers/infiniband/hw/hns/hns_roce_main.c does not initialize the resp data structure, which might allow attackers to obtain sensitive information from kernel stack memory, aka CID-df7e40425813.
The ip_push_pending_frames function in Linux 2.4.x and 2.6.x before 2.6.16 increments the IP ID field when sending a RST after receiving unsolicited TCP SYN-ACK packets, which allows remote attackers to conduct an Idle Scan (nmap -sI) attack, which bypasses intended protections against such attacks.
nfs2acl.c in the Linux kernel 2.6.14.4 does not check for MAY_SATTR privilege before setting access controls (ACL) on files on exported NFS filesystems, which allows remote attackers to bypass ACLs for readonly mounted NFS filesystems.
Adobe Flash Player before 18.0.0.252 and 19.x before 19.0.0.207 on Windows and OS X and before 11.2.202.535 on Linux, Adobe AIR before 19.0.0.213, Adobe AIR SDK before 19.0.0.213, and Adobe AIR SDK & Compiler before 19.0.0.213 allow remote attackers to bypass the Same Origin Policy and obtain sensitive information via unspecified vectors.
The shmctl function in Linux 2.6.9 and earlier allows local users to unlock the memory of other processes, which could cause sensitive memory to be swapped to disk, which could allow it to be read by other users once it has been released.
Adobe Flash Player before 18.0.0.241 and 19.x before 19.0.0.185 on Windows and OS X and before 11.2.202.521 on Linux, Adobe AIR before 19.0.0.190, Adobe AIR SDK before 19.0.0.190, and Adobe AIR SDK & Compiler before 19.0.0.190 allow attackers to bypass the Same Origin Policy and obtain sensitive information via unspecified vectors.
The Orinoco driver (orinoco.c) in Linux kernel 2.6.13 and earlier does not properly clear memory from a previously used packet whose length is increased, which allows remote attackers to obtain sensitive information.
VMware Workspace ONE Access and Identity Manager, unintentionally provide a login interface on port 7443. A malicious actor with network access to port 7443 may attempt user enumeration or brute force the login endpoint, which may or may not be practical based on lockout policy configuration and password complexity for the target account.
VMware Workspace ONE Access 21.08, 20.10.0.1, and 20.10 and Identity Manager 3.3.5, 3.3.4, and 3.3.3 contain an SSRF vulnerability. A malicious actor with network access may be able to make HTTP requests to arbitrary origins and read the full response.
IBM Security Verify Information Queue 1.0.6 and 1.0.7 discloses sensitive information in source code that could be used in further attacks against the system. IBM X-Force ID: 196185.
IBM Security Guardium 11.2 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 196280.
IBM Security Verify Information Queue 1.0.6 and 1.0.7 could allow a remote attacker to obtain sensitive information, caused by the failure to properly enable HTTP Strict Transport Security. An attacker could exploit this vulnerability to obtain sensitive information using man in the middle techniques. IBM X-Force ID: 196188.
Adobe Flash Player before 13.0.0.302 and 14.x through 18.x before 18.0.0.203 on Windows and OS X and before 11.2.202.481 on Linux, Adobe AIR before 18.0.0.180, Adobe AIR SDK before 18.0.0.180, and Adobe AIR SDK & Compiler before 18.0.0.180 allow remote attackers to bypass the Same Origin Policy via unspecified vectors, a different vulnerability than CVE-2014-0578, CVE-2015-3115, CVE-2015-3116, and CVE-2015-3125.
Adobe Flash Player before 18.0.0.241 and 19.x before 19.0.0.185 on Windows and OS X and before 11.2.202.521 on Linux, Adobe AIR before 19.0.0.190, Adobe AIR SDK before 19.0.0.190, and Adobe AIR SDK & Compiler before 19.0.0.190 do not properly restrict discovery of memory addresses, which allows attackers to bypass the ASLR protection mechanism via unspecified vectors.
IBM QRadar SIEM 7.3.0 to 7.3.3 Patch 8 and 7.4.0 to 7.4.3 GA uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 194448.
The ext3 code in Linux 2.4.x before 2.4.26 does not properly initialize journal descriptor blocks, which causes an information leak in which in-memory data is written to the device for the ext3 file system, which allows privileged users to obtain portions of kernel memory by reading the raw device.
Adobe Flash Player before 18.0.0.241 and 19.x before 19.0.0.185 on Windows and OS X and before 11.2.202.521 on Linux, Adobe AIR before 19.0.0.190, Adobe AIR SDK before 19.0.0.190, and Adobe AIR SDK & Compiler before 19.0.0.190 allow attackers to bypass intended access restrictions and obtain sensitive information via unspecified vectors.
Invision Power Services Invision Board 1.0 through 1.1.1, when a forum is password protected, stores the administrator password in a cookie in plaintext, which could allow remote attackers to gain access.
IBM Security Verify Information Queue 1.0.6 and 1.0.7 contains hard-coded credentials, such as a password or cryptographic key, which it uses for its own inbound authentication, outbound communication to external components, or encryption of internal data. IBM X-Force ID: 198192.
IBM Security Guardium 11.2 could allow a remote attacker to obtain sensitive information when a detailed technical error message is returned in the browser. This information could be used in further attacks against the system. IBM X-Force ID: 196315.
Petitforum stores the liste.txt data file under the web document root with insufficient access control, which allows remote attackers to obtain sensitive information such as e-mail addresses and encrypted passwords.
Linux kernel, and possibly other operating systems, allows remote attackers to read portions of memory via a series of fragmented ICMP packets that generate an ICMP TTL Exceeded response, which includes portions of the memory in the response packet.
Multiple ethernet Network Interface Card (NIC) device drivers do not pad frames with null bytes, which allows remote attackers to obtain information from previous packets or kernel memory by using malformed packets, as demonstrated by Etherleak.
The kernel strncpy function in Linux 2.4 and 2.5 does not %NUL pad the buffer on architectures other than x86, as opposed to the expected behavior of strncpy as implemented in libc, which could lead to information leaks.
Album.pl 6.1 allows remote attackers to execute arbitrary commands, when an alternative configuration file is used, via unknown attack vectors.
Adobe Campaign Classic Gold Standard 10 (and earlier), 20.3.1 (and earlier), 20.2.3 (and earlier), 20.1.3 (and earlier), 19.2.3 (and earlier) and 19.1.7 (and earlier) are affected by a server-side request forgery (SSRF) vulnerability. Successful exploitation could allow an attacker to use the Campaign instance to issue unauthorized requests to internal or external resources.
IBM Db2 9.7, 10.1, 10.5, 11.1, and 11.5 may be vulnerable to an Information Disclosure when using the LOAD utility as under certain circumstances the LOAD utility does not enforce directory restrictions. IBM X-Force ID: 199521.
The UDP implementation in Linux 2.4.x kernels keeps the IP Identification field at 0 for all non-fragmented packets, which could allow remote attackers to determine that a target system is running Linux.
IBM i2 Analyst's Notebook Premium (IBM i2 Analyze 4.3.0, 4.3.1, and 4.3.2) could allow a remote attacker to obtain sensitive information when a detailed technical error message is returned in the browser. This information could be used in further attacks against the system. IBM X-Force ID: 196341.
Adobe Flash Player before 13.0.0.289 and 14.x through 17.x before 17.0.0.188 on Windows and OS X and before 11.2.202.460 on Linux, Adobe AIR before 17.0.0.172, Adobe AIR SDK before 17.0.0.172, and Adobe AIR SDK & Compiler before 17.0.0.172 do not properly restrict discovery of memory addresses, which allows attackers to bypass the ASLR protection mechanism via unspecified vectors, a different vulnerability than CVE-2015-3092.
An Information Disclosure vulnerability exists in HP SiteScope 11.2 and 11.3 on Windows, Linux and Solaris, HP Asset Manager 9.30 through 9.32, 9.40 through 9.41, 9.50, and Asset Manager Cloudsystem Chargeback 9.40, which could let a remote malicious user obtain sensitive information. This is the TLS vulnerability known as the RC4 cipher Bar Mitzvah vulnerability.
Adobe Flash Player before 13.0.0.281 and 14.x through 17.x before 17.0.0.169 on Windows and OS X and before 11.2.202.457 on Linux does not properly restrict discovery of memory addresses, which allows attackers to bypass the ASLR protection mechanism via unspecified vectors, a different vulnerability than CVE-2015-0357.
Adobe Flash Player before 13.0.0.292 and 14.x through 18.x before 18.0.0.160 on Windows and OS X and before 11.2.202.466 on Linux, Adobe AIR before 18.0.0.144 on Windows and before 18.0.0.143 on OS X and Android, Adobe AIR SDK before 18.0.0.144 on Windows and before 18.0.0.143 on OS X, and Adobe AIR SDK & Compiler before 18.0.0.144 on Windows and before 18.0.0.143 on OS X do not properly restrict discovery of memory addresses, which allows attackers to bypass the ASLR protection mechanism via unspecified vectors.
Adobe Flash Player before 13.0.0.302 and 14.x through 18.x before 18.0.0.203 on Windows and OS X and before 11.2.202.481 on Linux, Adobe AIR before 18.0.0.180, Adobe AIR SDK before 18.0.0.180, and Adobe AIR SDK & Compiler before 18.0.0.180 allow remote attackers to bypass the Same Origin Policy via unspecified vectors, a different vulnerability than CVE-2014-0578, CVE-2015-3115, CVE-2015-3125, and CVE-2015-5116.
Adobe Flash Player before 13.0.0.302 and 14.x through 18.x before 18.0.0.203 on Windows and OS X and before 11.2.202.481 on Linux, Adobe AIR before 18.0.0.180, Adobe AIR SDK before 18.0.0.180, and Adobe AIR SDK & Compiler before 18.0.0.180 allow attackers to bypass intended access restrictions and obtain sensitive information via unspecified vectors.
Adobe Flash Player before 13.0.0.289 and 14.x through 17.x before 17.0.0.188 on Windows and OS X and before 11.2.202.460 on Linux, Adobe AIR before 17.0.0.172, Adobe AIR SDK before 17.0.0.172, and Adobe AIR SDK & Compiler before 17.0.0.172 allow attackers to bypass intended access restrictions and obtain sensitive information via unspecified vectors.
Adobe Flash Player before 13.0.0.302 and 14.x through 18.x before 18.0.0.203 on Windows and OS X and before 11.2.202.481 on Linux, Adobe AIR before 18.0.0.180, Adobe AIR SDK before 18.0.0.180, and Adobe AIR SDK & Compiler before 18.0.0.180 allow remote attackers to bypass the Same Origin Policy via unspecified vectors, a different vulnerability than CVE-2014-0578, CVE-2015-3116, CVE-2015-3125, and CVE-2015-5116.
Adobe Flash Player before 13.0.0.292 and 14.x through 18.x before 18.0.0.160 on Windows and OS X and before 11.2.202.466 on Linux, Adobe AIR before 18.0.0.144 on Windows and before 18.0.0.143 on OS X and Android, Adobe AIR SDK before 18.0.0.144 on Windows and before 18.0.0.143 on OS X, and Adobe AIR SDK & Compiler before 18.0.0.144 on Windows and before 18.0.0.143 on OS X allow remote attackers to bypass the Same Origin Policy via unspecified vectors, a different vulnerability than CVE-2015-3098 and CVE-2015-3102.
Adobe Flash Player before 13.0.0.302 and 14.x through 18.x before 18.0.0.203 on Windows and OS X and before 11.2.202.481 on Linux, Adobe AIR before 18.0.0.180, Adobe AIR SDK before 18.0.0.180, and Adobe AIR SDK & Compiler before 18.0.0.180 allow remote attackers to bypass the Same Origin Policy via unspecified vectors, a different vulnerability than CVE-2014-0578, CVE-2015-3115, CVE-2015-3116, and CVE-2015-5116.
Adobe Flash Player before 13.0.0.292 and 14.x through 18.x before 18.0.0.160 on Windows and OS X and before 11.2.202.466 on Linux, Adobe AIR before 18.0.0.144 on Windows and before 18.0.0.143 on OS X and Android, Adobe AIR SDK before 18.0.0.144 on Windows and before 18.0.0.143 on OS X, and Adobe AIR SDK & Compiler before 18.0.0.144 on Windows and before 18.0.0.143 on OS X allow remote attackers to bypass the Same Origin Policy via unspecified vectors, a different vulnerability than CVE-2015-3098 and CVE-2015-3099.
Adobe Flash Player before 13.0.0.289 and 14.x through 17.x before 17.0.0.188 on Windows and OS X and before 11.2.202.460 on Linux, Adobe AIR before 17.0.0.172, Adobe AIR SDK before 17.0.0.172, and Adobe AIR SDK & Compiler before 17.0.0.172 do not properly restrict discovery of memory addresses, which allows attackers to bypass the ASLR protection mechanism via unspecified vectors, a different vulnerability than CVE-2015-3091.
Adobe Flash Player before 13.0.0.281 and 14.x through 17.x before 17.0.0.169 on Windows and OS X and before 11.2.202.457 on Linux allows attackers to bypass intended access restrictions and obtain sensitive information via unspecified vectors.
Adobe Flash Player before 13.0.0.292 and 14.x through 18.x before 18.0.0.160 on Windows and OS X and before 11.2.202.466 on Linux, Adobe AIR before 18.0.0.144 on Windows and before 18.0.0.143 on OS X and Android, Adobe AIR SDK before 18.0.0.144 on Windows and before 18.0.0.143 on OS X, and Adobe AIR SDK & Compiler before 18.0.0.144 on Windows and before 18.0.0.143 on OS X allow remote attackers to bypass the Same Origin Policy via unspecified vectors, a different vulnerability than CVE-2015-3099 and CVE-2015-3102.
IBM Spectrum Protect Operations Center 8.1.0.000 through 8.1.10.and 7.1.0.000 through 7.1.11 could allow a remote attacker to obtain sensitive information, caused by improper authentication of a websocket endpoint. By using known tools to subscribe to the websocket event stream, an attacker could exploit this vulnerability to obtain sensitive information. IBM X-Force ID: 188993.
IP masquerading in Linux 2.2.x allows remote attackers to route UDP packets through the internal interface by modifying the external source IP address and port number to match those of an established connection.
IBM Sterling B2B Integrator Standard Edition 5.2.0.0 through 5.2.6.5_2, 6.0.0.0 through 6.0.3.2, and 6.1.0.0 could allow a remote attacker to obtain sensitive information when a detailed technical error message is returned in the browser. This information could be used in further attacks against the system. IBM X-Force ID: 188895.
IBM QRadar 7.3.0 to 7.3.3 Patch 2 contains hard-coded credentials, such as a password or cryptographic key, which it uses for its own inbound authentication, outbound communication to external components, or encryption of internal data. IBM X-ForceID: 175845.
IBM Security Guardium Insights 2.0.2 could allow a remote attacker to obtain sensitive information when a detailed technical error message is returned in the browser. This information could be used in further attacks against the system. IBM X-Force ID: 184824.
The stack randomization feature in the Linux kernel before 3.19.1 on 64-bit platforms uses incorrect data types for the results of bitwise left-shift operations, which makes it easier for attackers to bypass the ASLR protection mechanism by predicting the address of the top of the stack, related to the randomize_stack_top function in fs/binfmt_elf.c and the stack_maxrandom_size function in arch/x86/mm/mmap.c.
rpc.mountd on Linux, Ultrix, and possibly other operating systems, allows remote attackers to determine the existence of a file on the server by attempting to mount that file, which generates different error messages depending on whether the file exists or not.