Logo
-

Byte Open Security

(ByteOS Network)

Log In

Sign Up

ByteOS

Security
Vulnerability Details
Registries
Custom Views
Weaknesses
Attack Patterns
Filters & Tools
Vulnerability Details :

CVE-2005-3106

Summary
Assigner-mitre
Assigner Org ID-8254265b-2729-46b6-b9e3-3dfca2d5bfca
Published At-30 Sep, 2005 | 04:00
Updated At-16 Jan, 2025 | 19:44
Rejected At-
Credits

Race condition in Linux 2.6, when threads are sharing memory mapping via CLONE_VM (such as linuxthreads and vfork), might allow local users to cause a denial of service (deadlock) by triggering a core dump while waiting for a thread that has just performed an exec.

Vendors
-
Not available
Products
-
Metrics (CVSS)
VersionBase scoreBase severityVector
Weaknesses
Attack Patterns
Solution/Workaround
References
HyperlinkResource Type
EPSS History
Score
Latest Score
-
N/A
No data available for selected date range
Percentile
Latest Percentile
-
N/A
No data available for selected date range
Stakeholder-Specific Vulnerability Categorization (SSVC)
▼Common Vulnerabilities and Exposures (CVE)
cve.org
Assigner:mitre
Assigner Org ID:8254265b-2729-46b6-b9e3-3dfca2d5bfca
Published At:30 Sep, 2005 | 04:00
Updated At:16 Jan, 2025 | 19:44
Rejected At:
▼CVE Numbering Authority (CNA)

Race condition in Linux 2.6, when threads are sharing memory mapping via CLONE_VM (such as linuxthreads and vfork), might allow local users to cause a denial of service (deadlock) by triggering a core dump while waiting for a thread that has just performed an exec.

Affected Products
Vendor
n/a
Product
n/a
Versions
Affected
  • n/a
Problem Types
TypeCWE IDDescription
textN/An/a
Type: text
CWE ID: N/A
Description: n/a
Metrics
VersionBase scoreBase severityVector
Metrics Other Info
Impacts
CAPEC IDDescription
Solutions

Configurations

Workarounds

Exploits

Credits

Timeline
EventDate
Replaced By

Rejected Reason

References
HyperlinkResource
https://oval.cisecurity.org/repository/search/definition/oval%3Aorg.mitre.oval%3Adef%3A9108
vdb-entry
signature
x_refsource_OVAL
http://secunia.com/advisories/18056
third-party-advisory
x_refsource_SECUNIA
http://www.redhat.com/support/errata/RHSA-2006-0101.html
vendor-advisory
x_refsource_REDHAT
http://linux.bkbits.net:8080/linux-2.6/diffs/fs/exec.c%401.156?nav=index.html%7Csrc/%7Csrc/fs%7Chist/fs/exec.c
x_refsource_CONFIRM
http://www.debian.org/security/2005/dsa-922
vendor-advisory
x_refsource_DEBIAN
http://www.securityfocus.com/bid/15049
vdb-entry
x_refsource_BID
http://secunia.com/advisories/18510
third-party-advisory
x_refsource_SECUNIA
http://secunia.com/advisories/17141
third-party-advisory
x_refsource_SECUNIA
http://www.ubuntu.com/usn/usn-199-1
vendor-advisory
x_refsource_UBUNTU
http://www.mandriva.com/security/advisories?name=MDKSA-2006:072
vendor-advisory
x_refsource_MANDRIVA
http://www.securityfocus.com/archive/1/427980/100/0/threaded
vendor-advisory
x_refsource_FEDORA
Hyperlink: https://oval.cisecurity.org/repository/search/definition/oval%3Aorg.mitre.oval%3Adef%3A9108
Resource:
vdb-entry
signature
x_refsource_OVAL
Hyperlink: http://secunia.com/advisories/18056
Resource:
third-party-advisory
x_refsource_SECUNIA
Hyperlink: http://www.redhat.com/support/errata/RHSA-2006-0101.html
Resource:
vendor-advisory
x_refsource_REDHAT
Hyperlink: http://linux.bkbits.net:8080/linux-2.6/diffs/fs/exec.c%401.156?nav=index.html%7Csrc/%7Csrc/fs%7Chist/fs/exec.c
Resource:
x_refsource_CONFIRM
Hyperlink: http://www.debian.org/security/2005/dsa-922
Resource:
vendor-advisory
x_refsource_DEBIAN
Hyperlink: http://www.securityfocus.com/bid/15049
Resource:
vdb-entry
x_refsource_BID
Hyperlink: http://secunia.com/advisories/18510
Resource:
third-party-advisory
x_refsource_SECUNIA
Hyperlink: http://secunia.com/advisories/17141
Resource:
third-party-advisory
x_refsource_SECUNIA
Hyperlink: http://www.ubuntu.com/usn/usn-199-1
Resource:
vendor-advisory
x_refsource_UBUNTU
Hyperlink: http://www.mandriva.com/security/advisories?name=MDKSA-2006:072
Resource:
vendor-advisory
x_refsource_MANDRIVA
Hyperlink: http://www.securityfocus.com/archive/1/427980/100/0/threaded
Resource:
vendor-advisory
x_refsource_FEDORA
▼Authorized Data Publishers (ADP)
1. CVE Program Container
Affected Products
Metrics
VersionBase scoreBase severityVector
Metrics Other Info
Impacts
CAPEC IDDescription
Solutions

Configurations

Workarounds

Exploits

Credits

Timeline
EventDate
Replaced By

Rejected Reason

References
HyperlinkResource
https://oval.cisecurity.org/repository/search/definition/oval%3Aorg.mitre.oval%3Adef%3A9108
vdb-entry
signature
x_refsource_OVAL
x_transferred
http://secunia.com/advisories/18056
third-party-advisory
x_refsource_SECUNIA
x_transferred
http://www.redhat.com/support/errata/RHSA-2006-0101.html
vendor-advisory
x_refsource_REDHAT
x_transferred
http://linux.bkbits.net:8080/linux-2.6/diffs/fs/exec.c%401.156?nav=index.html%7Csrc/%7Csrc/fs%7Chist/fs/exec.c
x_refsource_CONFIRM
x_transferred
http://www.debian.org/security/2005/dsa-922
vendor-advisory
x_refsource_DEBIAN
x_transferred
http://www.securityfocus.com/bid/15049
vdb-entry
x_refsource_BID
x_transferred
http://secunia.com/advisories/18510
third-party-advisory
x_refsource_SECUNIA
x_transferred
http://secunia.com/advisories/17141
third-party-advisory
x_refsource_SECUNIA
x_transferred
http://www.ubuntu.com/usn/usn-199-1
vendor-advisory
x_refsource_UBUNTU
x_transferred
http://www.mandriva.com/security/advisories?name=MDKSA-2006:072
vendor-advisory
x_refsource_MANDRIVA
x_transferred
http://www.securityfocus.com/archive/1/427980/100/0/threaded
vendor-advisory
x_refsource_FEDORA
x_transferred
Hyperlink: https://oval.cisecurity.org/repository/search/definition/oval%3Aorg.mitre.oval%3Adef%3A9108
Resource:
vdb-entry
signature
x_refsource_OVAL
x_transferred
Hyperlink: http://secunia.com/advisories/18056
Resource:
third-party-advisory
x_refsource_SECUNIA
x_transferred
Hyperlink: http://www.redhat.com/support/errata/RHSA-2006-0101.html
Resource:
vendor-advisory
x_refsource_REDHAT
x_transferred
Hyperlink: http://linux.bkbits.net:8080/linux-2.6/diffs/fs/exec.c%401.156?nav=index.html%7Csrc/%7Csrc/fs%7Chist/fs/exec.c
Resource:
x_refsource_CONFIRM
x_transferred
Hyperlink: http://www.debian.org/security/2005/dsa-922
Resource:
vendor-advisory
x_refsource_DEBIAN
x_transferred
Hyperlink: http://www.securityfocus.com/bid/15049
Resource:
vdb-entry
x_refsource_BID
x_transferred
Hyperlink: http://secunia.com/advisories/18510
Resource:
third-party-advisory
x_refsource_SECUNIA
x_transferred
Hyperlink: http://secunia.com/advisories/17141
Resource:
third-party-advisory
x_refsource_SECUNIA
x_transferred
Hyperlink: http://www.ubuntu.com/usn/usn-199-1
Resource:
vendor-advisory
x_refsource_UBUNTU
x_transferred
Hyperlink: http://www.mandriva.com/security/advisories?name=MDKSA-2006:072
Resource:
vendor-advisory
x_refsource_MANDRIVA
x_transferred
Hyperlink: http://www.securityfocus.com/archive/1/427980/100/0/threaded
Resource:
vendor-advisory
x_refsource_FEDORA
x_transferred
2. CISA ADP Vulnrichment
Affected Products
Problem Types
TypeCWE IDDescription
CWECWE-667CWE-667 Improper Locking
Type: CWE
CWE ID: CWE-667
Description: CWE-667 Improper Locking
Metrics
VersionBase scoreBase severityVector
3.14.7MEDIUM
CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H
Version: 3.1
Base score: 4.7
Base severity: MEDIUM
Vector:
CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H
Metrics Other Info
Impacts
CAPEC IDDescription
Solutions

Configurations

Workarounds

Exploits

Credits

Timeline
EventDate
Replaced By

Rejected Reason

References
HyperlinkResource
Information is not available yet
▼National Vulnerability Database (NVD)
nvd.nist.gov
Source:cve@mitre.org
Published At:30 Sep, 2005 | 10:05
Updated At:03 Apr, 2025 | 01:03

Race condition in Linux 2.6, when threads are sharing memory mapping via CLONE_VM (such as linuxthreads and vfork), might allow local users to cause a denial of service (deadlock) by triggering a core dump while waiting for a thread that has just performed an exec.

CISA Catalog
Date AddedDue DateVulnerability NameRequired Action
N/A
Date Added: N/A
Due Date: N/A
Vulnerability Name: N/A
Required Action: N/A
Metrics
TypeVersionBase scoreBase severityVector
Primary3.14.7MEDIUM
CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H
Secondary3.14.7MEDIUM
CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H
Primary2.01.2LOW
AV:L/AC:H/Au:N/C:N/I:N/A:P
Type: Primary
Version: 3.1
Base score: 4.7
Base severity: MEDIUM
Vector:
CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H
Type: Secondary
Version: 3.1
Base score: 4.7
Base severity: MEDIUM
Vector:
CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H
Type: Primary
Version: 2.0
Base score: 1.2
Base severity: LOW
Vector:
AV:L/AC:H/Au:N/C:N/I:N/A:P
CPE Matches

Linux Kernel Organization, Inc
linux
>>linux_kernel>>2.6.0
cpe:2.3:o:linux:linux_kernel:2.6.0:*:*:*:*:*:*:*
Debian GNU/Linux
debian
>>debian_linux>>3.1
cpe:2.3:o:debian:debian_linux:3.1:*:*:*:*:*:*:*
Canonical Ltd.
canonical
>>ubuntu_linux>>4.10
cpe:2.3:o:canonical:ubuntu_linux:4.10:*:*:*:*:*:*:*
Canonical Ltd.
canonical
>>ubuntu_linux>>5.04
cpe:2.3:o:canonical:ubuntu_linux:5.04:*:*:*:*:*:*:*
Weaknesses
CWE IDTypeSource
CWE-667Primarynvd@nist.gov
CWE-667Secondary134c704f-9b21-4f2e-91b3-4a467353bcc0
CWE ID: CWE-667
Type: Primary
Source: nvd@nist.gov
CWE ID: CWE-667
Type: Secondary
Source: 134c704f-9b21-4f2e-91b3-4a467353bcc0
Evaluator Description

Evaluator Impact

Evaluator Solution

Vendor Statements

References
HyperlinkSourceResource
http://linux.bkbits.net:8080/linux-2.6/diffs/fs/exec.c%401.156?nav=index.html%7Csrc/%7Csrc/fs%7Chist/fs/exec.ccve@mitre.org
Broken Link
http://secunia.com/advisories/17141cve@mitre.org
Broken Link
http://secunia.com/advisories/18056cve@mitre.org
Broken Link
http://secunia.com/advisories/18510cve@mitre.org
Broken Link
http://www.debian.org/security/2005/dsa-922cve@mitre.org
Mailing List
http://www.mandriva.com/security/advisories?name=MDKSA-2006:072cve@mitre.org
Patch
Third Party Advisory
http://www.redhat.com/support/errata/RHSA-2006-0101.htmlcve@mitre.org
Broken Link
http://www.securityfocus.com/archive/1/427980/100/0/threadedcve@mitre.org
Broken Link
Third Party Advisory
VDB Entry
http://www.securityfocus.com/bid/15049cve@mitre.org
Broken Link
Third Party Advisory
VDB Entry
http://www.ubuntu.com/usn/usn-199-1cve@mitre.org
Third Party Advisory
https://oval.cisecurity.org/repository/search/definition/oval%3Aorg.mitre.oval%3Adef%3A9108cve@mitre.org
Broken Link
http://linux.bkbits.net:8080/linux-2.6/diffs/fs/exec.c%401.156?nav=index.html%7Csrc/%7Csrc/fs%7Chist/fs/exec.caf854a3a-2127-422b-91ae-364da2661108
Broken Link
http://secunia.com/advisories/17141af854a3a-2127-422b-91ae-364da2661108
Broken Link
http://secunia.com/advisories/18056af854a3a-2127-422b-91ae-364da2661108
Broken Link
http://secunia.com/advisories/18510af854a3a-2127-422b-91ae-364da2661108
Broken Link
http://www.debian.org/security/2005/dsa-922af854a3a-2127-422b-91ae-364da2661108
Mailing List
http://www.mandriva.com/security/advisories?name=MDKSA-2006:072af854a3a-2127-422b-91ae-364da2661108
Patch
Third Party Advisory
http://www.redhat.com/support/errata/RHSA-2006-0101.htmlaf854a3a-2127-422b-91ae-364da2661108
Broken Link
http://www.securityfocus.com/archive/1/427980/100/0/threadedaf854a3a-2127-422b-91ae-364da2661108
Broken Link
Third Party Advisory
VDB Entry
http://www.securityfocus.com/bid/15049af854a3a-2127-422b-91ae-364da2661108
Broken Link
Third Party Advisory
VDB Entry
http://www.ubuntu.com/usn/usn-199-1af854a3a-2127-422b-91ae-364da2661108
Third Party Advisory
https://oval.cisecurity.org/repository/search/definition/oval%3Aorg.mitre.oval%3Adef%3A9108af854a3a-2127-422b-91ae-364da2661108
Broken Link
Hyperlink: http://linux.bkbits.net:8080/linux-2.6/diffs/fs/exec.c%401.156?nav=index.html%7Csrc/%7Csrc/fs%7Chist/fs/exec.c
Source: cve@mitre.org
Resource:
Broken Link
Hyperlink: http://secunia.com/advisories/17141
Source: cve@mitre.org
Resource:
Broken Link
Hyperlink: http://secunia.com/advisories/18056
Source: cve@mitre.org
Resource:
Broken Link
Hyperlink: http://secunia.com/advisories/18510
Source: cve@mitre.org
Resource:
Broken Link
Hyperlink: http://www.debian.org/security/2005/dsa-922
Source: cve@mitre.org
Resource:
Mailing List
Hyperlink: http://www.mandriva.com/security/advisories?name=MDKSA-2006:072
Source: cve@mitre.org
Resource:
Patch
Third Party Advisory
Hyperlink: http://www.redhat.com/support/errata/RHSA-2006-0101.html
Source: cve@mitre.org
Resource:
Broken Link
Hyperlink: http://www.securityfocus.com/archive/1/427980/100/0/threaded
Source: cve@mitre.org
Resource:
Broken Link
Third Party Advisory
VDB Entry
Hyperlink: http://www.securityfocus.com/bid/15049
Source: cve@mitre.org
Resource:
Broken Link
Third Party Advisory
VDB Entry
Hyperlink: http://www.ubuntu.com/usn/usn-199-1
Source: cve@mitre.org
Resource:
Third Party Advisory
Hyperlink: https://oval.cisecurity.org/repository/search/definition/oval%3Aorg.mitre.oval%3Adef%3A9108
Source: cve@mitre.org
Resource:
Broken Link
Hyperlink: http://linux.bkbits.net:8080/linux-2.6/diffs/fs/exec.c%401.156?nav=index.html%7Csrc/%7Csrc/fs%7Chist/fs/exec.c
Source: af854a3a-2127-422b-91ae-364da2661108
Resource:
Broken Link
Hyperlink: http://secunia.com/advisories/17141
Source: af854a3a-2127-422b-91ae-364da2661108
Resource:
Broken Link
Hyperlink: http://secunia.com/advisories/18056
Source: af854a3a-2127-422b-91ae-364da2661108
Resource:
Broken Link
Hyperlink: http://secunia.com/advisories/18510
Source: af854a3a-2127-422b-91ae-364da2661108
Resource:
Broken Link
Hyperlink: http://www.debian.org/security/2005/dsa-922
Source: af854a3a-2127-422b-91ae-364da2661108
Resource:
Mailing List
Hyperlink: http://www.mandriva.com/security/advisories?name=MDKSA-2006:072
Source: af854a3a-2127-422b-91ae-364da2661108
Resource:
Patch
Third Party Advisory
Hyperlink: http://www.redhat.com/support/errata/RHSA-2006-0101.html
Source: af854a3a-2127-422b-91ae-364da2661108
Resource:
Broken Link
Hyperlink: http://www.securityfocus.com/archive/1/427980/100/0/threaded
Source: af854a3a-2127-422b-91ae-364da2661108
Resource:
Broken Link
Third Party Advisory
VDB Entry
Hyperlink: http://www.securityfocus.com/bid/15049
Source: af854a3a-2127-422b-91ae-364da2661108
Resource:
Broken Link
Third Party Advisory
VDB Entry
Hyperlink: http://www.ubuntu.com/usn/usn-199-1
Source: af854a3a-2127-422b-91ae-364da2661108
Resource:
Third Party Advisory
Hyperlink: https://oval.cisecurity.org/repository/search/definition/oval%3Aorg.mitre.oval%3Adef%3A9108
Source: af854a3a-2127-422b-91ae-364da2661108
Resource:
Broken Link

Change History

0
Information is not available yet

Similar CVEs

519Records found

CVE-2022-49595
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.03% / 6.44%
||
7 Day CHG~0.00%
Published-26 Feb, 2025 | 02:23
Updated-04 May, 2025 | 08:41
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
tcp: Fix a data-race around sysctl_tcp_probe_threshold.

In the Linux kernel, the following vulnerability has been resolved: tcp: Fix a data-race around sysctl_tcp_probe_threshold. While reading sysctl_tcp_probe_threshold, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2022-49640
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.02% / 3.35%
||
7 Day CHG~0.00%
Published-26 Feb, 2025 | 02:23
Updated-04 May, 2025 | 08:42
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
sysctl: Fix data races in proc_douintvec_minmax().

In the Linux kernel, the following vulnerability has been resolved: sysctl: Fix data races in proc_douintvec_minmax(). A sysctl variable is accessed concurrently, and there is always a chance of data-race. So, all readers and writers need some basic protection to avoid load/store-tearing. This patch changes proc_douintvec_minmax() to use READ_ONCE() and WRITE_ONCE() internally to fix data-races on the sysctl side. For now, proc_douintvec_minmax() itself is tolerant to a data-race, but we still need to add annotations on the other subsystem's side.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2022-48751
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.02% / 3.47%
||
7 Day CHG~0.00%
Published-20 Jun, 2024 | 11:13
Updated-04 May, 2025 | 12:43
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
net/smc: Transitional solution for clcsock race issue

In the Linux kernel, the following vulnerability has been resolved: net/smc: Transitional solution for clcsock race issue We encountered a crash in smc_setsockopt() and it is caused by accessing smc->clcsock after clcsock was released. BUG: kernel NULL pointer dereference, address: 0000000000000020 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 50309 Comm: nginx Kdump: loaded Tainted: G E 5.16.0-rc4+ #53 RIP: 0010:smc_setsockopt+0x59/0x280 [smc] Call Trace: <TASK> __sys_setsockopt+0xfc/0x190 __x64_sys_setsockopt+0x20/0x30 do_syscall_64+0x34/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f16ba83918e </TASK> This patch tries to fix it by holding clcsock_release_lock and checking whether clcsock has already been released before access. In case that a crash of the same reason happens in smc_getsockopt() or smc_switch_to_fallback(), this patch also checkes smc->clcsock in them too. And the caller of smc_switch_to_fallback() will identify whether fallback succeeds according to the return value.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-476
NULL Pointer Dereference
CVE-2024-46787
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.03% / 6.69%
||
7 Day CHG~0.00%
Published-18 Sep, 2024 | 07:12
Updated-04 May, 2025 | 09:34
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
userfaultfd: fix checks for huge PMDs

In the Linux kernel, the following vulnerability has been resolved: userfaultfd: fix checks for huge PMDs Patch series "userfaultfd: fix races around pmd_trans_huge() check", v2. The pmd_trans_huge() code in mfill_atomic() is wrong in three different ways depending on kernel version: 1. The pmd_trans_huge() check is racy and can lead to a BUG_ON() (if you hit the right two race windows) - I've tested this in a kernel build with some extra mdelay() calls. See the commit message for a description of the race scenario. On older kernels (before 6.5), I think the same bug can even theoretically lead to accessing transhuge page contents as a page table if you hit the right 5 narrow race windows (I haven't tested this case). 2. As pointed out by Qi Zheng, pmd_trans_huge() is not sufficient for detecting PMDs that don't point to page tables. On older kernels (before 6.5), you'd just have to win a single fairly wide race to hit this. I've tested this on 6.1 stable by racing migration (with a mdelay() patched into try_to_migrate()) against UFFDIO_ZEROPAGE - on my x86 VM, that causes a kernel oops in ptlock_ptr(). 3. On newer kernels (>=6.5), for shmem mappings, khugepaged is allowed to yank page tables out from under us (though I haven't tested that), so I think the BUG_ON() checks in mfill_atomic() are just wrong. I decided to write two separate fixes for these (one fix for bugs 1+2, one fix for bug 3), so that the first fix can be backported to kernels affected by bugs 1+2. This patch (of 2): This fixes two issues. I discovered that the following race can occur: mfill_atomic other thread ============ ============ <zap PMD> pmdp_get_lockless() [reads none pmd] <bail if trans_huge> <if none:> <pagefault creates transhuge zeropage> __pte_alloc [no-op] <zap PMD> <bail if pmd_trans_huge(*dst_pmd)> BUG_ON(pmd_none(*dst_pmd)) I have experimentally verified this in a kernel with extra mdelay() calls; the BUG_ON(pmd_none(*dst_pmd)) triggers. On kernels newer than commit 0d940a9b270b ("mm/pgtable: allow pte_offset_map[_lock]() to fail"), this can't lead to anything worse than a BUG_ON(), since the page table access helpers are actually designed to deal with page tables concurrently disappearing; but on older kernels (<=6.4), I think we could probably theoretically race past the two BUG_ON() checks and end up treating a hugepage as a page table. The second issue is that, as Qi Zheng pointed out, there are other types of huge PMDs that pmd_trans_huge() can't catch: devmap PMDs and swap PMDs (in particular, migration PMDs). On <=6.4, this is worse than the first issue: If mfill_atomic() runs on a PMD that contains a migration entry (which just requires winning a single, fairly wide race), it will pass the PMD to pte_offset_map_lock(), which assumes that the PMD points to a page table. Breakage follows: First, the kernel tries to take the PTE lock (which will crash or maybe worse if there is no "struct page" for the address bits in the migration entry PMD - I think at least on X86 there usually is no corresponding "struct page" thanks to the PTE inversion mitigation, amd64 looks different). If that didn't crash, the kernel would next try to write a PTE into what it wrongly thinks is a page table. As part of fixing these issues, get rid of the check for pmd_trans_huge() before __pte_alloc() - that's redundant, we're going to have to check for that after the __pte_alloc() anyway. Backport note: pmdp_get_lockless() is pmd_read_atomic() in older kernels.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CVE-2024-57934
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.02% / 3.86%
||
7 Day CHG~0.00%
Published-21 Jan, 2025 | 12:01
Updated-04 May, 2025 | 10:06
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
fgraph: Add READ_ONCE() when accessing fgraph_array[]

In the Linux kernel, the following vulnerability has been resolved: fgraph: Add READ_ONCE() when accessing fgraph_array[] In __ftrace_return_to_handler(), a loop iterates over the fgraph_array[] elements, which are fgraph_ops. The loop checks if an element is a fgraph_stub to prevent using a fgraph_stub afterward. However, if the compiler reloads fgraph_array[] after this check, it might race with an update to fgraph_array[] that introduces a fgraph_stub. This could result in the stub being processed, but the stub contains a null "func_hash" field, leading to a NULL pointer dereference. To ensure that the gops compared against the fgraph_stub matches the gops processed later, add a READ_ONCE(). A similar patch appears in commit 63a8dfb ("function_graph: Add READ_ONCE() when accessing fgraph_array[]").

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-476
NULL Pointer Dereference
CVE-2024-56540
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.02% / 2.99%
||
7 Day CHG~0.00%
Published-27 Dec, 2024 | 14:11
Updated-04 May, 2025 | 09:57
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
accel/ivpu: Prevent recovery invocation during probe and resume

In the Linux kernel, the following vulnerability has been resolved: accel/ivpu: Prevent recovery invocation during probe and resume Refactor IPC send and receive functions to allow correct handling of operations that should not trigger a recovery process. Expose ivpu_send_receive_internal(), which is now utilized by the D0i3 entry, DCT initialization, and HWS initialization functions. These functions have been modified to return error codes gracefully, rather than initiating recovery. The updated functions are invoked within ivpu_probe() and ivpu_resume(), ensuring that any errors encountered during these stages result in a proper teardown or shutdown sequence. The previous approach of triggering recovery within these functions could lead to a race condition, potentially causing undefined behavior and kernel crashes due to null pointer dereferences.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CWE ID-CWE-476
NULL Pointer Dereference
CVE-2024-56729
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.04% / 11.51%
||
7 Day CHG~0.00%
Published-29 Dec, 2024 | 11:30
Updated-04 May, 2025 | 10:03
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
smb: Initialize cfid->tcon before performing network ops

In the Linux kernel, the following vulnerability has been resolved: smb: Initialize cfid->tcon before performing network ops Avoid leaking a tcon ref when a lease break races with opening the cached directory. Processing the leak break might take a reference to the tcon in cached_dir_lease_break() and then fail to release the ref in cached_dir_offload_close, since cfid->tcon is still NULL.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-401
Missing Release of Memory after Effective Lifetime
CVE-2024-26671
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 0.86%
||
7 Day CHG~0.00%
Published-02 Apr, 2024 | 06:49
Updated-04 May, 2025 | 08:53
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
blk-mq: fix IO hang from sbitmap wakeup race

In the Linux kernel, the following vulnerability has been resolved: blk-mq: fix IO hang from sbitmap wakeup race In blk_mq_mark_tag_wait(), __add_wait_queue() may be re-ordered with the following blk_mq_get_driver_tag() in case of getting driver tag failure. Then in __sbitmap_queue_wake_up(), waitqueue_active() may not observe the added waiter in blk_mq_mark_tag_wait() and wake up nothing, meantime blk_mq_mark_tag_wait() can't get driver tag successfully. This issue can be reproduced by running the following test in loop, and fio hang can be observed in < 30min when running it on my test VM in laptop. modprobe -r scsi_debug modprobe scsi_debug delay=0 dev_size_mb=4096 max_queue=1 host_max_queue=1 submit_queues=4 dev=`ls -d /sys/bus/pseudo/drivers/scsi_debug/adapter*/host*/target*/*/block/* | head -1 | xargs basename` fio --filename=/dev/"$dev" --direct=1 --rw=randrw --bs=4k --iodepth=1 \ --runtime=100 --numjobs=40 --time_based --name=test \ --ioengine=libaio Fix the issue by adding one explicit barrier in blk_mq_mark_tag_wait(), which is just fine in case of running out of tag.

Action-Not Available
Vendor-Linux Kernel Organization, IncDebian GNU/Linux
Product-linux_kerneldebian_linuxLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2024-43891
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.05% / 13.42%
||
7 Day CHG~0.00%
Published-26 Aug, 2024 | 10:10
Updated-04 May, 2025 | 09:28
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
tracing: Have format file honor EVENT_FILE_FL_FREED

In the Linux kernel, the following vulnerability has been resolved: tracing: Have format file honor EVENT_FILE_FL_FREED When eventfs was introduced, special care had to be done to coordinate the freeing of the file meta data with the files that are exposed to user space. The file meta data would have a ref count that is set when the file is created and would be decremented and freed after the last user that opened the file closed it. When the file meta data was to be freed, it would set a flag (EVENT_FILE_FL_FREED) to denote that the file is freed, and any new references made (like new opens or reads) would fail as it is marked freed. This allowed other meta data to be freed after this flag was set (under the event_mutex). All the files that were dynamically created in the events directory had a pointer to the file meta data and would call event_release() when the last reference to the user space file was closed. This would be the time that it is safe to free the file meta data. A shortcut was made for the "format" file. It's i_private would point to the "call" entry directly and not point to the file's meta data. This is because all format files are the same for the same "call", so it was thought there was no reason to differentiate them. The other files maintain state (like the "enable", "trigger", etc). But this meant if the file were to disappear, the "format" file would be unaware of it. This caused a race that could be trigger via the user_events test (that would create dynamic events and free them), and running a loop that would read the user_events format files: In one console run: # cd tools/testing/selftests/user_events # while true; do ./ftrace_test; done And in another console run: # cd /sys/kernel/tracing/ # while true; do cat events/user_events/__test_event/format; done 2>/dev/null With KASAN memory checking, it would trigger a use-after-free bug report (which was a real bug). This was because the format file was not checking the file's meta data flag "EVENT_FILE_FL_FREED", so it would access the event that the file meta data pointed to after the event was freed. After inspection, there are other locations that were found to not check the EVENT_FILE_FL_FREED flag when accessing the trace_event_file. Add a new helper function: event_file_file() that will make sure that the event_mutex is held, and will return NULL if the trace_event_file has the EVENT_FILE_FL_FREED flag set. Have the first reference of the struct file pointer use event_file_file() and check for NULL. Later uses can still use the event_file_data() helper function if the event_mutex is still held and was not released since the event_file_file() call.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-416
Use After Free
CVE-2022-40307
Matching Score-8
Assigner-MITRE Corporation
ShareView Details
Matching Score-8
Assigner-MITRE Corporation
CVSS Score-4.7||MEDIUM
EPSS-0.02% / 3.31%
||
7 Day CHG-0.00%
Published-09 Sep, 2022 | 00:00
Updated-03 Aug, 2024 | 12:14
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available

An issue was discovered in the Linux kernel through 5.19.8. drivers/firmware/efi/capsule-loader.c has a race condition with a resultant use-after-free.

Action-Not Available
Vendor-n/aLinux Kernel Organization, IncDebian GNU/Linux
Product-debian_linuxlinux_kerneln/a
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2024-26607
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 0.60%
||
7 Day CHG~0.00%
Published-29 Feb, 2024 | 11:47
Updated-04 May, 2025 | 08:52
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
drm/bridge: sii902x: Fix probing race issue

In the Linux kernel, the following vulnerability has been resolved: drm/bridge: sii902x: Fix probing race issue A null pointer dereference crash has been observed rarely on TI platforms using sii9022 bridge: [ 53.271356] sii902x_get_edid+0x34/0x70 [sii902x] [ 53.276066] sii902x_bridge_get_edid+0x14/0x20 [sii902x] [ 53.281381] drm_bridge_get_edid+0x20/0x34 [drm] [ 53.286305] drm_bridge_connector_get_modes+0x8c/0xcc [drm_kms_helper] [ 53.292955] drm_helper_probe_single_connector_modes+0x190/0x538 [drm_kms_helper] [ 53.300510] drm_client_modeset_probe+0x1f0/0xbd4 [drm] [ 53.305958] __drm_fb_helper_initial_config_and_unlock+0x50/0x510 [drm_kms_helper] [ 53.313611] drm_fb_helper_initial_config+0x48/0x58 [drm_kms_helper] [ 53.320039] drm_fbdev_dma_client_hotplug+0x84/0xd4 [drm_dma_helper] [ 53.326401] drm_client_register+0x5c/0xa0 [drm] [ 53.331216] drm_fbdev_dma_setup+0xc8/0x13c [drm_dma_helper] [ 53.336881] tidss_probe+0x128/0x264 [tidss] [ 53.341174] platform_probe+0x68/0xc4 [ 53.344841] really_probe+0x188/0x3c4 [ 53.348501] __driver_probe_device+0x7c/0x16c [ 53.352854] driver_probe_device+0x3c/0x10c [ 53.357033] __device_attach_driver+0xbc/0x158 [ 53.361472] bus_for_each_drv+0x88/0xe8 [ 53.365303] __device_attach+0xa0/0x1b4 [ 53.369135] device_initial_probe+0x14/0x20 [ 53.373314] bus_probe_device+0xb0/0xb4 [ 53.377145] deferred_probe_work_func+0xcc/0x124 [ 53.381757] process_one_work+0x1f0/0x518 [ 53.385770] worker_thread+0x1e8/0x3dc [ 53.389519] kthread+0x11c/0x120 [ 53.392750] ret_from_fork+0x10/0x20 The issue here is as follows: - tidss probes, but is deferred as sii902x is still missing. - sii902x starts probing and enters sii902x_init(). - sii902x calls drm_bridge_add(). Now the sii902x bridge is ready from DRM's perspective. - sii902x calls sii902x_audio_codec_init() and platform_device_register_data() - The registration of the audio platform device causes probing of the deferred devices. - tidss probes, which eventually causes sii902x_bridge_get_edid() to be called. - sii902x_bridge_get_edid() tries to use the i2c to read the edid. However, the sii902x driver has not set up the i2c part yet, leading to the crash. Fix this by moving the drm_bridge_add() to the end of the sii902x_init(), which is also at the very end of sii902x_probe().

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-476
NULL Pointer Dereference
CVE-2022-39188
Matching Score-8
Assigner-MITRE Corporation
ShareView Details
Matching Score-8
Assigner-MITRE Corporation
CVSS Score-4.7||MEDIUM
EPSS-0.03% / 5.79%
||
7 Day CHG~0.00%
Published-02 Sep, 2022 | 00:00
Updated-03 Aug, 2024 | 12:00
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available

An issue was discovered in include/asm-generic/tlb.h in the Linux kernel before 5.19. Because of a race condition (unmap_mapping_range versus munmap), a device driver can free a page while it still has stale TLB entries. This only occurs in situations with VM_PFNMAP VMAs.

Action-Not Available
Vendor-n/aLinux Kernel Organization, IncDebian GNU/Linux
Product-debian_linuxlinux_kerneln/a
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2024-53088
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.05% / 15.05%
||
7 Day CHG~0.00%
Published-19 Nov, 2024 | 17:45
Updated-04 May, 2025 | 09:52
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
i40e: fix race condition by adding filter's intermediate sync state

In the Linux kernel, the following vulnerability has been resolved: i40e: fix race condition by adding filter's intermediate sync state Fix a race condition in the i40e driver that leads to MAC/VLAN filters becoming corrupted and leaking. Address the issue that occurs under heavy load when multiple threads are concurrently modifying MAC/VLAN filters by setting mac and port VLAN. 1. Thread T0 allocates a filter in i40e_add_filter() within i40e_ndo_set_vf_port_vlan(). 2. Thread T1 concurrently frees the filter in __i40e_del_filter() within i40e_ndo_set_vf_mac(). 3. Subsequently, i40e_service_task() calls i40e_sync_vsi_filters(), which refers to the already freed filter memory, causing corruption. Reproduction steps: 1. Spawn multiple VFs. 2. Apply a concurrent heavy load by running parallel operations to change MAC addresses on the VFs and change port VLANs on the host. 3. Observe errors in dmesg: "Error I40E_AQ_RC_ENOSPC adding RX filters on VF XX, please set promiscuous on manually for VF XX". Exact code for stable reproduction Intel can't open-source now. The fix involves implementing a new intermediate filter state, I40E_FILTER_NEW_SYNC, for the time when a filter is on a tmp_add_list. These filters cannot be deleted from the hash list directly but must be removed using the full process.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2024-46870
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.03% / 5.95%
||
7 Day CHG~0.00%
Published-09 Oct, 2024 | 14:02
Updated-11 Jul, 2025 | 17:20
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
drm/amd/display: Disable DMCUB timeout for DCN35

In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Disable DMCUB timeout for DCN35 [Why] DMCUB can intermittently take longer than expected to process commands. Old ASIC policy was to continue while logging a diagnostic error - which works fine for ASIC without IPS, but with IPS this could lead to a race condition where we attempt to access DCN state while it's inaccessible, leading to a system hang when the NIU port is not disabled or register accesses that timeout and the display configuration in an undefined state. [How] We need to investigate why these accesses take longer than expected, but for now we should disable the timeout on DCN35 to avoid this race condition. Since the waits happen only at lower interrupt levels the risk of taking too long at higher IRQ and causing a system watchdog timeout are minimal.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2024-49864
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.03% / 6.32%
||
7 Day CHG~0.00%
Published-21 Oct, 2024 | 18:01
Updated-04 May, 2025 | 09:39
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
rxrpc: Fix a race between socket set up and I/O thread creation

In the Linux kernel, the following vulnerability has been resolved: rxrpc: Fix a race between socket set up and I/O thread creation In rxrpc_open_socket(), it sets up the socket and then sets up the I/O thread that will handle it. This is a problem, however, as there's a gap between the two phases in which a packet may come into rxrpc_encap_rcv() from the UDP packet but we oops when trying to wake the not-yet created I/O thread. As a quick fix, just make rxrpc_encap_rcv() discard the packet if there's no I/O thread yet. A better, but more intrusive fix would perhaps be to rearrange things such that the socket creation is done by the I/O thread.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2024-50010
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.05% / 13.89%
||
7 Day CHG~0.00%
Published-21 Oct, 2024 | 18:54
Updated-04 May, 2025 | 09:43
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
exec: don't WARN for racy path_noexec check

In the Linux kernel, the following vulnerability has been resolved: exec: don't WARN for racy path_noexec check Both i_mode and noexec checks wrapped in WARN_ON stem from an artifact of the previous implementation. They used to legitimately check for the condition, but that got moved up in two commits: 633fb6ac3980 ("exec: move S_ISREG() check earlier") 0fd338b2d2cd ("exec: move path_noexec() check earlier") Instead of being removed said checks are WARN_ON'ed instead, which has some debug value. However, the spurious path_noexec check is racy, resulting in unwarranted warnings should someone race with setting the noexec flag. One can note there is more to perm-checking whether execve is allowed and none of the conditions are guaranteed to still hold after they were tested for. Additionally this does not validate whether the code path did any perm checking to begin with -- it will pass if the inode happens to be regular. Keep the redundant path_noexec() check even though it's mindless nonsense checking for guarantee that isn't given so drop the WARN. Reword the commentary and do small tidy ups while here. [brauner: keep redundant path_noexec() check]

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CVE-2024-50192
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.04% / 11.15%
||
7 Day CHG~0.00%
Published-08 Nov, 2024 | 05:54
Updated-04 May, 2025 | 09:48
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
irqchip/gic-v4: Don't allow a VMOVP on a dying VPE

In the Linux kernel, the following vulnerability has been resolved: irqchip/gic-v4: Don't allow a VMOVP on a dying VPE Kunkun Jiang reported that there is a small window of opportunity for userspace to force a change of affinity for a VPE while the VPE has already been unmapped, but the corresponding doorbell interrupt still visible in /proc/irq/. Plug the race by checking the value of vmapp_count, which tracks whether the VPE is mapped ot not, and returning an error in this case. This involves making vmapp_count common to both GICv4.1 and its v4.0 ancestor.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CVE-2024-50183
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.03% / 5.81%
||
7 Day CHG~0.00%
Published-08 Nov, 2024 | 05:38
Updated-04 May, 2025 | 09:48
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
scsi: lpfc: Ensure DA_ID handling completion before deleting an NPIV instance

In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Ensure DA_ID handling completion before deleting an NPIV instance Deleting an NPIV instance requires all fabric ndlps to be released before an NPIV's resources can be torn down. Failure to release fabric ndlps beforehand opens kref imbalance race conditions. Fix by forcing the DA_ID to complete synchronously with usage of wait_queue.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2025-22027
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.03% / 7.18%
||
7 Day CHG~0.00%
Published-16 Apr, 2025 | 14:11
Updated-26 May, 2025 | 05:16
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
media: streamzap: fix race between device disconnection and urb callback

In the Linux kernel, the following vulnerability has been resolved: media: streamzap: fix race between device disconnection and urb callback Syzkaller has reported a general protection fault at function ir_raw_event_store_with_filter(). This crash is caused by a NULL pointer dereference of dev->raw pointer, even though it is checked for NULL in the same function, which means there is a race condition. It occurs due to the incorrect order of actions in the streamzap_disconnect() function: rc_unregister_device() is called before usb_kill_urb(). The dev->raw pointer is freed and set to NULL in rc_unregister_device(), and only after that usb_kill_urb() waits for in-progress requests to finish. If rc_unregister_device() is called while streamzap_callback() handler is not finished, this can lead to accessing freed resources. Thus rc_unregister_device() should be called after usb_kill_urb(). Found by Linux Verification Center (linuxtesting.org) with Syzkaller.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CWE ID-CWE-476
NULL Pointer Dereference
CVE-2024-50135
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.03% / 6.40%
||
7 Day CHG~0.00%
Published-05 Nov, 2024 | 17:10
Updated-04 May, 2025 | 09:46
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
nvme-pci: fix race condition between reset and nvme_dev_disable()

In the Linux kernel, the following vulnerability has been resolved: nvme-pci: fix race condition between reset and nvme_dev_disable() nvme_dev_disable() modifies the dev->online_queues field, therefore nvme_pci_update_nr_queues() should avoid racing against it, otherwise we could end up passing invalid values to blk_mq_update_nr_hw_queues(). WARNING: CPU: 39 PID: 61303 at drivers/pci/msi/api.c:347 pci_irq_get_affinity+0x187/0x210 Workqueue: nvme-reset-wq nvme_reset_work [nvme] RIP: 0010:pci_irq_get_affinity+0x187/0x210 Call Trace: <TASK> ? blk_mq_pci_map_queues+0x87/0x3c0 ? pci_irq_get_affinity+0x187/0x210 blk_mq_pci_map_queues+0x87/0x3c0 nvme_pci_map_queues+0x189/0x460 [nvme] blk_mq_update_nr_hw_queues+0x2a/0x40 nvme_reset_work+0x1be/0x2a0 [nvme] Fix the bug by locking the shutdown_lock mutex before using dev->online_queues. Give up if nvme_dev_disable() is running or if it has been executed already.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2024-49859
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.04% / 9.51%
||
7 Day CHG~0.00%
Published-21 Oct, 2024 | 12:27
Updated-11 Jul, 2025 | 17:20
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
f2fs: fix to check atomic_file in f2fs ioctl interfaces

In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to check atomic_file in f2fs ioctl interfaces Some f2fs ioctl interfaces like f2fs_ioc_set_pin_file(), f2fs_move_file_range(), and f2fs_defragment_range() missed to check atomic_write status, which may cause potential race issue, fix it.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2024-40905
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 0.90%
||
7 Day CHG-0.00%
Published-12 Jul, 2024 | 12:20
Updated-04 May, 2025 | 09:17
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
ipv6: fix possible race in __fib6_drop_pcpu_from()

In the Linux kernel, the following vulnerability has been resolved: ipv6: fix possible race in __fib6_drop_pcpu_from() syzbot found a race in __fib6_drop_pcpu_from() [1] If compiler reads more than once (*ppcpu_rt), second read could read NULL, if another cpu clears the value in rt6_get_pcpu_route(). Add a READ_ONCE() to prevent this race. Also add rcu_read_lock()/rcu_read_unlock() because we rely on RCU protection while dereferencing pcpu_rt. [1] Oops: general protection fault, probably for non-canonical address 0xdffffc0000000012: 0000 [#1] PREEMPT SMP KASAN PTI KASAN: null-ptr-deref in range [0x0000000000000090-0x0000000000000097] CPU: 0 PID: 7543 Comm: kworker/u8:17 Not tainted 6.10.0-rc1-syzkaller-00013-g2bfcfd584ff5 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/02/2024 Workqueue: netns cleanup_net RIP: 0010:__fib6_drop_pcpu_from.part.0+0x10a/0x370 net/ipv6/ip6_fib.c:984 Code: f8 48 c1 e8 03 80 3c 28 00 0f 85 16 02 00 00 4d 8b 3f 4d 85 ff 74 31 e8 74 a7 fa f7 49 8d bf 90 00 00 00 48 89 f8 48 c1 e8 03 <80> 3c 28 00 0f 85 1e 02 00 00 49 8b 87 90 00 00 00 48 8b 0c 24 48 RSP: 0018:ffffc900040df070 EFLAGS: 00010206 RAX: 0000000000000012 RBX: 0000000000000001 RCX: ffffffff89932e16 RDX: ffff888049dd1e00 RSI: ffffffff89932d7c RDI: 0000000000000091 RBP: dffffc0000000000 R08: 0000000000000005 R09: 0000000000000007 R10: 0000000000000001 R11: 0000000000000006 R12: ffff88807fa080b8 R13: fffffbfff1a9a07d R14: ffffed100ff41022 R15: 0000000000000001 FS: 0000000000000000(0000) GS:ffff8880b9200000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000001b32c26000 CR3: 000000005d56e000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> __fib6_drop_pcpu_from net/ipv6/ip6_fib.c:966 [inline] fib6_drop_pcpu_from net/ipv6/ip6_fib.c:1027 [inline] fib6_purge_rt+0x7f2/0x9f0 net/ipv6/ip6_fib.c:1038 fib6_del_route net/ipv6/ip6_fib.c:1998 [inline] fib6_del+0xa70/0x17b0 net/ipv6/ip6_fib.c:2043 fib6_clean_node+0x426/0x5b0 net/ipv6/ip6_fib.c:2205 fib6_walk_continue+0x44f/0x8d0 net/ipv6/ip6_fib.c:2127 fib6_walk+0x182/0x370 net/ipv6/ip6_fib.c:2175 fib6_clean_tree+0xd7/0x120 net/ipv6/ip6_fib.c:2255 __fib6_clean_all+0x100/0x2d0 net/ipv6/ip6_fib.c:2271 rt6_sync_down_dev net/ipv6/route.c:4906 [inline] rt6_disable_ip+0x7ed/0xa00 net/ipv6/route.c:4911 addrconf_ifdown.isra.0+0x117/0x1b40 net/ipv6/addrconf.c:3855 addrconf_notify+0x223/0x19e0 net/ipv6/addrconf.c:3778 notifier_call_chain+0xb9/0x410 kernel/notifier.c:93 call_netdevice_notifiers_info+0xbe/0x140 net/core/dev.c:1992 call_netdevice_notifiers_extack net/core/dev.c:2030 [inline] call_netdevice_notifiers net/core/dev.c:2044 [inline] dev_close_many+0x333/0x6a0 net/core/dev.c:1585 unregister_netdevice_many_notify+0x46d/0x19f0 net/core/dev.c:11193 unregister_netdevice_many net/core/dev.c:11276 [inline] default_device_exit_batch+0x85b/0xae0 net/core/dev.c:11759 ops_exit_list+0x128/0x180 net/core/net_namespace.c:178 cleanup_net+0x5b7/0xbf0 net/core/net_namespace.c:640 process_one_work+0x9fb/0x1b60 kernel/workqueue.c:3231 process_scheduled_works kernel/workqueue.c:3312 [inline] worker_thread+0x6c8/0xf70 kernel/workqueue.c:3393 kthread+0x2c1/0x3a0 kernel/kthread.c:389 ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-476
NULL Pointer Dereference
CVE-2024-49866
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.04% / 9.55%
||
7 Day CHG~0.00%
Published-21 Oct, 2024 | 18:01
Updated-04 May, 2025 | 09:39
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
tracing/timerlat: Fix a race during cpuhp processing

In the Linux kernel, the following vulnerability has been resolved: tracing/timerlat: Fix a race during cpuhp processing There is another found exception that the "timerlat/1" thread was scheduled on CPU0, and lead to timer corruption finally: ``` ODEBUG: init active (active state 0) object: ffff888237c2e108 object type: hrtimer hint: timerlat_irq+0x0/0x220 WARNING: CPU: 0 PID: 426 at lib/debugobjects.c:518 debug_print_object+0x7d/0xb0 Modules linked in: CPU: 0 UID: 0 PID: 426 Comm: timerlat/1 Not tainted 6.11.0-rc7+ #45 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 RIP: 0010:debug_print_object+0x7d/0xb0 ... Call Trace: <TASK> ? __warn+0x7c/0x110 ? debug_print_object+0x7d/0xb0 ? report_bug+0xf1/0x1d0 ? prb_read_valid+0x17/0x20 ? handle_bug+0x3f/0x70 ? exc_invalid_op+0x13/0x60 ? asm_exc_invalid_op+0x16/0x20 ? debug_print_object+0x7d/0xb0 ? debug_print_object+0x7d/0xb0 ? __pfx_timerlat_irq+0x10/0x10 __debug_object_init+0x110/0x150 hrtimer_init+0x1d/0x60 timerlat_main+0xab/0x2d0 ? __pfx_timerlat_main+0x10/0x10 kthread+0xb7/0xe0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x2d/0x40 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> ``` After tracing the scheduling event, it was discovered that the migration of the "timerlat/1" thread was performed during thread creation. Further analysis confirmed that it is because the CPU online processing for osnoise is implemented through workers, which is asynchronous with the offline processing. When the worker was scheduled to create a thread, the CPU may has already been removed from the cpu_online_mask during the offline process, resulting in the inability to select the right CPU: T1 | T2 [CPUHP_ONLINE] | cpu_device_down() osnoise_hotplug_workfn() | | cpus_write_lock() | takedown_cpu(1) | cpus_write_unlock() [CPUHP_OFFLINE] | cpus_read_lock() | start_kthread(1) | cpus_read_unlock() | To fix this, skip online processing if the CPU is already offline.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2024-50260
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.03% / 5.30%
||
7 Day CHG~0.00%
Published-09 Nov, 2024 | 10:15
Updated-04 May, 2025 | 09:50
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
sock_map: fix a NULL pointer dereference in sock_map_link_update_prog()

In the Linux kernel, the following vulnerability has been resolved: sock_map: fix a NULL pointer dereference in sock_map_link_update_prog() The following race condition could trigger a NULL pointer dereference: sock_map_link_detach(): sock_map_link_update_prog(): mutex_lock(&sockmap_mutex); ... sockmap_link->map = NULL; mutex_unlock(&sockmap_mutex); mutex_lock(&sockmap_mutex); ... sock_map_prog_link_lookup(sockmap_link->map); mutex_unlock(&sockmap_mutex); <continue> Fix it by adding a NULL pointer check. In this specific case, it makes no sense to update a link which is being released.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-476
NULL Pointer Dereference
CVE-2024-49998
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.04% / 9.98%
||
7 Day CHG~0.00%
Published-21 Oct, 2024 | 18:02
Updated-04 May, 2025 | 12:59
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
net: dsa: improve shutdown sequence

In the Linux kernel, the following vulnerability has been resolved: net: dsa: improve shutdown sequence Alexander Sverdlin presents 2 problems during shutdown with the lan9303 driver. One is specific to lan9303 and the other just happens to reproduce there. The first problem is that lan9303 is unique among DSA drivers in that it calls dev_get_drvdata() at "arbitrary runtime" (not probe, not shutdown, not remove): phy_state_machine() -> ... -> dsa_user_phy_read() -> ds->ops->phy_read() -> lan9303_phy_read() -> chip->ops->phy_read() -> lan9303_mdio_phy_read() -> dev_get_drvdata() But we never stop the phy_state_machine(), so it may continue to run after dsa_switch_shutdown(). Our common pattern in all DSA drivers is to set drvdata to NULL to suppress the remove() method that may come afterwards. But in this case it will result in an NPD. The second problem is that the way in which we set dp->conduit->dsa_ptr = NULL; is concurrent with receive packet processing. dsa_switch_rcv() checks once whether dev->dsa_ptr is NULL, but afterwards, rather than continuing to use that non-NULL value, dev->dsa_ptr is dereferenced again and again without NULL checks: dsa_conduit_find_user() and many other places. In between dereferences, there is no locking to ensure that what was valid once continues to be valid. Both problems have the common aspect that closing the conduit interface solves them. In the first case, dev_close(conduit) triggers the NETDEV_GOING_DOWN event in dsa_user_netdevice_event() which closes user ports as well. dsa_port_disable_rt() calls phylink_stop(), which synchronously stops the phylink state machine, and ds->ops->phy_read() will thus no longer call into the driver after this point. In the second case, dev_close(conduit) should do this, as per Documentation/networking/driver.rst: | Quiescence | ---------- | | After the ndo_stop routine has been called, the hardware must | not receive or transmit any data. All in flight packets must | be aborted. If necessary, poll or wait for completion of | any reset commands. So it should be sufficient to ensure that later, when we zeroize conduit->dsa_ptr, there will be no concurrent dsa_switch_rcv() call on this conduit. The addition of the netif_device_detach() function is to ensure that ioctls, rtnetlinks and ethtool requests on the user ports no longer propagate down to the driver - we're no longer prepared to handle them. The race condition actually did not exist when commit 0650bf52b31f ("net: dsa: be compatible with masters which unregister on shutdown") first introduced dsa_switch_shutdown(). It was created later, when we stopped unregistering the user interfaces from a bad spot, and we just replaced that sequence with a racy zeroization of conduit->dsa_ptr (one which doesn't ensure that the interfaces aren't up).

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-367
Time-of-check Time-of-use (TOCTOU) Race Condition
CWE ID-CWE-476
NULL Pointer Dereference
CVE-2024-49872
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.02% / 3.77%
||
7 Day CHG~0.00%
Published-21 Oct, 2024 | 18:01
Updated-04 May, 2025 | 09:40
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
mm/gup: fix memfd_pin_folios alloc race panic

In the Linux kernel, the following vulnerability has been resolved: mm/gup: fix memfd_pin_folios alloc race panic If memfd_pin_folios tries to create a hugetlb page, but someone else already did, then folio gets the value -EEXIST here: folio = memfd_alloc_folio(memfd, start_idx); if (IS_ERR(folio)) { ret = PTR_ERR(folio); if (ret != -EEXIST) goto err; then on the next trip through the "while start_idx" loop we panic here: if (folio) { folio_put(folio); To fix, set the folio to NULL on error.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2024-47668
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.04% / 9.55%
||
7 Day CHG~0.00%
Published-09 Oct, 2024 | 14:14
Updated-04 May, 2025 | 09:36
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
lib/generic-radix-tree.c: Fix rare race in __genradix_ptr_alloc()

In the Linux kernel, the following vulnerability has been resolved: lib/generic-radix-tree.c: Fix rare race in __genradix_ptr_alloc() If we need to increase the tree depth, allocate a new node, and then race with another thread that increased the tree depth before us, we'll still have a preallocated node that might be used later. If we then use that node for a new non-root node, it'll still have a pointer to the old root instead of being zeroed - fix this by zeroing it in the cmpxchg failure path.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2024-46693
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.04% / 10.57%
||
7 Day CHG~0.00%
Published-13 Sep, 2024 | 05:29
Updated-04 May, 2025 | 09:32
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
soc: qcom: pmic_glink: Fix race during initialization

In the Linux kernel, the following vulnerability has been resolved: soc: qcom: pmic_glink: Fix race during initialization As pointed out by Stephen Boyd it is possible that during initialization of the pmic_glink child drivers, the protection-domain notifiers fires, and the associated work is scheduled, before the client registration returns and as a result the local "client" pointer has been initialized. The outcome of this is a NULL pointer dereference as the "client" pointer is blindly dereferenced. Timeline provided by Stephen: CPU0 CPU1 ---- ---- ucsi->client = NULL; devm_pmic_glink_register_client() client->pdr_notify(client->priv, pg->client_state) pmic_glink_ucsi_pdr_notify() schedule_work(&ucsi->register_work) <schedule away> pmic_glink_ucsi_register() ucsi_register() pmic_glink_ucsi_read_version() pmic_glink_ucsi_read() pmic_glink_ucsi_read() pmic_glink_send(ucsi->client) <client is NULL BAD> ucsi->client = client // Too late! This code is identical across the altmode, battery manager and usci child drivers. Resolve this by splitting the allocation of the "client" object and the registration thereof into two operations. This only happens if the protection domain registry is populated at the time of registration, which by the introduction of commit '1ebcde047c54 ("soc: qcom: add pd-mapper implementation")' became much more likely.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-476
NULL Pointer Dereference
CVE-2024-46679
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.07% / 21.44%
||
7 Day CHG~0.00%
Published-13 Sep, 2024 | 05:29
Updated-04 May, 2025 | 09:31
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
ethtool: check device is present when getting link settings

In the Linux kernel, the following vulnerability has been resolved: ethtool: check device is present when getting link settings A sysfs reader can race with a device reset or removal, attempting to read device state when the device is not actually present. eg: [exception RIP: qed_get_current_link+17] #8 [ffffb9e4f2907c48] qede_get_link_ksettings at ffffffffc07a994a [qede] #9 [ffffb9e4f2907cd8] __rh_call_get_link_ksettings at ffffffff992b01a3 #10 [ffffb9e4f2907d38] __ethtool_get_link_ksettings at ffffffff992b04e4 #11 [ffffb9e4f2907d90] duplex_show at ffffffff99260300 #12 [ffffb9e4f2907e38] dev_attr_show at ffffffff9905a01c #13 [ffffb9e4f2907e50] sysfs_kf_seq_show at ffffffff98e0145b #14 [ffffb9e4f2907e68] seq_read at ffffffff98d902e3 #15 [ffffb9e4f2907ec8] vfs_read at ffffffff98d657d1 #16 [ffffb9e4f2907f00] ksys_read at ffffffff98d65c3f #17 [ffffb9e4f2907f38] do_syscall_64 at ffffffff98a052fb crash> struct net_device.state ffff9a9d21336000 state = 5, state 5 is __LINK_STATE_START (0b1) and __LINK_STATE_NOCARRIER (0b100). The device is not present, note lack of __LINK_STATE_PRESENT (0b10). This is the same sort of panic as observed in commit 4224cfd7fb65 ("net-sysfs: add check for netdevice being present to speed_show"). There are many other callers of __ethtool_get_link_ksettings() which don't have a device presence check. Move this check into ethtool to protect all callers.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CVE-2024-46704
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.03% / 5.74%
||
7 Day CHG~0.00%
Published-13 Sep, 2024 | 06:27
Updated-04 May, 2025 | 09:32
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
workqueue: Fix spruious data race in __flush_work()

In the Linux kernel, the following vulnerability has been resolved: workqueue: Fix spruious data race in __flush_work() When flushing a work item for cancellation, __flush_work() knows that it exclusively owns the work item through its PENDING bit. 134874e2eee9 ("workqueue: Allow cancel_work_sync() and disable_work() from atomic contexts on BH work items") added a read of @work->data to determine whether to use busy wait for BH work items that are being canceled. While the read is safe when @from_cancel, @work->data was read before testing @from_cancel to simplify code structure: data = *work_data_bits(work); if (from_cancel && !WARN_ON_ONCE(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_BH)) { While the read data was never used if !@from_cancel, this could trigger KCSAN data race detection spuriously: ================================================================== BUG: KCSAN: data-race in __flush_work / __flush_work write to 0xffff8881223aa3e8 of 8 bytes by task 3998 on cpu 0: instrument_write include/linux/instrumented.h:41 [inline] ___set_bit include/asm-generic/bitops/instrumented-non-atomic.h:28 [inline] insert_wq_barrier kernel/workqueue.c:3790 [inline] start_flush_work kernel/workqueue.c:4142 [inline] __flush_work+0x30b/0x570 kernel/workqueue.c:4178 flush_work kernel/workqueue.c:4229 [inline] ... read to 0xffff8881223aa3e8 of 8 bytes by task 50 on cpu 1: __flush_work+0x42a/0x570 kernel/workqueue.c:4188 flush_work kernel/workqueue.c:4229 [inline] flush_delayed_work+0x66/0x70 kernel/workqueue.c:4251 ... value changed: 0x0000000000400000 -> 0xffff88810006c00d Reorganize the code so that @from_cancel is tested before @work->data is accessed. The only problem is triggering KCSAN detection spuriously. This shouldn't need READ_ONCE() or other access qualifiers. No functional changes.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CVE-2024-46711
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.06% / 19.04%
||
7 Day CHG~0.00%
Published-13 Sep, 2024 | 06:33
Updated-04 May, 2025 | 09:32
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
mptcp: pm: fix ID 0 endp usage after multiple re-creations

In the Linux kernel, the following vulnerability has been resolved: mptcp: pm: fix ID 0 endp usage after multiple re-creations 'local_addr_used' and 'add_addr_accepted' are decremented for addresses not related to the initial subflow (ID0), because the source and destination addresses of the initial subflows are known from the beginning: they don't count as "additional local address being used" or "ADD_ADDR being accepted". It is then required not to increment them when the entrypoint used by the initial subflow is removed and re-added during a connection. Without this modification, this entrypoint cannot be removed and re-added more than once.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CVE-2024-44954
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.05% / 14.99%
||
7 Day CHG~0.00%
Published-04 Sep, 2024 | 18:35
Updated-04 May, 2025 | 09:29
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
ALSA: line6: Fix racy access to midibuf

In the Linux kernel, the following vulnerability has been resolved: ALSA: line6: Fix racy access to midibuf There can be concurrent accesses to line6 midibuf from both the URB completion callback and the rawmidi API access. This could be a cause of KMSAN warning triggered by syzkaller below (so put as reported-by here). This patch protects the midibuf call of the former code path with a spinlock for avoiding the possible races.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2024-43887
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.03% / 8.60%
||
7 Day CHG~0.00%
Published-26 Aug, 2024 | 10:10
Updated-04 May, 2025 | 09:28
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
net/tcp: Disable TCP-AO static key after RCU grace period

In the Linux kernel, the following vulnerability has been resolved: net/tcp: Disable TCP-AO static key after RCU grace period The lifetime of TCP-AO static_key is the same as the last tcp_ao_info. On the socket destruction tcp_ao_info ceases to be with RCU grace period, while tcp-ao static branch is currently deferred destructed. The static key definition is : DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_ao_needed, HZ); which means that if RCU grace period is delayed by more than a second and tcp_ao_needed is in the process of disablement, other CPUs may yet see tcp_ao_info which atent dead, but soon-to-be. And that breaks the assumption of static_key_fast_inc_not_disabled(). See the comment near the definition: > * The caller must make sure that the static key can't get disabled while > * in this function. It doesn't patch jump labels, only adds a user to > * an already enabled static key. Originally it was introduced in commit eb8c507296f6 ("jump_label: Prevent key->enabled int overflow"), which is needed for the atomic contexts, one of which would be the creation of a full socket from a request socket. In that atomic context, it's known by the presence of the key (md5/ao) that the static branch is already enabled. So, the ref counter for that static branch is just incremented instead of holding the proper mutex. static_key_fast_inc_not_disabled() is just a helper for such usage case. But it must not be used if the static branch could get disabled in parallel as it's not protected by jump_label_mutex and as a result, races with jump_label_update() implementation details. Happened on netdev test-bot[1], so not a theoretical issue: [] jump_label: Fatal kernel bug, unexpected op at tcp_inbound_hash+0x1a7/0x870 [ffffffffa8c4e9b7] (eb 50 0f 1f 44 != 66 90 0f 1f 00)) size:2 type:1 [] ------------[ cut here ]------------ [] kernel BUG at arch/x86/kernel/jump_label.c:73! [] Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI [] CPU: 3 PID: 243 Comm: kworker/3:3 Not tainted 6.10.0-virtme #1 [] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 [] Workqueue: events jump_label_update_timeout [] RIP: 0010:__jump_label_patch+0x2f6/0x350 ... [] Call Trace: [] <TASK> [] arch_jump_label_transform_queue+0x6c/0x110 [] __jump_label_update+0xef/0x350 [] __static_key_slow_dec_cpuslocked.part.0+0x3c/0x60 [] jump_label_update_timeout+0x2c/0x40 [] process_one_work+0xe3b/0x1670 [] worker_thread+0x587/0xce0 [] kthread+0x28a/0x350 [] ret_from_fork+0x31/0x70 [] ret_from_fork_asm+0x1a/0x30 [] </TASK> [] Modules linked in: veth [] ---[ end trace 0000000000000000 ]--- [] RIP: 0010:__jump_label_patch+0x2f6/0x350 [1]: https://netdev-3.bots.linux.dev/vmksft-tcp-ao-dbg/results/696681/5-connect-deny-ipv6/stderr

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CVE-2024-57913
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.04% / 11.68%
||
7 Day CHG~0.00%
Published-19 Jan, 2025 | 11:52
Updated-04 May, 2025 | 10:06
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
usb: gadget: f_fs: Remove WARN_ON in functionfs_bind

In the Linux kernel, the following vulnerability has been resolved: usb: gadget: f_fs: Remove WARN_ON in functionfs_bind This commit addresses an issue related to below kernel panic where panic_on_warn is enabled. It is caused by the unnecessary use of WARN_ON in functionsfs_bind, which easily leads to the following scenarios. 1.adb_write in adbd 2. UDC write via configfs ================= ===================== ->usb_ffs_open_thread() ->UDC write ->open_functionfs() ->configfs_write_iter() ->adb_open() ->gadget_dev_desc_UDC_store() ->adb_write() ->usb_gadget_register_driver_owner ->driver_register() ->StartMonitor() ->bus_add_driver() ->adb_read() ->gadget_bind_driver() <times-out without BIND event> ->configfs_composite_bind() ->usb_add_function() ->open_functionfs() ->ffs_func_bind() ->adb_open() ->functionfs_bind() <ffs->state !=FFS_ACTIVE> The adb_open, adb_read, and adb_write operations are invoked from the daemon, but trying to bind the function is a process that is invoked by UDC write through configfs, which opens up the possibility of a race condition between the two paths. In this race scenario, the kernel panic occurs due to the WARN_ON from functionfs_bind when panic_on_warn is enabled. This commit fixes the kernel panic by removing the unnecessary WARN_ON. Kernel panic - not syncing: kernel: panic_on_warn set ... [ 14.542395] Call trace: [ 14.542464] ffs_func_bind+0x1c8/0x14a8 [ 14.542468] usb_add_function+0xcc/0x1f0 [ 14.542473] configfs_composite_bind+0x468/0x588 [ 14.542478] gadget_bind_driver+0x108/0x27c [ 14.542483] really_probe+0x190/0x374 [ 14.542488] __driver_probe_device+0xa0/0x12c [ 14.542492] driver_probe_device+0x3c/0x220 [ 14.542498] __driver_attach+0x11c/0x1fc [ 14.542502] bus_for_each_dev+0x104/0x160 [ 14.542506] driver_attach+0x24/0x34 [ 14.542510] bus_add_driver+0x154/0x270 [ 14.542514] driver_register+0x68/0x104 [ 14.542518] usb_gadget_register_driver_owner+0x48/0xf4 [ 14.542523] gadget_dev_desc_UDC_store+0xf8/0x144 [ 14.542526] configfs_write_iter+0xf0/0x138

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2023-52608
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 1.25%
||
7 Day CHG~0.00%
Published-13 Mar, 2024 | 14:01
Updated-04 May, 2025 | 07:39
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
firmware: arm_scmi: Check mailbox/SMT channel for consistency

In the Linux kernel, the following vulnerability has been resolved: firmware: arm_scmi: Check mailbox/SMT channel for consistency On reception of a completion interrupt the shared memory area is accessed to retrieve the message header at first and then, if the message sequence number identifies a transaction which is still pending, the related payload is fetched too. When an SCMI command times out the channel ownership remains with the platform until eventually a late reply is received and, as a consequence, any further transmission attempt remains pending, waiting for the channel to be relinquished by the platform. Once that late reply is received the channel ownership is given back to the agent and any pending request is then allowed to proceed and overwrite the SMT area of the just delivered late reply; then the wait for the reply to the new request starts. It has been observed that the spurious IRQ related to the late reply can be wrongly associated with the freshly enqueued request: when that happens the SCMI stack in-flight lookup procedure is fooled by the fact that the message header now present in the SMT area is related to the new pending transaction, even though the real reply has still to arrive. This race-condition on the A2P channel can be detected by looking at the channel status bits: a genuine reply from the platform will have set the channel free bit before triggering the completion IRQ. Add a consistency check to validate such condition in the A2P ISR.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2022-49607
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.03% / 6.44%
||
7 Day CHG~0.00%
Published-26 Feb, 2025 | 02:23
Updated-04 May, 2025 | 12:44
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
perf/core: Fix data race between perf_event_set_output() and perf_mmap_close()

In the Linux kernel, the following vulnerability has been resolved: perf/core: Fix data race between perf_event_set_output() and perf_mmap_close() Yang Jihing reported a race between perf_event_set_output() and perf_mmap_close(): CPU1 CPU2 perf_mmap_close(e2) if (atomic_dec_and_test(&e2->rb->mmap_count)) // 1 - > 0 detach_rest = true ioctl(e1, IOC_SET_OUTPUT, e2) perf_event_set_output(e1, e2) ... list_for_each_entry_rcu(e, &e2->rb->event_list, rb_entry) ring_buffer_attach(e, NULL); // e1 isn't yet added and // therefore not detached ring_buffer_attach(e1, e2->rb) list_add_rcu(&e1->rb_entry, &e2->rb->event_list) After this; e1 is attached to an unmapped rb and a subsequent perf_mmap() will loop forever more: again: mutex_lock(&e->mmap_mutex); if (event->rb) { ... if (!atomic_inc_not_zero(&e->rb->mmap_count)) { ... mutex_unlock(&e->mmap_mutex); goto again; } } The loop in perf_mmap_close() holds e2->mmap_mutex, while the attach in perf_event_set_output() holds e1->mmap_mutex. As such there is no serialization to avoid this race. Change perf_event_set_output() to take both e1->mmap_mutex and e2->mmap_mutex to alleviate that problem. Additionally, have the loop in perf_mmap() detach the rb directly, this avoids having to wait for the concurrent perf_mmap_close() to get around to doing it to make progress.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2025-21688
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.02% / 4.77%
||
7 Day CHG~0.00%
Published-10 Feb, 2025 | 15:58
Updated-04 May, 2025 | 07:19
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
drm/v3d: Assign job pointer to NULL before signaling the fence

In the Linux kernel, the following vulnerability has been resolved: drm/v3d: Assign job pointer to NULL before signaling the fence In commit e4b5ccd392b9 ("drm/v3d: Ensure job pointer is set to NULL after job completion"), we introduced a change to assign the job pointer to NULL after completing a job, indicating job completion. However, this approach created a race condition between the DRM scheduler workqueue and the IRQ execution thread. As soon as the fence is signaled in the IRQ execution thread, a new job starts to be executed. This results in a race condition where the IRQ execution thread sets the job pointer to NULL simultaneously as the `run_job()` function assigns a new job to the pointer. This race condition can lead to a NULL pointer dereference if the IRQ execution thread sets the job pointer to NULL after `run_job()` assigns it to the new job. When the new job completes and the GPU emits an interrupt, `v3d_irq()` is triggered, potentially causing a crash. [ 466.310099] Unable to handle kernel NULL pointer dereference at virtual address 00000000000000c0 [ 466.318928] Mem abort info: [ 466.321723] ESR = 0x0000000096000005 [ 466.325479] EC = 0x25: DABT (current EL), IL = 32 bits [ 466.330807] SET = 0, FnV = 0 [ 466.333864] EA = 0, S1PTW = 0 [ 466.337010] FSC = 0x05: level 1 translation fault [ 466.341900] Data abort info: [ 466.344783] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000 [ 466.350285] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 466.355350] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 466.360677] user pgtable: 4k pages, 39-bit VAs, pgdp=0000000089772000 [ 466.367140] [00000000000000c0] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000 [ 466.375875] Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP [ 466.382163] Modules linked in: rfcomm snd_seq_dummy snd_hrtimer snd_seq snd_seq_device algif_hash algif_skcipher af_alg bnep binfmt_misc vc4 snd_soc_hdmi_codec drm_display_helper cec brcmfmac_wcc spidev rpivid_hevc(C) drm_client_lib brcmfmac hci_uart drm_dma_helper pisp_be btbcm brcmutil snd_soc_core aes_ce_blk v4l2_mem2mem bluetooth aes_ce_cipher snd_compress videobuf2_dma_contig ghash_ce cfg80211 gf128mul snd_pcm_dmaengine videobuf2_memops ecdh_generic sha2_ce ecc videobuf2_v4l2 snd_pcm v3d sha256_arm64 rfkill videodev snd_timer sha1_ce libaes gpu_sched snd videobuf2_common sha1_generic drm_shmem_helper mc rp1_pio drm_kms_helper raspberrypi_hwmon spi_bcm2835 gpio_keys i2c_brcmstb rp1 raspberrypi_gpiomem rp1_mailbox rp1_adc nvmem_rmem uio_pdrv_genirq uio i2c_dev drm ledtrig_pattern drm_panel_orientation_quirks backlight fuse dm_mod ip_tables x_tables ipv6 [ 466.458429] CPU: 0 UID: 1000 PID: 2008 Comm: chromium Tainted: G C 6.13.0-v8+ #18 [ 466.467336] Tainted: [C]=CRAP [ 466.470306] Hardware name: Raspberry Pi 5 Model B Rev 1.0 (DT) [ 466.476157] pstate: 404000c9 (nZcv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 466.483143] pc : v3d_irq+0x118/0x2e0 [v3d] [ 466.487258] lr : __handle_irq_event_percpu+0x60/0x228 [ 466.492327] sp : ffffffc080003ea0 [ 466.495646] x29: ffffffc080003ea0 x28: ffffff80c0c94200 x27: 0000000000000000 [ 466.502807] x26: ffffffd08dd81d7b x25: ffffff80c0c94200 x24: ffffff8003bdc200 [ 466.509969] x23: 0000000000000001 x22: 00000000000000a7 x21: 0000000000000000 [ 466.517130] x20: ffffff8041bb0000 x19: 0000000000000001 x18: 0000000000000000 [ 466.524291] x17: ffffffafadfb0000 x16: ffffffc080000000 x15: 0000000000000000 [ 466.531452] x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000 [ 466.538613] x11: 0000000000000000 x10: 0000000000000000 x9 : ffffffd08c527eb0 [ 466.545777] x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000000000 [ 466.552941] x5 : ffffffd08c4100d0 x4 : ffffffafadfb0000 x3 : ffffffc080003f70 [ 466.560102] x2 : ffffffc0829e8058 x1 : 0000000000000001 x0 : 0000000000000000 [ 466.567263] Call trace: [ 466.569711] v3d_irq+0x118/0x2e0 [v3d] (P) [ 466. ---truncated---

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2022-49322
Matching Score-6
Assigner-kernel.org
ShareView Details
Matching Score-6
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.02% / 3.19%
||
7 Day CHG~0.00%
Published-26 Feb, 2025 | 02:10
Updated-04 May, 2025 | 08:35
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
tracing: Fix sleeping function called from invalid context on RT kernel

In the Linux kernel, the following vulnerability has been resolved: tracing: Fix sleeping function called from invalid context on RT kernel When setting bootparams="trace_event=initcall:initcall_start tp_printk=1" in the cmdline, the output_printk() was called, and the spin_lock_irqsave() was called in the atomic and irq disable interrupt context suitation. On the PREEMPT_RT kernel, these locks are replaced with sleepable rt-spinlock, so the stack calltrace will be triggered. Fix it by raw_spin_lock_irqsave when PREEMPT_RT and "trace_event=initcall:initcall_start tp_printk=1" enabled. BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:46 in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 1, name: swapper/0 preempt_count: 2, expected: 0 RCU nest depth: 0, expected: 0 Preemption disabled at: [<ffffffff8992303e>] try_to_wake_up+0x7e/0xba0 CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.17.1-rt17+ #19 34c5812404187a875f32bee7977f7367f9679ea7 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x60/0x8c dump_stack+0x10/0x12 __might_resched.cold+0x11d/0x155 rt_spin_lock+0x40/0x70 trace_event_buffer_commit+0x2fa/0x4c0 ? map_vsyscall+0x93/0x93 trace_event_raw_event_initcall_start+0xbe/0x110 ? perf_trace_initcall_finish+0x210/0x210 ? probe_sched_wakeup+0x34/0x40 ? ttwu_do_wakeup+0xda/0x310 ? trace_hardirqs_on+0x35/0x170 ? map_vsyscall+0x93/0x93 do_one_initcall+0x217/0x3c0 ? trace_event_raw_event_initcall_level+0x170/0x170 ? push_cpu_stop+0x400/0x400 ? cblist_init_generic+0x241/0x290 kernel_init_freeable+0x1ac/0x347 ? _raw_spin_unlock_irq+0x65/0x80 ? rest_init+0xf0/0xf0 kernel_init+0x1e/0x150 ret_from_fork+0x22/0x30 </TASK>

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-667
Improper Locking
CVE-2022-49304
Matching Score-6
Assigner-kernel.org
ShareView Details
Matching Score-6
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.02% / 2.91%
||
7 Day CHG~0.00%
Published-26 Feb, 2025 | 02:10
Updated-04 May, 2025 | 08:34
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
drivers: tty: serial: Fix deadlock in sa1100_set_termios()

In the Linux kernel, the following vulnerability has been resolved: drivers: tty: serial: Fix deadlock in sa1100_set_termios() There is a deadlock in sa1100_set_termios(), which is shown below: (Thread 1) | (Thread 2) | sa1100_enable_ms() sa1100_set_termios() | mod_timer() spin_lock_irqsave() //(1) | (wait a time) ... | sa1100_timeout() del_timer_sync() | spin_lock_irqsave() //(2) (wait timer to stop) | ... We hold sport->port.lock in position (1) of thread 1 and use del_timer_sync() to wait timer to stop, but timer handler also need sport->port.lock in position (2) of thread 2. As a result, sa1100_set_termios() will block forever. This patch moves del_timer_sync() before spin_lock_irqsave() in order to prevent the deadlock.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-667
Improper Locking
CVE-2022-49536
Matching Score-6
Assigner-kernel.org
ShareView Details
Matching Score-6
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.02% / 3.35%
||
7 Day CHG~0.00%
Published-26 Feb, 2025 | 02:13
Updated-04 May, 2025 | 08:40
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
scsi: lpfc: Fix SCSI I/O completion and abort handler deadlock

In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Fix SCSI I/O completion and abort handler deadlock During stress I/O tests with 500+ vports, hard LOCKUP call traces are observed. CPU A: native_queued_spin_lock_slowpath+0x192 _raw_spin_lock_irqsave+0x32 lpfc_handle_fcp_err+0x4c6 lpfc_fcp_io_cmd_wqe_cmpl+0x964 lpfc_sli4_fp_handle_cqe+0x266 __lpfc_sli4_process_cq+0x105 __lpfc_sli4_hba_process_cq+0x3c lpfc_cq_poll_hdler+0x16 irq_poll_softirq+0x76 __softirqentry_text_start+0xe4 irq_exit+0xf7 do_IRQ+0x7f CPU B: native_queued_spin_lock_slowpath+0x5b _raw_spin_lock+0x1c lpfc_abort_handler+0x13e scmd_eh_abort_handler+0x85 process_one_work+0x1a7 worker_thread+0x30 kthread+0x112 ret_from_fork+0x1f Diagram of lockup: CPUA CPUB ---- ---- lpfc_cmd->buf_lock phba->hbalock lpfc_cmd->buf_lock phba->hbalock Fix by reordering the taking of the lpfc_cmd->buf_lock and phba->hbalock in lpfc_abort_handler routine so that it tries to take the lpfc_cmd->buf_lock first before phba->hbalock.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-667
Improper Locking
CVE-2022-49446
Matching Score-6
Assigner-kernel.org
ShareView Details
Matching Score-6
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.02% / 3.17%
||
7 Day CHG~0.00%
Published-26 Feb, 2025 | 02:12
Updated-04 May, 2025 | 08:37
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
nvdimm: Fix firmware activation deadlock scenarios

In the Linux kernel, the following vulnerability has been resolved: nvdimm: Fix firmware activation deadlock scenarios Lockdep reports the following deadlock scenarios for CXL root device power-management, device_prepare(), operations, and device_shutdown() operations for 'nd_region' devices: Chain exists of: &nvdimm_region_key --> &nvdimm_bus->reconfig_mutex --> system_transition_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(system_transition_mutex); lock(&nvdimm_bus->reconfig_mutex); lock(system_transition_mutex); lock(&nvdimm_region_key); Chain exists of: &cxl_nvdimm_bridge_key --> acpi_scan_lock --> &cxl_root_key Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&cxl_root_key); lock(acpi_scan_lock); lock(&cxl_root_key); lock(&cxl_nvdimm_bridge_key); These stem from holding nvdimm_bus_lock() over hibernate_quiet_exec() which walks the entire system device topology taking device_lock() along the way. The nvdimm_bus_lock() is protecting against unregistration, multiple simultaneous ops callers, and preventing activate_show() from racing activate_store(). For the first 2, the lock is redundant. Unregistration already flushes all ops users, and sysfs already prevents multiple threads to be active in an ops handler at the same time. For the last userspace should already be waiting for its last activate_store() to complete, and does not need activate_show() to flush the write side, so this lock usage can be deleted in these attributes.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-667
Improper Locking
CVE-2022-49327
Matching Score-6
Assigner-kernel.org
ShareView Details
Matching Score-6
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.03% / 8.49%
||
7 Day CHG~0.00%
Published-26 Feb, 2025 | 02:10
Updated-11 Jul, 2025 | 17:19
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
bcache: avoid journal no-space deadlock by reserving 1 journal bucket

In the Linux kernel, the following vulnerability has been resolved: bcache: avoid journal no-space deadlock by reserving 1 journal bucket The journal no-space deadlock was reported time to time. Such deadlock can happen in the following situation. When all journal buckets are fully filled by active jset with heavy write I/O load, the cache set registration (after a reboot) will load all active jsets and inserting them into the btree again (which is called journal replay). If a journaled bkey is inserted into a btree node and results btree node split, new journal request might be triggered. For example, the btree grows one more level after the node split, then the root node record in cache device super block will be upgrade by bch_journal_meta() from bch_btree_set_root(). But there is no space in journal buckets, the journal replay has to wait for new journal bucket to be reclaimed after at least one journal bucket replayed. This is one example that how the journal no-space deadlock happens. The solution to avoid the deadlock is to reserve 1 journal bucket in run time, and only permit the reserved journal bucket to be used during cache set registration procedure for things like journal replay. Then the journal space will never be fully filled, there is no chance for journal no-space deadlock to happen anymore. This patch adds a new member "bool do_reserve" in struct journal, it is inititalized to 0 (false) when struct journal is allocated, and set to 1 (true) by bch_journal_space_reserve() when all initialization done in run_cache_set(). In the run time when journal_reclaim() tries to allocate a new journal bucket, free_journal_buckets() is called to check whether there are enough free journal buckets to use. If there is only 1 free journal bucket and journal->do_reserve is 1 (true), the last bucket is reserved and free_journal_buckets() will return 0 to indicate no free journal bucket. Then journal_reclaim() will give up, and try next time to see whetheer there is free journal bucket to allocate. By this method, there is always 1 jouranl bucket reserved in run time. During the cache set registration, journal->do_reserve is 0 (false), so the reserved journal bucket can be used to avoid the no-space deadlock.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-667
Improper Locking
CVE-2022-48930
Matching Score-6
Assigner-kernel.org
ShareView Details
Matching Score-6
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.04% / 9.88%
||
7 Day CHG~0.00%
Published-22 Aug, 2024 | 03:31
Updated-04 May, 2025 | 08:26
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
RDMA/ib_srp: Fix a deadlock

In the Linux kernel, the following vulnerability has been resolved: RDMA/ib_srp: Fix a deadlock Remove the flush_workqueue(system_long_wq) call since flushing system_long_wq is deadlock-prone and since that call is redundant with a preceding cancel_work_sync()

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-667
Improper Locking
CVE-2022-48800
Matching Score-6
Assigner-kernel.org
ShareView Details
Matching Score-6
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.01% / 0.61%
||
7 Day CHG-0.02%
Published-16 Jul, 2024 | 11:43
Updated-04 May, 2025 | 08:23
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
mm: vmscan: remove deadlock due to throttling failing to make progress

In the Linux kernel, the following vulnerability has been resolved: mm: vmscan: remove deadlock due to throttling failing to make progress A soft lockup bug in kcompactd was reported in a private bugzilla with the following visible in dmesg; watchdog: BUG: soft lockup - CPU#33 stuck for 26s! [kcompactd0:479] watchdog: BUG: soft lockup - CPU#33 stuck for 52s! [kcompactd0:479] watchdog: BUG: soft lockup - CPU#33 stuck for 78s! [kcompactd0:479] watchdog: BUG: soft lockup - CPU#33 stuck for 104s! [kcompactd0:479] The machine had 256G of RAM with no swap and an earlier failed allocation indicated that node 0 where kcompactd was run was potentially unreclaimable; Node 0 active_anon:29355112kB inactive_anon:2913528kB active_file:0kB inactive_file:0kB unevictable:64kB isolated(anon):0kB isolated(file):0kB mapped:8kB dirty:0kB writeback:0kB shmem:26780kB shmem_thp: 0kB shmem_pmdmapped: 0kB anon_thp: 23480320kB writeback_tmp:0kB kernel_stack:2272kB pagetables:24500kB all_unreclaimable? yes Vlastimil Babka investigated a crash dump and found that a task migrating pages was trying to drain PCP lists; PID: 52922 TASK: ffff969f820e5000 CPU: 19 COMMAND: "kworker/u128:3" Call Trace: __schedule schedule schedule_timeout wait_for_completion __flush_work __drain_all_pages __alloc_pages_slowpath.constprop.114 __alloc_pages alloc_migration_target migrate_pages migrate_to_node do_migrate_pages cpuset_migrate_mm_workfn process_one_work worker_thread kthread ret_from_fork This failure is specific to CONFIG_PREEMPT=n builds. The root of the problem is that kcompact0 is not rescheduling on a CPU while a task that has isolated a large number of the pages from the LRU is waiting on kcompact0 to reschedule so the pages can be released. While shrink_inactive_list() only loops once around too_many_isolated, reclaim can continue without rescheduling if sc->skipped_deactivate == 1 which could happen if there was no file LRU and the inactive anon list was not low.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-667
Improper Locking
CVE-2024-44953
Matching Score-6
Assigner-kernel.org
ShareView Details
Matching Score-6
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.04% / 12.82%
||
7 Day CHG~0.00%
Published-04 Sep, 2024 | 18:35
Updated-04 May, 2025 | 09:29
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
scsi: ufs: core: Fix deadlock during RTC update

In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: Fix deadlock during RTC update There is a deadlock when runtime suspend waits for the flush of RTC work, and the RTC work calls ufshcd_rpm_get_sync() to wait for runtime resume. Here is deadlock backtrace: kworker/0:1 D 4892.876354 10 10971 4859 0x4208060 0x8 10 0 120 670730152367 ptr f0ffff80c2e40000 0 1 0x00000001 0x000000ff 0x000000ff 0x000000ff <ffffffee5e71ddb0> __switch_to+0x1a8/0x2d4 <ffffffee5e71e604> __schedule+0x684/0xa98 <ffffffee5e71ea60> schedule+0x48/0xc8 <ffffffee5e725f78> schedule_timeout+0x48/0x170 <ffffffee5e71fb74> do_wait_for_common+0x108/0x1b0 <ffffffee5e71efe0> wait_for_completion+0x44/0x60 <ffffffee5d6de968> __flush_work+0x39c/0x424 <ffffffee5d6decc0> __cancel_work_sync+0xd8/0x208 <ffffffee5d6dee2c> cancel_delayed_work_sync+0x14/0x28 <ffffffee5e2551b8> __ufshcd_wl_suspend+0x19c/0x480 <ffffffee5e255fb8> ufshcd_wl_runtime_suspend+0x3c/0x1d4 <ffffffee5dffd80c> scsi_runtime_suspend+0x78/0xc8 <ffffffee5df93580> __rpm_callback+0x94/0x3e0 <ffffffee5df90b0c> rpm_suspend+0x2d4/0x65c <ffffffee5df91448> __pm_runtime_suspend+0x80/0x114 <ffffffee5dffd95c> scsi_runtime_idle+0x38/0x6c <ffffffee5df912f4> rpm_idle+0x264/0x338 <ffffffee5df90f14> __pm_runtime_idle+0x80/0x110 <ffffffee5e24ce44> ufshcd_rtc_work+0x128/0x1e4 <ffffffee5d6e3a40> process_one_work+0x26c/0x650 <ffffffee5d6e65c8> worker_thread+0x260/0x3d8 <ffffffee5d6edec8> kthread+0x110/0x134 <ffffffee5d616b18> ret_from_fork+0x10/0x20 Skip updating RTC if RPM state is not RPM_ACTIVE.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-667
Improper Locking
CVE-2022-48634
Matching Score-6
Assigner-kernel.org
ShareView Details
Matching Score-6
Assigner-kernel.org
CVSS Score-5.3||MEDIUM
EPSS-0.01% / 1.10%
||
7 Day CHG~0.00%
Published-28 Apr, 2024 | 12:59
Updated-19 Jun, 2025 | 12:56
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
drm/gma500: Fix BUG: sleeping function called from invalid context errors

In the Linux kernel, the following vulnerability has been resolved: drm/gma500: Fix BUG: sleeping function called from invalid context errors gma_crtc_page_flip() was holding the event_lock spinlock while calling crtc_funcs->mode_set_base() which takes ww_mutex. The only reason to hold event_lock is to clear gma_crtc->page_flip_event on mode_set_base() errors. Instead unlock it after setting gma_crtc->page_flip_event and on errors re-take the lock and clear gma_crtc->page_flip_event it it is still set. This fixes the following WARN/stacktrace: [ 512.122953] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:870 [ 512.123004] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 1253, name: gnome-shell [ 512.123031] preempt_count: 1, expected: 0 [ 512.123048] RCU nest depth: 0, expected: 0 [ 512.123066] INFO: lockdep is turned off. [ 512.123080] irq event stamp: 0 [ 512.123094] hardirqs last enabled at (0): [<0000000000000000>] 0x0 [ 512.123134] hardirqs last disabled at (0): [<ffffffff8d0ec28c>] copy_process+0x9fc/0x1de0 [ 512.123176] softirqs last enabled at (0): [<ffffffff8d0ec28c>] copy_process+0x9fc/0x1de0 [ 512.123207] softirqs last disabled at (0): [<0000000000000000>] 0x0 [ 512.123233] Preemption disabled at: [ 512.123241] [<0000000000000000>] 0x0 [ 512.123275] CPU: 3 PID: 1253 Comm: gnome-shell Tainted: G W 5.19.0+ #1 [ 512.123304] Hardware name: Packard Bell dot s/SJE01_CT, BIOS V1.10 07/23/2013 [ 512.123323] Call Trace: [ 512.123346] <TASK> [ 512.123370] dump_stack_lvl+0x5b/0x77 [ 512.123412] __might_resched.cold+0xff/0x13a [ 512.123458] ww_mutex_lock+0x1e/0xa0 [ 512.123495] psb_gem_pin+0x2c/0x150 [gma500_gfx] [ 512.123601] gma_pipe_set_base+0x76/0x240 [gma500_gfx] [ 512.123708] gma_crtc_page_flip+0x95/0x130 [gma500_gfx] [ 512.123808] drm_mode_page_flip_ioctl+0x57d/0x5d0 [ 512.123897] ? drm_mode_cursor2_ioctl+0x10/0x10 [ 512.123936] drm_ioctl_kernel+0xa1/0x150 [ 512.123984] drm_ioctl+0x21f/0x420 [ 512.124025] ? drm_mode_cursor2_ioctl+0x10/0x10 [ 512.124070] ? rcu_read_lock_bh_held+0xb/0x60 [ 512.124104] ? lock_release+0x1ef/0x2d0 [ 512.124161] __x64_sys_ioctl+0x8d/0xd0 [ 512.124203] do_syscall_64+0x58/0x80 [ 512.124239] ? do_syscall_64+0x67/0x80 [ 512.124267] ? trace_hardirqs_on_prepare+0x55/0xe0 [ 512.124300] ? do_syscall_64+0x67/0x80 [ 512.124340] ? rcu_read_lock_sched_held+0x10/0x80 [ 512.124377] entry_SYSCALL_64_after_hwframe+0x63/0xcd [ 512.124411] RIP: 0033:0x7fcc4a70740f [ 512.124442] Code: 00 48 89 44 24 18 31 c0 48 8d 44 24 60 c7 04 24 10 00 00 00 48 89 44 24 08 48 8d 44 24 20 48 89 44 24 10 b8 10 00 00 00 0f 05 <89> c2 3d 00 f0 ff ff 77 18 48 8b 44 24 18 64 48 2b 04 25 28 00 00 [ 512.124470] RSP: 002b:00007ffda73f5390 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [ 512.124503] RAX: ffffffffffffffda RBX: 000055cc9e474500 RCX: 00007fcc4a70740f [ 512.124524] RDX: 00007ffda73f5420 RSI: 00000000c01864b0 RDI: 0000000000000009 [ 512.124544] RBP: 00007ffda73f5420 R08: 000055cc9c0b0cb0 R09: 0000000000000034 [ 512.124564] R10: 0000000000000000 R11: 0000000000000246 R12: 00000000c01864b0 [ 512.124584] R13: 0000000000000009 R14: 000055cc9df484d0 R15: 000055cc9af5d0c0 [ 512.124647] </TASK>

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-667
Improper Locking
CVE-2022-48671
Matching Score-6
Assigner-kernel.org
ShareView Details
Matching Score-6
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.01% / 0.31%
||
7 Day CHG~0.00%
Published-03 May, 2024 | 14:50
Updated-04 May, 2025 | 08:20
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
cgroup: Add missing cpus_read_lock() to cgroup_attach_task_all()

In the Linux kernel, the following vulnerability has been resolved: cgroup: Add missing cpus_read_lock() to cgroup_attach_task_all() syzbot is hitting percpu_rwsem_assert_held(&cpu_hotplug_lock) warning at cpuset_attach() [1], for commit 4f7e7236435ca0ab ("cgroup: Fix threadgroup_rwsem <-> cpus_read_lock() deadlock") missed that cpuset_attach() is also called from cgroup_attach_task_all(). Add cpus_read_lock() like what cgroup_procs_write_start() does.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-667
Improper Locking
CVE-2022-49316
Matching Score-6
Assigner-kernel.org
ShareView Details
Matching Score-6
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.02% / 3.19%
||
7 Day CHG~0.00%
Published-26 Feb, 2025 | 02:10
Updated-19 Jun, 2025 | 12:56
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
NFSv4: Don't hold the layoutget locks across multiple RPC calls

In the Linux kernel, the following vulnerability has been resolved: NFSv4: Don't hold the layoutget locks across multiple RPC calls When doing layoutget as part of the open() compound, we have to be careful to release the layout locks before we can call any further RPC calls, such as setattr(). The reason is that those calls could trigger a recall, which could deadlock.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-667
Improper Locking
CVE-2009-4272
Matching Score-6
Assigner-Red Hat, Inc.
ShareView Details
Matching Score-6
Assigner-Red Hat, Inc.
CVSS Score-7.5||HIGH
EPSS-1.81% / 82.09%
||
7 Day CHG~0.00%
Published-27 Jan, 2010 | 17:00
Updated-11 Apr, 2025 | 00:51
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available

A certain Red Hat patch for net/ipv4/route.c in the Linux kernel 2.6.18 on Red Hat Enterprise Linux (RHEL) 5 allows remote attackers to cause a denial of service (deadlock) via crafted packets that force collisions in the IPv4 routing hash table, and trigger a routing "emergency" in which a hash chain is too long. NOTE: this is related to an issue in the Linux kernel before 2.6.31, when the kernel routing cache is disabled, involving an uninitialized pointer and a panic.

Action-Not Available
Vendor-n/aLinux Kernel Organization, IncRed Hat, Inc.
Product-linux_kernelenterprise_linuxvirtualizationenterprise_linux_workstationenterprise_linux_serverenterprise_linux_desktopenterprise_linux_eusn/a
CWE ID-CWE-667
Improper Locking
CVE-2024-40912
Matching Score-6
Assigner-kernel.org
ShareView Details
Matching Score-6
Assigner-kernel.org
CVSS Score-5.5||MEDIUM
EPSS-0.01% / 0.41%
||
7 Day CHG-0.00%
Published-12 Jul, 2024 | 12:20
Updated-04 May, 2025 | 12:57
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
wifi: mac80211: Fix deadlock in ieee80211_sta_ps_deliver_wakeup()

In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: Fix deadlock in ieee80211_sta_ps_deliver_wakeup() The ieee80211_sta_ps_deliver_wakeup() function takes sta->ps_lock to synchronizes with ieee80211_tx_h_unicast_ps_buf() which is called from softirq context. However using only spin_lock() to get sta->ps_lock in ieee80211_sta_ps_deliver_wakeup() does not prevent softirq to execute on this same CPU, to run ieee80211_tx_h_unicast_ps_buf() and try to take this same lock ending in deadlock. Below is an example of rcu stall that arises in such situation. rcu: INFO: rcu_sched self-detected stall on CPU rcu: 2-....: (42413413 ticks this GP) idle=b154/1/0x4000000000000000 softirq=1763/1765 fqs=21206996 rcu: (t=42586894 jiffies g=2057 q=362405 ncpus=4) CPU: 2 PID: 719 Comm: wpa_supplicant Tainted: G W 6.4.0-02158-g1b062f552873 #742 Hardware name: RPT (r1) (DT) pstate: 00000005 (nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : queued_spin_lock_slowpath+0x58/0x2d0 lr : invoke_tx_handlers_early+0x5b4/0x5c0 sp : ffff00001ef64660 x29: ffff00001ef64660 x28: ffff000009bc1070 x27: ffff000009bc0ad8 x26: ffff000009bc0900 x25: ffff00001ef647a8 x24: 0000000000000000 x23: ffff000009bc0900 x22: ffff000009bc0900 x21: ffff00000ac0e000 x20: ffff00000a279e00 x19: ffff00001ef646e8 x18: 0000000000000000 x17: ffff800016468000 x16: ffff00001ef608c0 x15: 0010533c93f64f80 x14: 0010395c9faa3946 x13: 0000000000000000 x12: 00000000fa83b2da x11: 000000012edeceea x10: ffff0000010fbe00 x9 : 0000000000895440 x8 : 000000000010533c x7 : ffff00000ad8b740 x6 : ffff00000c350880 x5 : 0000000000000007 x4 : 0000000000000001 x3 : 0000000000000000 x2 : 0000000000000000 x1 : 0000000000000001 x0 : ffff00000ac0e0e8 Call trace: queued_spin_lock_slowpath+0x58/0x2d0 ieee80211_tx+0x80/0x12c ieee80211_tx_pending+0x110/0x278 tasklet_action_common.constprop.0+0x10c/0x144 tasklet_action+0x20/0x28 _stext+0x11c/0x284 ____do_softirq+0xc/0x14 call_on_irq_stack+0x24/0x34 do_softirq_own_stack+0x18/0x20 do_softirq+0x74/0x7c __local_bh_enable_ip+0xa0/0xa4 _ieee80211_wake_txqs+0x3b0/0x4b8 __ieee80211_wake_queue+0x12c/0x168 ieee80211_add_pending_skbs+0xec/0x138 ieee80211_sta_ps_deliver_wakeup+0x2a4/0x480 ieee80211_mps_sta_status_update.part.0+0xd8/0x11c ieee80211_mps_sta_status_update+0x18/0x24 sta_apply_parameters+0x3bc/0x4c0 ieee80211_change_station+0x1b8/0x2dc nl80211_set_station+0x444/0x49c genl_family_rcv_msg_doit.isra.0+0xa4/0xfc genl_rcv_msg+0x1b0/0x244 netlink_rcv_skb+0x38/0x10c genl_rcv+0x34/0x48 netlink_unicast+0x254/0x2bc netlink_sendmsg+0x190/0x3b4 ____sys_sendmsg+0x1e8/0x218 ___sys_sendmsg+0x68/0x8c __sys_sendmsg+0x44/0x84 __arm64_sys_sendmsg+0x20/0x28 do_el0_svc+0x6c/0xe8 el0_svc+0x14/0x48 el0t_64_sync_handler+0xb0/0xb4 el0t_64_sync+0x14c/0x150 Using spin_lock_bh()/spin_unlock_bh() instead prevents softirq to raise on the same CPU that is holding the lock.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-667
Improper Locking
  • Previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • ...
  • 10
  • 11
  • Next
Details not found