Logo
-

Byte Open Security

(ByteOS Network)

Log In

Sign Up

ByteOS

Security
Vulnerability Details
Registries
Custom Views
Weaknesses
Attack Patterns
Filters & Tools
Vulnerability Details :

CVE-2005-3106

Summary
Assigner-mitre
Assigner Org ID-8254265b-2729-46b6-b9e3-3dfca2d5bfca
Published At-30 Sep, 2005 | 04:00
Updated At-16 Jan, 2025 | 19:44
Rejected At-
Credits

Race condition in Linux 2.6, when threads are sharing memory mapping via CLONE_VM (such as linuxthreads and vfork), might allow local users to cause a denial of service (deadlock) by triggering a core dump while waiting for a thread that has just performed an exec.

Vendors
-
Not available
Products
-
Metrics (CVSS)
VersionBase scoreBase severityVector
Weaknesses
Attack Patterns
Solution/Workaround
References
HyperlinkResource Type
EPSS History
Score
Latest Score
-
N/A
No data available for selected date range
Percentile
Latest Percentile
-
N/A
No data available for selected date range
Stakeholder-Specific Vulnerability Categorization (SSVC)
▼Common Vulnerabilities and Exposures (CVE)
cve.org
Assigner:mitre
Assigner Org ID:8254265b-2729-46b6-b9e3-3dfca2d5bfca
Published At:30 Sep, 2005 | 04:00
Updated At:16 Jan, 2025 | 19:44
Rejected At:
▼CVE Numbering Authority (CNA)

Race condition in Linux 2.6, when threads are sharing memory mapping via CLONE_VM (such as linuxthreads and vfork), might allow local users to cause a denial of service (deadlock) by triggering a core dump while waiting for a thread that has just performed an exec.

Affected Products
Vendor
n/a
Product
n/a
Versions
Affected
  • n/a
Problem Types
TypeCWE IDDescription
textN/An/a
Type: text
CWE ID: N/A
Description: n/a
Metrics
VersionBase scoreBase severityVector
Metrics Other Info
Impacts
CAPEC IDDescription
Solutions

Configurations

Workarounds

Exploits

Credits

Timeline
EventDate
Replaced By

Rejected Reason

References
HyperlinkResource
https://oval.cisecurity.org/repository/search/definition/oval%3Aorg.mitre.oval%3Adef%3A9108
vdb-entry
signature
x_refsource_OVAL
http://secunia.com/advisories/18056
third-party-advisory
x_refsource_SECUNIA
http://www.redhat.com/support/errata/RHSA-2006-0101.html
vendor-advisory
x_refsource_REDHAT
http://linux.bkbits.net:8080/linux-2.6/diffs/fs/exec.c%401.156?nav=index.html%7Csrc/%7Csrc/fs%7Chist/fs/exec.c
x_refsource_CONFIRM
http://www.debian.org/security/2005/dsa-922
vendor-advisory
x_refsource_DEBIAN
http://www.securityfocus.com/bid/15049
vdb-entry
x_refsource_BID
http://secunia.com/advisories/18510
third-party-advisory
x_refsource_SECUNIA
http://secunia.com/advisories/17141
third-party-advisory
x_refsource_SECUNIA
http://www.ubuntu.com/usn/usn-199-1
vendor-advisory
x_refsource_UBUNTU
http://www.mandriva.com/security/advisories?name=MDKSA-2006:072
vendor-advisory
x_refsource_MANDRIVA
http://www.securityfocus.com/archive/1/427980/100/0/threaded
vendor-advisory
x_refsource_FEDORA
Hyperlink: https://oval.cisecurity.org/repository/search/definition/oval%3Aorg.mitre.oval%3Adef%3A9108
Resource:
vdb-entry
signature
x_refsource_OVAL
Hyperlink: http://secunia.com/advisories/18056
Resource:
third-party-advisory
x_refsource_SECUNIA
Hyperlink: http://www.redhat.com/support/errata/RHSA-2006-0101.html
Resource:
vendor-advisory
x_refsource_REDHAT
Hyperlink: http://linux.bkbits.net:8080/linux-2.6/diffs/fs/exec.c%401.156?nav=index.html%7Csrc/%7Csrc/fs%7Chist/fs/exec.c
Resource:
x_refsource_CONFIRM
Hyperlink: http://www.debian.org/security/2005/dsa-922
Resource:
vendor-advisory
x_refsource_DEBIAN
Hyperlink: http://www.securityfocus.com/bid/15049
Resource:
vdb-entry
x_refsource_BID
Hyperlink: http://secunia.com/advisories/18510
Resource:
third-party-advisory
x_refsource_SECUNIA
Hyperlink: http://secunia.com/advisories/17141
Resource:
third-party-advisory
x_refsource_SECUNIA
Hyperlink: http://www.ubuntu.com/usn/usn-199-1
Resource:
vendor-advisory
x_refsource_UBUNTU
Hyperlink: http://www.mandriva.com/security/advisories?name=MDKSA-2006:072
Resource:
vendor-advisory
x_refsource_MANDRIVA
Hyperlink: http://www.securityfocus.com/archive/1/427980/100/0/threaded
Resource:
vendor-advisory
x_refsource_FEDORA
▼Authorized Data Publishers (ADP)
1. CVE Program Container
Affected Products
Metrics
VersionBase scoreBase severityVector
Metrics Other Info
Impacts
CAPEC IDDescription
Solutions

Configurations

Workarounds

Exploits

Credits

Timeline
EventDate
Replaced By

Rejected Reason

References
HyperlinkResource
https://oval.cisecurity.org/repository/search/definition/oval%3Aorg.mitre.oval%3Adef%3A9108
vdb-entry
signature
x_refsource_OVAL
x_transferred
http://secunia.com/advisories/18056
third-party-advisory
x_refsource_SECUNIA
x_transferred
http://www.redhat.com/support/errata/RHSA-2006-0101.html
vendor-advisory
x_refsource_REDHAT
x_transferred
http://linux.bkbits.net:8080/linux-2.6/diffs/fs/exec.c%401.156?nav=index.html%7Csrc/%7Csrc/fs%7Chist/fs/exec.c
x_refsource_CONFIRM
x_transferred
http://www.debian.org/security/2005/dsa-922
vendor-advisory
x_refsource_DEBIAN
x_transferred
http://www.securityfocus.com/bid/15049
vdb-entry
x_refsource_BID
x_transferred
http://secunia.com/advisories/18510
third-party-advisory
x_refsource_SECUNIA
x_transferred
http://secunia.com/advisories/17141
third-party-advisory
x_refsource_SECUNIA
x_transferred
http://www.ubuntu.com/usn/usn-199-1
vendor-advisory
x_refsource_UBUNTU
x_transferred
http://www.mandriva.com/security/advisories?name=MDKSA-2006:072
vendor-advisory
x_refsource_MANDRIVA
x_transferred
http://www.securityfocus.com/archive/1/427980/100/0/threaded
vendor-advisory
x_refsource_FEDORA
x_transferred
Hyperlink: https://oval.cisecurity.org/repository/search/definition/oval%3Aorg.mitre.oval%3Adef%3A9108
Resource:
vdb-entry
signature
x_refsource_OVAL
x_transferred
Hyperlink: http://secunia.com/advisories/18056
Resource:
third-party-advisory
x_refsource_SECUNIA
x_transferred
Hyperlink: http://www.redhat.com/support/errata/RHSA-2006-0101.html
Resource:
vendor-advisory
x_refsource_REDHAT
x_transferred
Hyperlink: http://linux.bkbits.net:8080/linux-2.6/diffs/fs/exec.c%401.156?nav=index.html%7Csrc/%7Csrc/fs%7Chist/fs/exec.c
Resource:
x_refsource_CONFIRM
x_transferred
Hyperlink: http://www.debian.org/security/2005/dsa-922
Resource:
vendor-advisory
x_refsource_DEBIAN
x_transferred
Hyperlink: http://www.securityfocus.com/bid/15049
Resource:
vdb-entry
x_refsource_BID
x_transferred
Hyperlink: http://secunia.com/advisories/18510
Resource:
third-party-advisory
x_refsource_SECUNIA
x_transferred
Hyperlink: http://secunia.com/advisories/17141
Resource:
third-party-advisory
x_refsource_SECUNIA
x_transferred
Hyperlink: http://www.ubuntu.com/usn/usn-199-1
Resource:
vendor-advisory
x_refsource_UBUNTU
x_transferred
Hyperlink: http://www.mandriva.com/security/advisories?name=MDKSA-2006:072
Resource:
vendor-advisory
x_refsource_MANDRIVA
x_transferred
Hyperlink: http://www.securityfocus.com/archive/1/427980/100/0/threaded
Resource:
vendor-advisory
x_refsource_FEDORA
x_transferred
2. CISA ADP Vulnrichment
Affected Products
Problem Types
TypeCWE IDDescription
CWECWE-667CWE-667 Improper Locking
Type: CWE
CWE ID: CWE-667
Description: CWE-667 Improper Locking
Metrics
VersionBase scoreBase severityVector
3.14.7MEDIUM
CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H
Version: 3.1
Base score: 4.7
Base severity: MEDIUM
Vector:
CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H
Metrics Other Info
Impacts
CAPEC IDDescription
Solutions

Configurations

Workarounds

Exploits

Credits

Timeline
EventDate
Replaced By

Rejected Reason

References
HyperlinkResource
Information is not available yet
▼National Vulnerability Database (NVD)
nvd.nist.gov
Source:cve@mitre.org
Published At:30 Sep, 2005 | 10:05
Updated At:03 Apr, 2025 | 01:03

Race condition in Linux 2.6, when threads are sharing memory mapping via CLONE_VM (such as linuxthreads and vfork), might allow local users to cause a denial of service (deadlock) by triggering a core dump while waiting for a thread that has just performed an exec.

CISA Catalog
Date AddedDue DateVulnerability NameRequired Action
N/A
Date Added: N/A
Due Date: N/A
Vulnerability Name: N/A
Required Action: N/A
Metrics
TypeVersionBase scoreBase severityVector
Primary3.14.7MEDIUM
CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H
Secondary3.14.7MEDIUM
CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H
Primary2.01.2LOW
AV:L/AC:H/Au:N/C:N/I:N/A:P
Type: Primary
Version: 3.1
Base score: 4.7
Base severity: MEDIUM
Vector:
CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H
Type: Secondary
Version: 3.1
Base score: 4.7
Base severity: MEDIUM
Vector:
CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H
Type: Primary
Version: 2.0
Base score: 1.2
Base severity: LOW
Vector:
AV:L/AC:H/Au:N/C:N/I:N/A:P
CPE Matches

Linux Kernel Organization, Inc
linux
>>linux_kernel>>2.6.0
cpe:2.3:o:linux:linux_kernel:2.6.0:*:*:*:*:*:*:*
Debian GNU/Linux
debian
>>debian_linux>>3.1
cpe:2.3:o:debian:debian_linux:3.1:*:*:*:*:*:*:*
Canonical Ltd.
canonical
>>ubuntu_linux>>4.10
cpe:2.3:o:canonical:ubuntu_linux:4.10:*:*:*:*:*:*:*
Canonical Ltd.
canonical
>>ubuntu_linux>>5.04
cpe:2.3:o:canonical:ubuntu_linux:5.04:*:*:*:*:*:*:*
Weaknesses
CWE IDTypeSource
CWE-667Primarynvd@nist.gov
CWE-667Secondary134c704f-9b21-4f2e-91b3-4a467353bcc0
CWE ID: CWE-667
Type: Primary
Source: nvd@nist.gov
CWE ID: CWE-667
Type: Secondary
Source: 134c704f-9b21-4f2e-91b3-4a467353bcc0
Evaluator Description

Evaluator Impact

Evaluator Solution

Vendor Statements

References
HyperlinkSourceResource
http://linux.bkbits.net:8080/linux-2.6/diffs/fs/exec.c%401.156?nav=index.html%7Csrc/%7Csrc/fs%7Chist/fs/exec.ccve@mitre.org
Broken Link
http://secunia.com/advisories/17141cve@mitre.org
Broken Link
http://secunia.com/advisories/18056cve@mitre.org
Broken Link
http://secunia.com/advisories/18510cve@mitre.org
Broken Link
http://www.debian.org/security/2005/dsa-922cve@mitre.org
Mailing List
http://www.mandriva.com/security/advisories?name=MDKSA-2006:072cve@mitre.org
Patch
Third Party Advisory
http://www.redhat.com/support/errata/RHSA-2006-0101.htmlcve@mitre.org
Broken Link
http://www.securityfocus.com/archive/1/427980/100/0/threadedcve@mitre.org
Broken Link
Third Party Advisory
VDB Entry
http://www.securityfocus.com/bid/15049cve@mitre.org
Broken Link
Third Party Advisory
VDB Entry
http://www.ubuntu.com/usn/usn-199-1cve@mitre.org
Third Party Advisory
https://oval.cisecurity.org/repository/search/definition/oval%3Aorg.mitre.oval%3Adef%3A9108cve@mitre.org
Broken Link
http://linux.bkbits.net:8080/linux-2.6/diffs/fs/exec.c%401.156?nav=index.html%7Csrc/%7Csrc/fs%7Chist/fs/exec.caf854a3a-2127-422b-91ae-364da2661108
Broken Link
http://secunia.com/advisories/17141af854a3a-2127-422b-91ae-364da2661108
Broken Link
http://secunia.com/advisories/18056af854a3a-2127-422b-91ae-364da2661108
Broken Link
http://secunia.com/advisories/18510af854a3a-2127-422b-91ae-364da2661108
Broken Link
http://www.debian.org/security/2005/dsa-922af854a3a-2127-422b-91ae-364da2661108
Mailing List
http://www.mandriva.com/security/advisories?name=MDKSA-2006:072af854a3a-2127-422b-91ae-364da2661108
Patch
Third Party Advisory
http://www.redhat.com/support/errata/RHSA-2006-0101.htmlaf854a3a-2127-422b-91ae-364da2661108
Broken Link
http://www.securityfocus.com/archive/1/427980/100/0/threadedaf854a3a-2127-422b-91ae-364da2661108
Broken Link
Third Party Advisory
VDB Entry
http://www.securityfocus.com/bid/15049af854a3a-2127-422b-91ae-364da2661108
Broken Link
Third Party Advisory
VDB Entry
http://www.ubuntu.com/usn/usn-199-1af854a3a-2127-422b-91ae-364da2661108
Third Party Advisory
https://oval.cisecurity.org/repository/search/definition/oval%3Aorg.mitre.oval%3Adef%3A9108af854a3a-2127-422b-91ae-364da2661108
Broken Link
Hyperlink: http://linux.bkbits.net:8080/linux-2.6/diffs/fs/exec.c%401.156?nav=index.html%7Csrc/%7Csrc/fs%7Chist/fs/exec.c
Source: cve@mitre.org
Resource:
Broken Link
Hyperlink: http://secunia.com/advisories/17141
Source: cve@mitre.org
Resource:
Broken Link
Hyperlink: http://secunia.com/advisories/18056
Source: cve@mitre.org
Resource:
Broken Link
Hyperlink: http://secunia.com/advisories/18510
Source: cve@mitre.org
Resource:
Broken Link
Hyperlink: http://www.debian.org/security/2005/dsa-922
Source: cve@mitre.org
Resource:
Mailing List
Hyperlink: http://www.mandriva.com/security/advisories?name=MDKSA-2006:072
Source: cve@mitre.org
Resource:
Patch
Third Party Advisory
Hyperlink: http://www.redhat.com/support/errata/RHSA-2006-0101.html
Source: cve@mitre.org
Resource:
Broken Link
Hyperlink: http://www.securityfocus.com/archive/1/427980/100/0/threaded
Source: cve@mitre.org
Resource:
Broken Link
Third Party Advisory
VDB Entry
Hyperlink: http://www.securityfocus.com/bid/15049
Source: cve@mitre.org
Resource:
Broken Link
Third Party Advisory
VDB Entry
Hyperlink: http://www.ubuntu.com/usn/usn-199-1
Source: cve@mitre.org
Resource:
Third Party Advisory
Hyperlink: https://oval.cisecurity.org/repository/search/definition/oval%3Aorg.mitre.oval%3Adef%3A9108
Source: cve@mitre.org
Resource:
Broken Link
Hyperlink: http://linux.bkbits.net:8080/linux-2.6/diffs/fs/exec.c%401.156?nav=index.html%7Csrc/%7Csrc/fs%7Chist/fs/exec.c
Source: af854a3a-2127-422b-91ae-364da2661108
Resource:
Broken Link
Hyperlink: http://secunia.com/advisories/17141
Source: af854a3a-2127-422b-91ae-364da2661108
Resource:
Broken Link
Hyperlink: http://secunia.com/advisories/18056
Source: af854a3a-2127-422b-91ae-364da2661108
Resource:
Broken Link
Hyperlink: http://secunia.com/advisories/18510
Source: af854a3a-2127-422b-91ae-364da2661108
Resource:
Broken Link
Hyperlink: http://www.debian.org/security/2005/dsa-922
Source: af854a3a-2127-422b-91ae-364da2661108
Resource:
Mailing List
Hyperlink: http://www.mandriva.com/security/advisories?name=MDKSA-2006:072
Source: af854a3a-2127-422b-91ae-364da2661108
Resource:
Patch
Third Party Advisory
Hyperlink: http://www.redhat.com/support/errata/RHSA-2006-0101.html
Source: af854a3a-2127-422b-91ae-364da2661108
Resource:
Broken Link
Hyperlink: http://www.securityfocus.com/archive/1/427980/100/0/threaded
Source: af854a3a-2127-422b-91ae-364da2661108
Resource:
Broken Link
Third Party Advisory
VDB Entry
Hyperlink: http://www.securityfocus.com/bid/15049
Source: af854a3a-2127-422b-91ae-364da2661108
Resource:
Broken Link
Third Party Advisory
VDB Entry
Hyperlink: http://www.ubuntu.com/usn/usn-199-1
Source: af854a3a-2127-422b-91ae-364da2661108
Resource:
Third Party Advisory
Hyperlink: https://oval.cisecurity.org/repository/search/definition/oval%3Aorg.mitre.oval%3Adef%3A9108
Source: af854a3a-2127-422b-91ae-364da2661108
Resource:
Broken Link

Change History

0
Information is not available yet

Similar CVEs

848Records found

CVE-2023-53401
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 1.10%
||
7 Day CHG-0.01%
Published-18 Sep, 2025 | 13:33
Updated-14 Jan, 2026 | 19:16
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
mm: kmem: fix a NULL pointer dereference in obj_stock_flush_required()

In the Linux kernel, the following vulnerability has been resolved: mm: kmem: fix a NULL pointer dereference in obj_stock_flush_required() KCSAN found an issue in obj_stock_flush_required(): stock->cached_objcg can be reset between the check and dereference: ================================================================== BUG: KCSAN: data-race in drain_all_stock / drain_obj_stock write to 0xffff888237c2a2f8 of 8 bytes by task 19625 on cpu 0: drain_obj_stock+0x408/0x4e0 mm/memcontrol.c:3306 refill_obj_stock+0x9c/0x1e0 mm/memcontrol.c:3340 obj_cgroup_uncharge+0xe/0x10 mm/memcontrol.c:3408 memcg_slab_free_hook mm/slab.h:587 [inline] __cache_free mm/slab.c:3373 [inline] __do_kmem_cache_free mm/slab.c:3577 [inline] kmem_cache_free+0x105/0x280 mm/slab.c:3602 __d_free fs/dcache.c:298 [inline] dentry_free fs/dcache.c:375 [inline] __dentry_kill+0x422/0x4a0 fs/dcache.c:621 dentry_kill+0x8d/0x1e0 dput+0x118/0x1f0 fs/dcache.c:913 __fput+0x3bf/0x570 fs/file_table.c:329 ____fput+0x15/0x20 fs/file_table.c:349 task_work_run+0x123/0x160 kernel/task_work.c:179 resume_user_mode_work include/linux/resume_user_mode.h:49 [inline] exit_to_user_mode_loop+0xcf/0xe0 kernel/entry/common.c:171 exit_to_user_mode_prepare+0x6a/0xa0 kernel/entry/common.c:203 __syscall_exit_to_user_mode_work kernel/entry/common.c:285 [inline] syscall_exit_to_user_mode+0x26/0x140 kernel/entry/common.c:296 do_syscall_64+0x4d/0xc0 arch/x86/entry/common.c:86 entry_SYSCALL_64_after_hwframe+0x63/0xcd read to 0xffff888237c2a2f8 of 8 bytes by task 19632 on cpu 1: obj_stock_flush_required mm/memcontrol.c:3319 [inline] drain_all_stock+0x174/0x2a0 mm/memcontrol.c:2361 try_charge_memcg+0x6d0/0xd10 mm/memcontrol.c:2703 try_charge mm/memcontrol.c:2837 [inline] mem_cgroup_charge_skmem+0x51/0x140 mm/memcontrol.c:7290 sock_reserve_memory+0xb1/0x390 net/core/sock.c:1025 sk_setsockopt+0x800/0x1e70 net/core/sock.c:1525 udp_lib_setsockopt+0x99/0x6c0 net/ipv4/udp.c:2692 udp_setsockopt+0x73/0xa0 net/ipv4/udp.c:2817 sock_common_setsockopt+0x61/0x70 net/core/sock.c:3668 __sys_setsockopt+0x1c3/0x230 net/socket.c:2271 __do_sys_setsockopt net/socket.c:2282 [inline] __se_sys_setsockopt net/socket.c:2279 [inline] __x64_sys_setsockopt+0x66/0x80 net/socket.c:2279 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd value changed: 0xffff8881382d52c0 -> 0xffff888138893740 Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 19632 Comm: syz-executor.0 Not tainted 6.3.0-rc2-syzkaller-00387-g534293368afa #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/02/2023 Fix it by using READ_ONCE()/WRITE_ONCE() for all accesses to stock->cached_objcg.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-476
NULL Pointer Dereference
CVE-2023-53047
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.02% / 4.06%
||
7 Day CHG~0.00%
Published-02 May, 2025 | 15:55
Updated-12 Nov, 2025 | 16:46
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
tee: amdtee: fix race condition in amdtee_open_session

In the Linux kernel, the following vulnerability has been resolved: tee: amdtee: fix race condition in amdtee_open_session There is a potential race condition in amdtee_open_session that may lead to use-after-free. For instance, in amdtee_open_session() after sess->sess_mask is set, and before setting: sess->session_info[i] = session_info; if amdtee_close_session() closes this same session, then 'sess' data structure will be released, causing kernel panic when 'sess' is accessed within amdtee_open_session(). The solution is to set the bit sess->sess_mask as the last step in amdtee_open_session().

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2023-53615
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.02% / 3.79%
||
7 Day CHG~0.00%
Published-04 Oct, 2025 | 15:44
Updated-05 Feb, 2026 | 16:39
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
scsi: qla2xxx: Fix deletion race condition

In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix deletion race condition System crash when using debug kernel due to link list corruption. The cause of the link list corruption is due to session deletion was allowed to queue up twice. Here's the internal trace that show the same port was allowed to double queue for deletion on different cpu. 20808683956 015 qla2xxx [0000:13:00.1]-e801:4: Scheduling sess ffff93ebf9306800 for deletion 50:06:0e:80:12:48:ff:50 fc4_type 1 20808683957 027 qla2xxx [0000:13:00.1]-e801:4: Scheduling sess ffff93ebf9306800 for deletion 50:06:0e:80:12:48:ff:50 fc4_type 1 Move the clearing/setting of deleted flag lock.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2023-53520
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.02% / 3.65%
||
7 Day CHG~0.00%
Published-01 Oct, 2025 | 11:46
Updated-06 Feb, 2026 | 17:16
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
Bluetooth: Fix hci_suspend_sync crash

In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Fix hci_suspend_sync crash If hci_unregister_dev() frees the hci_dev object but hci_suspend_notifier may still be accessing it, it can cause the program to crash. Here's the call trace: <4>[102152.653246] Call Trace: <4>[102152.653254] hci_suspend_sync+0x109/0x301 [bluetooth] <4>[102152.653259] hci_suspend_dev+0x78/0xcd [bluetooth] <4>[102152.653263] hci_suspend_notifier+0x42/0x7a [bluetooth] <4>[102152.653268] notifier_call_chain+0x43/0x6b <4>[102152.653271] __blocking_notifier_call_chain+0x48/0x69 <4>[102152.653273] __pm_notifier_call_chain+0x22/0x39 <4>[102152.653276] pm_suspend+0x287/0x57c <4>[102152.653278] state_store+0xae/0xe5 <4>[102152.653281] kernfs_fop_write+0x109/0x173 <4>[102152.653284] __vfs_write+0x16f/0x1a2 <4>[102152.653287] ? selinux_file_permission+0xca/0x16f <4>[102152.653289] ? security_file_permission+0x36/0x109 <4>[102152.653291] vfs_write+0x114/0x21d <4>[102152.653293] __x64_sys_write+0x7b/0xdb <4>[102152.653296] do_syscall_64+0x59/0x194 <4>[102152.653299] entry_SYSCALL_64_after_hwframe+0x5c/0xc1 This patch holds the reference count of the hci_dev object while processing it in hci_suspend_notifier to avoid potential crash caused by the race condition.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2023-53368
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 0.62%
||
7 Day CHG-0.01%
Published-17 Sep, 2025 | 14:56
Updated-14 Jan, 2026 | 19:16
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
tracing: Fix race issue between cpu buffer write and swap

In the Linux kernel, the following vulnerability has been resolved: tracing: Fix race issue between cpu buffer write and swap Warning happened in rb_end_commit() at code: if (RB_WARN_ON(cpu_buffer, !local_read(&cpu_buffer->committing))) WARNING: CPU: 0 PID: 139 at kernel/trace/ring_buffer.c:3142 rb_commit+0x402/0x4a0 Call Trace: ring_buffer_unlock_commit+0x42/0x250 trace_buffer_unlock_commit_regs+0x3b/0x250 trace_event_buffer_commit+0xe5/0x440 trace_event_buffer_reserve+0x11c/0x150 trace_event_raw_event_sched_switch+0x23c/0x2c0 __traceiter_sched_switch+0x59/0x80 __schedule+0x72b/0x1580 schedule+0x92/0x120 worker_thread+0xa0/0x6f0 It is because the race between writing event into cpu buffer and swapping cpu buffer through file per_cpu/cpu0/snapshot: Write on CPU 0 Swap buffer by per_cpu/cpu0/snapshot on CPU 1 -------- -------- tracing_snapshot_write() [...] ring_buffer_lock_reserve() cpu_buffer = buffer->buffers[cpu]; // 1. Suppose find 'cpu_buffer_a'; [...] rb_reserve_next_event() [...] ring_buffer_swap_cpu() if (local_read(&cpu_buffer_a->committing)) goto out_dec; if (local_read(&cpu_buffer_b->committing)) goto out_dec; buffer_a->buffers[cpu] = cpu_buffer_b; buffer_b->buffers[cpu] = cpu_buffer_a; // 2. cpu_buffer has swapped here. rb_start_commit(cpu_buffer); if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { // 3. This check passed due to 'cpu_buffer->buffer' [...] // has not changed here. return NULL; } cpu_buffer_b->buffer = buffer_a; cpu_buffer_a->buffer = buffer_b; [...] // 4. Reserve event from 'cpu_buffer_a'. ring_buffer_unlock_commit() [...] cpu_buffer = buffer->buffers[cpu]; // 5. Now find 'cpu_buffer_b' !!! rb_commit(cpu_buffer) rb_end_commit() // 6. WARN for the wrong 'committing' state !!! Based on above analysis, we can easily reproduce by following testcase: ``` bash #!/bin/bash dmesg -n 7 sysctl -w kernel.panic_on_warn=1 TR=/sys/kernel/tracing echo 7 > ${TR}/buffer_size_kb echo "sched:sched_switch" > ${TR}/set_event while [ true ]; do echo 1 > ${TR}/per_cpu/cpu0/snapshot done & while [ true ]; do echo 1 > ${TR}/per_cpu/cpu0/snapshot done & while [ true ]; do echo 1 > ${TR}/per_cpu/cpu0/snapshot done & ``` To fix it, IIUC, we can use smp_call_function_single() to do the swap on the target cpu where the buffer is located, so that above race would be avoided.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2023-52785
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.09% / 26.11%
||
7 Day CHG~0.00%
Published-21 May, 2024 | 15:31
Updated-04 May, 2025 | 07:43
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
scsi: ufs: core: Fix racing issue between ufshcd_mcq_abort() and ISR

In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: Fix racing issue between ufshcd_mcq_abort() and ISR If command timeout happens and cq complete IRQ is raised at the same time, ufshcd_mcq_abort clears lprb->cmd and a NULL pointer deref happens in the ISR. Error log: ufshcd_abort: Device abort task at tag 18 Unable to handle kernel NULL pointer dereference at virtual address 0000000000000108 pc : [0xffffffe27ef867ac] scsi_dma_unmap+0xc/0x44 lr : [0xffffffe27f1b898c] ufshcd_release_scsi_cmd+0x24/0x114

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2023-53501
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.02% / 5.44%
||
7 Day CHG~0.00%
Published-01 Oct, 2025 | 11:45
Updated-23 Jan, 2026 | 02:05
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
iommu/amd/iommu_v2: Fix pasid_state refcount dec hit 0 warning on pasid unbind

In the Linux kernel, the following vulnerability has been resolved: iommu/amd/iommu_v2: Fix pasid_state refcount dec hit 0 warning on pasid unbind When unbinding pasid - a race condition exists vs outstanding page faults. To prevent this, the pasid_state object contains a refcount. * set to 1 on pasid bind * incremented on each ppr notification start * decremented on each ppr notification done * decremented on pasid unbind Since refcount_dec assumes that refcount will never reach 0: the current implementation causes the following to be invoked on pasid unbind: REFCOUNT_WARN("decrement hit 0; leaking memory") Fix this issue by changing refcount_dec to refcount_dec_and_test to explicitly handle refcount=1.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CVE-2023-53310
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 0.61%
||
7 Day CHG-0.01%
Published-16 Sep, 2025 | 16:11
Updated-14 Jan, 2026 | 19:16
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
power: supply: axp288_fuel_gauge: Fix external_power_changed race

In the Linux kernel, the following vulnerability has been resolved: power: supply: axp288_fuel_gauge: Fix external_power_changed race fuel_gauge_external_power_changed() dereferences info->bat, which gets sets in axp288_fuel_gauge_probe() like this: info->bat = devm_power_supply_register(dev, &fuel_gauge_desc, &psy_cfg); As soon as devm_power_supply_register() has called device_add() the external_power_changed callback can get called. So there is a window where fuel_gauge_external_power_changed() may get called while info->bat has not been set yet leading to a NULL pointer dereference. Fixing this is easy. The external_power_changed callback gets passed the power_supply which will eventually get stored in info->bat, so fuel_gauge_external_power_changed() can simply directly use the passed in psy argument which is always valid.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2023-53329
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 0.79%
||
7 Day CHG-0.01%
Published-16 Sep, 2025 | 16:12
Updated-14 Jan, 2026 | 19:16
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
workqueue: fix data race with the pwq->stats[] increment

In the Linux kernel, the following vulnerability has been resolved: workqueue: fix data race with the pwq->stats[] increment KCSAN has discovered a data race in kernel/workqueue.c:2598: [ 1863.554079] ================================================================== [ 1863.554118] BUG: KCSAN: data-race in process_one_work / process_one_work [ 1863.554142] write to 0xffff963d99d79998 of 8 bytes by task 5394 on cpu 27: [ 1863.554154] process_one_work (kernel/workqueue.c:2598) [ 1863.554166] worker_thread (./include/linux/list.h:292 kernel/workqueue.c:2752) [ 1863.554177] kthread (kernel/kthread.c:389) [ 1863.554186] ret_from_fork (arch/x86/kernel/process.c:145) [ 1863.554197] ret_from_fork_asm (arch/x86/entry/entry_64.S:312) [ 1863.554213] read to 0xffff963d99d79998 of 8 bytes by task 5450 on cpu 12: [ 1863.554224] process_one_work (kernel/workqueue.c:2598) [ 1863.554235] worker_thread (./include/linux/list.h:292 kernel/workqueue.c:2752) [ 1863.554247] kthread (kernel/kthread.c:389) [ 1863.554255] ret_from_fork (arch/x86/kernel/process.c:145) [ 1863.554266] ret_from_fork_asm (arch/x86/entry/entry_64.S:312) [ 1863.554280] value changed: 0x0000000000001766 -> 0x000000000000176a [ 1863.554295] Reported by Kernel Concurrency Sanitizer on: [ 1863.554303] CPU: 12 PID: 5450 Comm: kworker/u64:1 Tainted: G L 6.5.0-rc6+ #44 [ 1863.554314] Hardware name: ASRock X670E PG Lightning/X670E PG Lightning, BIOS 1.21 04/26/2023 [ 1863.554322] Workqueue: btrfs-endio btrfs_end_bio_work [btrfs] [ 1863.554941] ================================================================== lockdep_invariant_state(true); → pwq->stats[PWQ_STAT_STARTED]++; trace_workqueue_execute_start(work); worker->current_func(work); Moving pwq->stats[PWQ_STAT_STARTED]++; before the line raw_spin_unlock_irq(&pool->lock); resolves the data race without performance penalty. KCSAN detected at least one additional data race: [ 157.834751] ================================================================== [ 157.834770] BUG: KCSAN: data-race in process_one_work / process_one_work [ 157.834793] write to 0xffff9934453f77a0 of 8 bytes by task 468 on cpu 29: [ 157.834804] process_one_work (/home/marvin/linux/kernel/linux_torvalds/kernel/workqueue.c:2606) [ 157.834815] worker_thread (/home/marvin/linux/kernel/linux_torvalds/./include/linux/list.h:292 /home/marvin/linux/kernel/linux_torvalds/kernel/workqueue.c:2752) [ 157.834826] kthread (/home/marvin/linux/kernel/linux_torvalds/kernel/kthread.c:389) [ 157.834834] ret_from_fork (/home/marvin/linux/kernel/linux_torvalds/arch/x86/kernel/process.c:145) [ 157.834845] ret_from_fork_asm (/home/marvin/linux/kernel/linux_torvalds/arch/x86/entry/entry_64.S:312) [ 157.834859] read to 0xffff9934453f77a0 of 8 bytes by task 214 on cpu 7: [ 157.834868] process_one_work (/home/marvin/linux/kernel/linux_torvalds/kernel/workqueue.c:2606) [ 157.834879] worker_thread (/home/marvin/linux/kernel/linux_torvalds/./include/linux/list.h:292 /home/marvin/linux/kernel/linux_torvalds/kernel/workqueue.c:2752) [ 157.834890] kthread (/home/marvin/linux/kernel/linux_torvalds/kernel/kthread.c:389) [ 157.834897] ret_from_fork (/home/marvin/linux/kernel/linux_torvalds/arch/x86/kernel/process.c:145) [ 157.834907] ret_from_fork_asm (/home/marvin/linux/kernel/linux_torvalds/arch/x86/entry/entry_64.S:312) [ 157.834920] value changed: 0x000000000000052a -> 0x0000000000000532 [ 157.834933] Reported by Kernel Concurrency Sanitizer on: [ 157.834941] CPU: 7 PID: 214 Comm: kworker/u64:2 Tainted: G L 6.5.0-rc7-kcsan-00169-g81eaf55a60fc #4 [ 157.834951] Hardware name: ASRock X670E PG Lightning/X670E PG Lightning, BIOS 1.21 04/26/2023 [ 157.834958] Workqueue: btrfs-endio btrfs_end_bio_work [btrfs] [ 157.835567] ================================================================== in code: trace_workqueue_execute_end(work, worker->current_func); → pwq->stats[PWQ_STAT_COM ---truncated---

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2023-53020
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.02% / 4.74%
||
7 Day CHG~0.00%
Published-27 Mar, 2025 | 16:43
Updated-01 Oct, 2025 | 18:15
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
l2tp: close all race conditions in l2tp_tunnel_register()

In the Linux kernel, the following vulnerability has been resolved: l2tp: close all race conditions in l2tp_tunnel_register() The code in l2tp_tunnel_register() is racy in several ways: 1. It modifies the tunnel socket _after_ publishing it. 2. It calls setup_udp_tunnel_sock() on an existing socket without locking. 3. It changes sock lock class on fly, which triggers many syzbot reports. This patch amends all of them by moving socket initialization code before publishing and under sock lock. As suggested by Jakub, the l2tp lockdep class is not necessary as we can just switch to bh_lock_sock_nested().

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2023-53046
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 2.36%
||
7 Day CHG~0.00%
Published-02 May, 2025 | 15:55
Updated-12 Nov, 2025 | 16:46
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
Bluetooth: Fix race condition in hci_cmd_sync_clear

In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Fix race condition in hci_cmd_sync_clear There is a potential race condition in hci_cmd_sync_work and hci_cmd_sync_clear, and could lead to use-after-free. For instance, hci_cmd_sync_work is added to the 'req_workqueue' after cancel_work_sync The entry of 'cmd_sync_work_list' may be freed in hci_cmd_sync_clear, and causing kernel panic when it is used in 'hci_cmd_sync_work'. Here's the call trace: dump_stack_lvl+0x49/0x63 print_report.cold+0x5e/0x5d3 ? hci_cmd_sync_work+0x282/0x320 kasan_report+0xaa/0x120 ? hci_cmd_sync_work+0x282/0x320 __asan_report_load8_noabort+0x14/0x20 hci_cmd_sync_work+0x282/0x320 process_one_work+0x77b/0x11c0 ? _raw_spin_lock_irq+0x8e/0xf0 worker_thread+0x544/0x1180 ? poll_idle+0x1e0/0x1e0 kthread+0x285/0x320 ? process_one_work+0x11c0/0x11c0 ? kthread_complete_and_exit+0x30/0x30 ret_from_fork+0x22/0x30 </TASK> Allocated by task 266: kasan_save_stack+0x26/0x50 __kasan_kmalloc+0xae/0xe0 kmem_cache_alloc_trace+0x191/0x350 hci_cmd_sync_queue+0x97/0x2b0 hci_update_passive_scan+0x176/0x1d0 le_conn_complete_evt+0x1b5/0x1a00 hci_le_conn_complete_evt+0x234/0x340 hci_le_meta_evt+0x231/0x4e0 hci_event_packet+0x4c5/0xf00 hci_rx_work+0x37d/0x880 process_one_work+0x77b/0x11c0 worker_thread+0x544/0x1180 kthread+0x285/0x320 ret_from_fork+0x22/0x30 Freed by task 269: kasan_save_stack+0x26/0x50 kasan_set_track+0x25/0x40 kasan_set_free_info+0x24/0x40 ____kasan_slab_free+0x176/0x1c0 __kasan_slab_free+0x12/0x20 slab_free_freelist_hook+0x95/0x1a0 kfree+0xba/0x2f0 hci_cmd_sync_clear+0x14c/0x210 hci_unregister_dev+0xff/0x440 vhci_release+0x7b/0xf0 __fput+0x1f3/0x970 ____fput+0xe/0x20 task_work_run+0xd4/0x160 do_exit+0x8b0/0x22a0 do_group_exit+0xba/0x2a0 get_signal+0x1e4a/0x25b0 arch_do_signal_or_restart+0x93/0x1f80 exit_to_user_mode_prepare+0xf5/0x1a0 syscall_exit_to_user_mode+0x26/0x50 ret_from_fork+0x15/0x30

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2023-52771
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.4||MEDIUM
EPSS-0.01% / 0.80%
||
7 Day CHG~0.00%
Published-21 May, 2024 | 15:30
Updated-23 Sep, 2025 | 19:57
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
cxl/port: Fix delete_endpoint() vs parent unregistration race

In the Linux kernel, the following vulnerability has been resolved: cxl/port: Fix delete_endpoint() vs parent unregistration race The CXL subsystem, at cxl_mem ->probe() time, establishes a lineage of ports (struct cxl_port objects) between an endpoint and the root of a CXL topology. Each port including the endpoint port is attached to the cxl_port driver. Given that setup, it follows that when either any port in that lineage goes through a cxl_port ->remove() event, or the memdev goes through a cxl_mem ->remove() event. The hierarchy below the removed port, or the entire hierarchy if the memdev is removed needs to come down. The delete_endpoint() callback is careful to check whether it is being called to tear down the hierarchy, or if it is only being called to teardown the memdev because an ancestor port is going through ->remove(). That care needs to take the device_lock() of the endpoint's parent. Which requires 2 bugs to be fixed: 1/ A reference on the parent is needed to prevent use-after-free scenarios like this signature: BUG: spinlock bad magic on CPU#0, kworker/u56:0/11 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS edk2-20230524-3.fc38 05/24/2023 Workqueue: cxl_port detach_memdev [cxl_core] RIP: 0010:spin_bug+0x65/0xa0 Call Trace: do_raw_spin_lock+0x69/0xa0 __mutex_lock+0x695/0xb80 delete_endpoint+0xad/0x150 [cxl_core] devres_release_all+0xb8/0x110 device_unbind_cleanup+0xe/0x70 device_release_driver_internal+0x1d2/0x210 detach_memdev+0x15/0x20 [cxl_core] process_one_work+0x1e3/0x4c0 worker_thread+0x1dd/0x3d0 2/ In the case of RCH topologies, the parent device that needs to be locked is not always @port->dev as returned by cxl_mem_find_port(), use endpoint->dev.parent instead.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2023-52740
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.07% / 21.85%
||
7 Day CHG~0.00%
Published-21 May, 2024 | 15:23
Updated-23 Sep, 2025 | 19:08
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
powerpc/64s/interrupt: Fix interrupt exit race with security mitigation switch

In the Linux kernel, the following vulnerability has been resolved: powerpc/64s/interrupt: Fix interrupt exit race with security mitigation switch The RFI and STF security mitigation options can flip the interrupt_exit_not_reentrant static branch condition concurrently with the interrupt exit code which tests that branch. Interrupt exit tests this condition to set MSR[EE|RI] for exit, then again in the case a soft-masked interrupt is found pending, to recover the MSR so the interrupt can be replayed before attempting to exit again. If the condition changes between these two tests, the MSR and irq soft-mask state will become corrupted, leading to warnings and possible crashes. For example, if the branch is initially true then false, MSR[EE] will be 0 but PACA_IRQ_HARD_DIS clear and EE may not get enabled, leading to warnings in irq_64.c.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2023-52568
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.02% / 3.96%
||
7 Day CHG~0.00%
Published-02 Mar, 2024 | 21:59
Updated-04 May, 2025 | 07:38
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
x86/sgx: Resolves SECS reclaim vs. page fault for EAUG race

In the Linux kernel, the following vulnerability has been resolved: x86/sgx: Resolves SECS reclaim vs. page fault for EAUG race The SGX EPC reclaimer (ksgxd) may reclaim the SECS EPC page for an enclave and set secs.epc_page to NULL. The SECS page is used for EAUG and ELDU in the SGX page fault handler. However, the NULL check for secs.epc_page is only done for ELDU, not EAUG before being used. Fix this by doing the same NULL check and reloading of the SECS page as needed for both EAUG and ELDU. The SECS page holds global enclave metadata. It can only be reclaimed when there are no other enclave pages remaining. At that point, virtually nothing can be done with the enclave until the SECS page is paged back in. An enclave can not run nor generate page faults without a resident SECS page. But it is still possible for a #PF for a non-SECS page to race with paging out the SECS page: when the last resident non-SECS page A triggers a #PF in a non-resident page B, and then page A and the SECS both are paged out before the #PF on B is handled. Hitting this bug requires that race triggered with a #PF for EAUG. Following is a trace when it happens. BUG: kernel NULL pointer dereference, address: 0000000000000000 RIP: 0010:sgx_encl_eaug_page+0xc7/0x210 Call Trace: ? __kmem_cache_alloc_node+0x16a/0x440 ? xa_load+0x6e/0xa0 sgx_vma_fault+0x119/0x230 __do_fault+0x36/0x140 do_fault+0x12f/0x400 __handle_mm_fault+0x728/0x1110 handle_mm_fault+0x105/0x310 do_user_addr_fault+0x1ee/0x750 ? __this_cpu_preempt_check+0x13/0x20 exc_page_fault+0x76/0x180 asm_exc_page_fault+0x27/0x30

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-476
NULL Pointer Dereference
CVE-2023-52654
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.11% / 28.77%
||
7 Day CHG~0.00%
Published-09 May, 2024 | 16:37
Updated-18 Sep, 2025 | 17:01
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
io_uring/af_unix: disable sending io_uring over sockets

In the Linux kernel, the following vulnerability has been resolved: io_uring/af_unix: disable sending io_uring over sockets File reference cycles have caused lots of problems for io_uring in the past, and it still doesn't work exactly right and races with unix_stream_read_generic(). The safest fix would be to completely disallow sending io_uring files via sockets via SCM_RIGHT, so there are no possible cycles invloving registered files and thus rendering SCM accounting on the io_uring side unnecessary.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CVE-2023-52478
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 0.25%
||
7 Day CHG~0.00%
Published-29 Feb, 2024 | 05:43
Updated-05 Jan, 2026 | 10:16
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
HID: logitech-hidpp: Fix kernel crash on receiver USB disconnect

In the Linux kernel, the following vulnerability has been resolved: HID: logitech-hidpp: Fix kernel crash on receiver USB disconnect hidpp_connect_event() has *four* time-of-check vs time-of-use (TOCTOU) races when it races with itself. hidpp_connect_event() primarily runs from a workqueue but it also runs on probe() and if a "device-connected" packet is received by the hw when the thread running hidpp_connect_event() from probe() is waiting on the hw, then a second thread running hidpp_connect_event() will be started from the workqueue. This opens the following races (note the below code is simplified): 1. Retrieving + printing the protocol (harmless race): if (!hidpp->protocol_major) { hidpp_root_get_protocol_version() hidpp->protocol_major = response.rap.params[0]; } We can actually see this race hit in the dmesg in the abrt output attached to rhbz#2227968: [ 3064.624215] logitech-hidpp-device 0003:046D:4071.0049: HID++ 4.5 device connected. [ 3064.658184] logitech-hidpp-device 0003:046D:4071.0049: HID++ 4.5 device connected. Testing with extra logging added has shown that after this the 2 threads take turn grabbing the hw access mutex (send_mutex) so they ping-pong through all the other TOCTOU cases managing to hit all of them: 2. Updating the name to the HIDPP name (harmless race): if (hidpp->name == hdev->name) { ... hidpp->name = new_name; } 3. Initializing the power_supply class for the battery (problematic!): hidpp_initialize_battery() { if (hidpp->battery.ps) return 0; probe_battery(); /* Blocks, threads take turns executing this */ hidpp->battery.desc.properties = devm_kmemdup(dev, hidpp_battery_props, cnt, GFP_KERNEL); hidpp->battery.ps = devm_power_supply_register(&hidpp->hid_dev->dev, &hidpp->battery.desc, cfg); } 4. Creating delayed input_device (potentially problematic): if (hidpp->delayed_input) return; hidpp->delayed_input = hidpp_allocate_input(hdev); The really big problem here is 3. Hitting the race leads to the following sequence: hidpp->battery.desc.properties = devm_kmemdup(dev, hidpp_battery_props, cnt, GFP_KERNEL); hidpp->battery.ps = devm_power_supply_register(&hidpp->hid_dev->dev, &hidpp->battery.desc, cfg); ... hidpp->battery.desc.properties = devm_kmemdup(dev, hidpp_battery_props, cnt, GFP_KERNEL); hidpp->battery.ps = devm_power_supply_register(&hidpp->hid_dev->dev, &hidpp->battery.desc, cfg); So now we have registered 2 power supplies for the same battery, which looks a bit weird from userspace's pov but this is not even the really big problem. Notice how: 1. This is all devm-maganaged 2. The hidpp->battery.desc struct is shared between the 2 power supplies 3. hidpp->battery.desc.properties points to the result from the second devm_kmemdup() This causes a use after free scenario on USB disconnect of the receiver: 1. The last registered power supply class device gets unregistered 2. The memory from the last devm_kmemdup() call gets freed, hidpp->battery.desc.properties now points to freed memory 3. The first registered power supply class device gets unregistered, this involves sending a remove uevent to userspace which invokes power_supply_uevent() to fill the uevent data 4. power_supply_uevent() uses hidpp->battery.desc.properties which now points to freed memory leading to backtraces like this one: Sep 22 20:01:35 eric kernel: BUG: unable to handle page fault for address: ffffb2140e017f08 ... Sep 22 20:01:35 eric kernel: Workqueue: usb_hub_wq hub_event Sep 22 20:01:35 eric kernel: RIP: 0010:power_supply_uevent+0xee/0x1d0 ... Sep 22 20:01:35 eric kernel: ? asm_exc_page_fault+0x26/0x30 Sep 22 20:01:35 eric kernel: ? power_supply_uevent+0xee/0x1d0 Sep 22 20:01:35 eric kernel: ? power_supply_uevent+0x10d/0x1d0 Sep 22 20:01:35 eric kernel: dev_uevent+0x10f/0x2d0 Sep 22 20:01:35 eric kernel: kobject_uevent_env+0x291/0x680 Sep 22 20:01:35 eric kernel: ---truncated---

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-367
Time-of-check Time-of-use (TOCTOU) Race Condition
CVE-2024-42227
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 2.88%
||
7 Day CHG~0.00%
Published-30 Jul, 2024 | 07:47
Updated-04 May, 2025 | 09:24
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
drm/amd/display: Fix overlapping copy within dml_core_mode_programming

In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix overlapping copy within dml_core_mode_programming [WHY] &mode_lib->mp.Watermark and &locals->Watermark are the same address. memcpy may lead to unexpected behavior. [HOW] memmove should be used.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CVE-2024-42300
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.02% / 5.96%
||
7 Day CHG~0.00%
Published-17 Aug, 2024 | 09:09
Updated-29 Sep, 2025 | 15:07
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
erofs: fix race in z_erofs_get_gbuf()

In the Linux kernel, the following vulnerability has been resolved: erofs: fix race in z_erofs_get_gbuf() In z_erofs_get_gbuf(), the current task may be migrated to another CPU between `z_erofs_gbuf_id()` and `spin_lock(&gbuf->lock)`. Therefore, z_erofs_put_gbuf() will trigger the following issue which was found by stress test: <2>[772156.434168] kernel BUG at fs/erofs/zutil.c:58! .. <4>[772156.435007] <4>[772156.439237] CPU: 0 PID: 3078 Comm: stress Kdump: loaded Tainted: G E 6.10.0-rc7+ #2 <4>[772156.439239] Hardware name: Alibaba Cloud Alibaba Cloud ECS, BIOS 1.0.0 01/01/2017 <4>[772156.439241] pstate: 83400005 (Nzcv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--) <4>[772156.439243] pc : z_erofs_put_gbuf+0x64/0x70 [erofs] <4>[772156.439252] lr : z_erofs_lz4_decompress+0x600/0x6a0 [erofs] .. <6>[772156.445958] stress (3127): drop_caches: 1 <4>[772156.446120] Call trace: <4>[772156.446121] z_erofs_put_gbuf+0x64/0x70 [erofs] <4>[772156.446761] z_erofs_lz4_decompress+0x600/0x6a0 [erofs] <4>[772156.446897] z_erofs_decompress_queue+0x740/0xa10 [erofs] <4>[772156.447036] z_erofs_runqueue+0x428/0x8c0 [erofs] <4>[772156.447160] z_erofs_readahead+0x224/0x390 [erofs] ..

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2023-52589
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 1.22%
||
7 Day CHG~0.00%
Published-06 Mar, 2024 | 06:45
Updated-04 May, 2025 | 07:39
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
media: rkisp1: Fix IRQ disable race issue

In the Linux kernel, the following vulnerability has been resolved: media: rkisp1: Fix IRQ disable race issue In rkisp1_isp_stop() and rkisp1_csi_disable() the driver masks the interrupts and then apparently assumes that the interrupt handler won't be running, and proceeds in the stop procedure. This is not the case, as the interrupt handler can already be running, which would lead to the ISP being disabled while the interrupt handler handling a captured frame. This brings up two issues: 1) the ISP could be powered off while the interrupt handler is still running and accessing registers, leading to board lockup, and 2) the interrupt handler code and the code that disables the streaming might do things that conflict. It is not clear to me if 2) causes a real issue, but 1) can be seen with a suitable delay (or printk in my case) in the interrupt handler, leading to board lockup.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2023-52639
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 1.22%
||
7 Day CHG~0.00%
Published-03 Apr, 2024 | 14:54
Updated-04 May, 2025 | 07:40
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
KVM: s390: vsie: fix race during shadow creation

In the Linux kernel, the following vulnerability has been resolved: KVM: s390: vsie: fix race during shadow creation Right now it is possible to see gmap->private being zero in kvm_s390_vsie_gmap_notifier resulting in a crash. This is due to the fact that we add gmap->private == kvm after creation: static int acquire_gmap_shadow(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page) { [...] gmap = gmap_shadow(vcpu->arch.gmap, asce, edat); if (IS_ERR(gmap)) return PTR_ERR(gmap); gmap->private = vcpu->kvm; Let children inherit the private field of the parent.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2024-41005
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 2.06%
||
7 Day CHG~0.00%
Published-12 Jul, 2024 | 12:44
Updated-05 Jan, 2026 | 10:37
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
netpoll: Fix race condition in netpoll_owner_active

In the Linux kernel, the following vulnerability has been resolved: netpoll: Fix race condition in netpoll_owner_active KCSAN detected a race condition in netpoll: BUG: KCSAN: data-race in net_rx_action / netpoll_send_skb write (marked) to 0xffff8881164168b0 of 4 bytes by interrupt on cpu 10: net_rx_action (./include/linux/netpoll.h:90 net/core/dev.c:6712 net/core/dev.c:6822) <snip> read to 0xffff8881164168b0 of 4 bytes by task 1 on cpu 2: netpoll_send_skb (net/core/netpoll.c:319 net/core/netpoll.c:345 net/core/netpoll.c:393) netpoll_send_udp (net/core/netpoll.c:?) <snip> value changed: 0x0000000a -> 0xffffffff This happens because netpoll_owner_active() needs to check if the current CPU is the owner of the lock, touching napi->poll_owner non atomically. The ->poll_owner field contains the current CPU holding the lock. Use an atomic read to check if the poll owner is the current CPU.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2024-40905
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 0.94%
||
7 Day CHG~0.00%
Published-12 Jul, 2024 | 12:20
Updated-03 Nov, 2025 | 22:17
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
ipv6: fix possible race in __fib6_drop_pcpu_from()

In the Linux kernel, the following vulnerability has been resolved: ipv6: fix possible race in __fib6_drop_pcpu_from() syzbot found a race in __fib6_drop_pcpu_from() [1] If compiler reads more than once (*ppcpu_rt), second read could read NULL, if another cpu clears the value in rt6_get_pcpu_route(). Add a READ_ONCE() to prevent this race. Also add rcu_read_lock()/rcu_read_unlock() because we rely on RCU protection while dereferencing pcpu_rt. [1] Oops: general protection fault, probably for non-canonical address 0xdffffc0000000012: 0000 [#1] PREEMPT SMP KASAN PTI KASAN: null-ptr-deref in range [0x0000000000000090-0x0000000000000097] CPU: 0 PID: 7543 Comm: kworker/u8:17 Not tainted 6.10.0-rc1-syzkaller-00013-g2bfcfd584ff5 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/02/2024 Workqueue: netns cleanup_net RIP: 0010:__fib6_drop_pcpu_from.part.0+0x10a/0x370 net/ipv6/ip6_fib.c:984 Code: f8 48 c1 e8 03 80 3c 28 00 0f 85 16 02 00 00 4d 8b 3f 4d 85 ff 74 31 e8 74 a7 fa f7 49 8d bf 90 00 00 00 48 89 f8 48 c1 e8 03 <80> 3c 28 00 0f 85 1e 02 00 00 49 8b 87 90 00 00 00 48 8b 0c 24 48 RSP: 0018:ffffc900040df070 EFLAGS: 00010206 RAX: 0000000000000012 RBX: 0000000000000001 RCX: ffffffff89932e16 RDX: ffff888049dd1e00 RSI: ffffffff89932d7c RDI: 0000000000000091 RBP: dffffc0000000000 R08: 0000000000000005 R09: 0000000000000007 R10: 0000000000000001 R11: 0000000000000006 R12: ffff88807fa080b8 R13: fffffbfff1a9a07d R14: ffffed100ff41022 R15: 0000000000000001 FS: 0000000000000000(0000) GS:ffff8880b9200000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000001b32c26000 CR3: 000000005d56e000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> __fib6_drop_pcpu_from net/ipv6/ip6_fib.c:966 [inline] fib6_drop_pcpu_from net/ipv6/ip6_fib.c:1027 [inline] fib6_purge_rt+0x7f2/0x9f0 net/ipv6/ip6_fib.c:1038 fib6_del_route net/ipv6/ip6_fib.c:1998 [inline] fib6_del+0xa70/0x17b0 net/ipv6/ip6_fib.c:2043 fib6_clean_node+0x426/0x5b0 net/ipv6/ip6_fib.c:2205 fib6_walk_continue+0x44f/0x8d0 net/ipv6/ip6_fib.c:2127 fib6_walk+0x182/0x370 net/ipv6/ip6_fib.c:2175 fib6_clean_tree+0xd7/0x120 net/ipv6/ip6_fib.c:2255 __fib6_clean_all+0x100/0x2d0 net/ipv6/ip6_fib.c:2271 rt6_sync_down_dev net/ipv6/route.c:4906 [inline] rt6_disable_ip+0x7ed/0xa00 net/ipv6/route.c:4911 addrconf_ifdown.isra.0+0x117/0x1b40 net/ipv6/addrconf.c:3855 addrconf_notify+0x223/0x19e0 net/ipv6/addrconf.c:3778 notifier_call_chain+0xb9/0x410 kernel/notifier.c:93 call_netdevice_notifiers_info+0xbe/0x140 net/core/dev.c:1992 call_netdevice_notifiers_extack net/core/dev.c:2030 [inline] call_netdevice_notifiers net/core/dev.c:2044 [inline] dev_close_many+0x333/0x6a0 net/core/dev.c:1585 unregister_netdevice_many_notify+0x46d/0x19f0 net/core/dev.c:11193 unregister_netdevice_many net/core/dev.c:11276 [inline] default_device_exit_batch+0x85b/0xae0 net/core/dev.c:11759 ops_exit_list+0x128/0x180 net/core/net_namespace.c:178 cleanup_net+0x5b7/0xbf0 net/core/net_namespace.c:640 process_one_work+0x9fb/0x1b60 kernel/workqueue.c:3231 process_scheduled_works kernel/workqueue.c:3312 [inline] worker_thread+0x6c8/0xf70 kernel/workqueue.c:3393 kthread+0x2c1/0x3a0 kernel/kthread.c:389 ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-476
NULL Pointer Dereference
CVE-2024-38613
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.02% / 4.99%
||
7 Day CHG~0.00%
Published-19 Jun, 2024 | 13:56
Updated-17 Sep, 2025 | 17:06
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
m68k: Fix spinlock race in kernel thread creation

In the Linux kernel, the following vulnerability has been resolved: m68k: Fix spinlock race in kernel thread creation Context switching does take care to retain the correct lock owner across the switch from 'prev' to 'next' tasks. This does rely on interrupts remaining disabled for the entire duration of the switch. This condition is guaranteed for normal process creation and context switching between already running processes, because both 'prev' and 'next' already have interrupts disabled in their saved copies of the status register. The situation is different for newly created kernel threads. The status register is set to PS_S in copy_thread(), which does leave the IPL at 0. Upon restoring the 'next' thread's status register in switch_to() aka resume(), interrupts then become enabled prematurely. resume() then returns via ret_from_kernel_thread() and schedule_tail() where run queue lock is released (see finish_task_switch() and finish_lock_switch()). A timer interrupt calling scheduler_tick() before the lock is released in finish_task_switch() will find the lock already taken, with the current task as lock owner. This causes a spinlock recursion warning as reported by Guenter Roeck. As far as I can ascertain, this race has been opened in commit 533e6903bea0 ("m68k: split ret_from_fork(), simplify kernel_thread()") but I haven't done a detailed study of kernel history so it may well predate that commit. Interrupts cannot be disabled in the saved status register copy for kernel threads (init will complain about interrupts disabled when finally starting user space). Disable interrupts temporarily when switching the tasks' register sets in resume(). Note that a simple oriw 0x700,%sr after restoring sr is not enough here - this leaves enough of a race for the 'spinlock recursion' warning to still be observed. Tested on ARAnyM and qemu (Quadra 800 emulation).

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2024-38601
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 2.16%
||
7 Day CHG~0.00%
Published-19 Jun, 2024 | 13:48
Updated-04 Nov, 2025 | 18:16
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
ring-buffer: Fix a race between readers and resize checks

In the Linux kernel, the following vulnerability has been resolved: ring-buffer: Fix a race between readers and resize checks The reader code in rb_get_reader_page() swaps a new reader page into the ring buffer by doing cmpxchg on old->list.prev->next to point it to the new page. Following that, if the operation is successful, old->list.next->prev gets updated too. This means the underlying doubly-linked list is temporarily inconsistent, page->prev->next or page->next->prev might not be equal back to page for some page in the ring buffer. The resize operation in ring_buffer_resize() can be invoked in parallel. It calls rb_check_pages() which can detect the described inconsistency and stop further tracing: [ 190.271762] ------------[ cut here ]------------ [ 190.271771] WARNING: CPU: 1 PID: 6186 at kernel/trace/ring_buffer.c:1467 rb_check_pages.isra.0+0x6a/0xa0 [ 190.271789] Modules linked in: [...] [ 190.271991] Unloaded tainted modules: intel_uncore_frequency(E):1 skx_edac(E):1 [ 190.272002] CPU: 1 PID: 6186 Comm: cmd.sh Kdump: loaded Tainted: G E 6.9.0-rc6-default #5 158d3e1e6d0b091c34c3b96bfd99a1c58306d79f [ 190.272011] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.0-0-gd239552c-rebuilt.opensuse.org 04/01/2014 [ 190.272015] RIP: 0010:rb_check_pages.isra.0+0x6a/0xa0 [ 190.272023] Code: [...] [ 190.272028] RSP: 0018:ffff9c37463abb70 EFLAGS: 00010206 [ 190.272034] RAX: ffff8eba04b6cb80 RBX: 0000000000000007 RCX: ffff8eba01f13d80 [ 190.272038] RDX: ffff8eba01f130c0 RSI: ffff8eba04b6cd00 RDI: ffff8eba0004c700 [ 190.272042] RBP: ffff8eba0004c700 R08: 0000000000010002 R09: 0000000000000000 [ 190.272045] R10: 00000000ffff7f52 R11: ffff8eba7f600000 R12: ffff8eba0004c720 [ 190.272049] R13: ffff8eba00223a00 R14: 0000000000000008 R15: ffff8eba067a8000 [ 190.272053] FS: 00007f1bd64752c0(0000) GS:ffff8eba7f680000(0000) knlGS:0000000000000000 [ 190.272057] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 190.272061] CR2: 00007f1bd6662590 CR3: 000000010291e001 CR4: 0000000000370ef0 [ 190.272070] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 190.272073] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 190.272077] Call Trace: [ 190.272098] <TASK> [ 190.272189] ring_buffer_resize+0x2ab/0x460 [ 190.272199] __tracing_resize_ring_buffer.part.0+0x23/0xa0 [ 190.272206] tracing_resize_ring_buffer+0x65/0x90 [ 190.272216] tracing_entries_write+0x74/0xc0 [ 190.272225] vfs_write+0xf5/0x420 [ 190.272248] ksys_write+0x67/0xe0 [ 190.272256] do_syscall_64+0x82/0x170 [ 190.272363] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 190.272373] RIP: 0033:0x7f1bd657d263 [ 190.272381] Code: [...] [ 190.272385] RSP: 002b:00007ffe72b643f8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 [ 190.272391] RAX: ffffffffffffffda RBX: 0000000000000002 RCX: 00007f1bd657d263 [ 190.272395] RDX: 0000000000000002 RSI: 0000555a6eb538e0 RDI: 0000000000000001 [ 190.272398] RBP: 0000555a6eb538e0 R08: 000000000000000a R09: 0000000000000000 [ 190.272401] R10: 0000555a6eb55190 R11: 0000000000000246 R12: 00007f1bd6662500 [ 190.272404] R13: 0000000000000002 R14: 00007f1bd6667c00 R15: 0000000000000002 [ 190.272412] </TASK> [ 190.272414] ---[ end trace 0000000000000000 ]--- Note that ring_buffer_resize() calls rb_check_pages() only if the parent trace_buffer has recording disabled. Recent commit d78ab792705c ("tracing: Stop current tracer when resizing buffer") causes that it is now always the case which makes it more likely to experience this issue. The window to hit this race is nonetheless very small. To help reproducing it, one can add a delay loop in rb_get_reader_page(): ret = rb_head_page_replace(reader, cpu_buffer->reader_page); if (!ret) goto spin; for (unsigned i = 0; i < 1U << 26; i++) /* inserted delay loop */ __asm__ __volatile__ ("" : : : "memory"); rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; .. ---truncated---

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2025-38675
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 0.88%
||
7 Day CHG~0.00%
Published-22 Aug, 2025 | 16:04
Updated-11 Jan, 2026 | 16:29
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
xfrm: state: initialize state_ptrs earlier in xfrm_state_find

In the Linux kernel, the following vulnerability has been resolved: xfrm: state: initialize state_ptrs earlier in xfrm_state_find In case of preemption, xfrm_state_look_at will find a different pcpu_id and look up states for that other CPU. If we matched a state for CPU2 in the state_cache while the lookup started on CPU1, we will jump to "found", but the "best" state that we got will be ignored and we will enter the "acquire" block. This block uses state_ptrs, which isn't initialized at this point. Let's initialize state_ptrs just after taking rcu_read_lock. This will also prevent a possible misuse in the future, if someone adjusts this function.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2025-39941
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.02% / 4.48%
||
7 Day CHG~0.00%
Published-04 Oct, 2025 | 07:31
Updated-23 Jan, 2026 | 20:37
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
zram: fix slot write race condition

In the Linux kernel, the following vulnerability has been resolved: zram: fix slot write race condition Parallel concurrent writes to the same zram index result in leaked zsmalloc handles. Schematically we can have something like this: CPU0 CPU1 zram_slot_lock() zs_free(handle) zram_slot_lock() zram_slot_lock() zs_free(handle) zram_slot_lock() compress compress handle = zs_malloc() handle = zs_malloc() zram_slot_lock zram_set_handle(handle) zram_slot_lock zram_slot_lock zram_set_handle(handle) zram_slot_lock Either CPU0 or CPU1 zsmalloc handle will leak because zs_free() is done too early. In fact, we need to reset zram entry right before we set its new handle, all under the same slot lock scope.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2025-38717
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 1.51%
||
7 Day CHG~0.00%
Published-04 Sep, 2025 | 15:33
Updated-25 Nov, 2025 | 22:07
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
net: kcm: Fix race condition in kcm_unattach()

In the Linux kernel, the following vulnerability has been resolved: net: kcm: Fix race condition in kcm_unattach() syzbot found a race condition when kcm_unattach(psock) and kcm_release(kcm) are executed at the same time. kcm_unattach() is missing a check of the flag kcm->tx_stopped before calling queue_work(). If the kcm has a reserved psock, kcm_unattach() might get executed between cancel_work_sync() and unreserve_psock() in kcm_release(), requeuing kcm->tx_work right before kcm gets freed in kcm_done(). Remove kcm->tx_stopped and replace it by the less error-prone disable_work_sync().

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2025-39673
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 1.40%
||
7 Day CHG~0.00%
Published-05 Sep, 2025 | 17:20
Updated-07 Jan, 2026 | 20:40
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
ppp: fix race conditions in ppp_fill_forward_path

In the Linux kernel, the following vulnerability has been resolved: ppp: fix race conditions in ppp_fill_forward_path ppp_fill_forward_path() has two race conditions: 1. The ppp->channels list can change between list_empty() and list_first_entry(), as ppp_lock() is not held. If the only channel is deleted in ppp_disconnect_channel(), list_first_entry() may access an empty head or a freed entry, and trigger a panic. 2. pch->chan can be NULL. When ppp_unregister_channel() is called, pch->chan is set to NULL before pch is removed from ppp->channels. Fix these by using a lockless RCU approach: - Use list_first_or_null_rcu() to safely test and access the first list entry. - Convert list modifications on ppp->channels to their RCU variants and add synchronize_net() after removal. - Check for a NULL pch->chan before dereferencing it.

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-linux_kerneldebian_linuxLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2025-39825
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 0.62%
||
7 Day CHG-0.01%
Published-16 Sep, 2025 | 13:00
Updated-16 Jan, 2026 | 20:37
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
smb: client: fix race with concurrent opens in rename(2)

In the Linux kernel, the following vulnerability has been resolved: smb: client: fix race with concurrent opens in rename(2) Besides sending the rename request to the server, the rename process also involves closing any deferred close, waiting for outstanding I/O to complete as well as marking all existing open handles as deleted to prevent them from deferring closes, which increases the race window for potential concurrent opens on the target file. Fix this by unhashing the dentry in advance to prevent any concurrent opens on the target.

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-debian_linuxlinux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2025-38687
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.02% / 4.53%
||
7 Day CHG+0.01%
Published-04 Sep, 2025 | 15:32
Updated-09 Jan, 2026 | 19:00
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
comedi: fix race between polling and detaching

In the Linux kernel, the following vulnerability has been resolved: comedi: fix race between polling and detaching syzbot reports a use-after-free in comedi in the below link, which is due to comedi gladly removing the allocated async area even though poll requests are still active on the wait_queue_head inside of it. This can cause a use-after-free when the poll entries are later triggered or removed, as the memory for the wait_queue_head has been freed. We need to check there are no tasks queued on any of the subdevices' wait queues before allowing the device to be detached by the `COMEDI_DEVCONFIG` ioctl. Tasks will read-lock `dev->attach_lock` before adding themselves to the subdevice wait queue, so fix the problem in the `COMEDI_DEVCONFIG` ioctl handler by write-locking `dev->attach_lock` before checking that all of the subdevices are safe to be deleted. This includes testing for any sleepers on the subdevices' wait queues. It remains locked until the device has been detached. This requires the `comedi_device_detach()` function to be refactored slightly, moving the bulk of it into new function `comedi_device_detach_locked()`. Note that the refactor of `comedi_device_detach()` results in `comedi_device_cancel_all()` now being called while `dev->attach_lock` is write-locked, which wasn't the case previously, but that does not matter. Thanks to Jens Axboe for diagnosing the problem and co-developing this patch.

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-linux_kerneldebian_linuxLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2025-38632
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 1.38%
||
7 Day CHG~0.00%
Published-22 Aug, 2025 | 16:00
Updated-26 Nov, 2025 | 17:11
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
pinmux: fix race causing mux_owner NULL with active mux_usecount

In the Linux kernel, the following vulnerability has been resolved: pinmux: fix race causing mux_owner NULL with active mux_usecount commit 5a3e85c3c397 ("pinmux: Use sequential access to access desc->pinmux data") tried to address the issue when two client of the same gpio calls pinctrl_select_state() for the same functionality, was resulting in NULL pointer issue while accessing desc->mux_owner. However, issue was not completely fixed due to the way it was handled and it can still result in the same NULL pointer. The issue occurs due to the following interleaving: cpu0 (process A) cpu1 (process B) pin_request() { pin_free() { mutex_lock() desc->mux_usecount--; //becomes 0 .. mutex_unlock() mutex_lock(desc->mux) desc->mux_usecount++; // becomes 1 desc->mux_owner = owner; mutex_unlock(desc->mux) mutex_lock(desc->mux) desc->mux_owner = NULL; mutex_unlock(desc->mux) This sequence leads to a state where the pin appears to be in use (`mux_usecount == 1`) but has no owner (`mux_owner == NULL`), which can cause NULL pointer on next pin_request on the same pin. Ensure that updates to mux_usecount and mux_owner are performed atomically under the same lock. Only clear mux_owner when mux_usecount reaches zero and no new owner has been assigned.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CWE ID-CWE-476
NULL Pointer Dereference
CVE-2025-39966
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.02% / 3.72%
||
7 Day CHG~0.00%
Published-15 Oct, 2025 | 07:55
Updated-03 Feb, 2026 | 14:12
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
iommufd: Fix race during abort for file descriptors

In the Linux kernel, the following vulnerability has been resolved: iommufd: Fix race during abort for file descriptors fput() doesn't actually call file_operations release() synchronously, it puts the file on a work queue and it will be released eventually. This is normally fine, except for iommufd the file and the iommufd_object are tied to gether. The file has the object as it's private_data and holds a users refcount, while the object is expected to remain alive as long as the file is. When the allocation of a new object aborts before installing the file it will fput() the file and then go on to immediately kfree() the obj. This causes a UAF once the workqueue completes the fput() and tries to decrement the users refcount. Fix this by putting the core code in charge of the file lifetime, and call __fput_sync() during abort to ensure that release() is called before kfree. __fput_sync() is a bit too tricky to open code in all the object implementations. Instead the objects tell the core code where the file pointer is and the core will take care of the life cycle. If the object is successfully allocated then the file will hold a users refcount and the iommufd_object cannot be destroyed. It is worth noting that close(); ioctl(IOMMU_DESTROY); doesn't have an issue because close() is already using a synchronous version of fput(). The UAF looks like this: BUG: KASAN: slab-use-after-free in iommufd_eventq_fops_release+0x45/0xc0 drivers/iommu/iommufd/eventq.c:376 Write of size 4 at addr ffff888059c97804 by task syz.0.46/6164 CPU: 0 UID: 0 PID: 6164 Comm: syz.0.46 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/18/2025 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xcd/0x630 mm/kasan/report.c:482 kasan_report+0xe0/0x110 mm/kasan/report.c:595 check_region_inline mm/kasan/generic.c:183 [inline] kasan_check_range+0x100/0x1b0 mm/kasan/generic.c:189 instrument_atomic_read_write include/linux/instrumented.h:96 [inline] atomic_fetch_sub_release include/linux/atomic/atomic-instrumented.h:400 [inline] __refcount_dec include/linux/refcount.h:455 [inline] refcount_dec include/linux/refcount.h:476 [inline] iommufd_eventq_fops_release+0x45/0xc0 drivers/iommu/iommufd/eventq.c:376 __fput+0x402/0xb70 fs/file_table.c:468 task_work_run+0x14d/0x240 kernel/task_work.c:227 resume_user_mode_work include/linux/resume_user_mode.h:50 [inline] exit_to_user_mode_loop+0xeb/0x110 kernel/entry/common.c:43 exit_to_user_mode_prepare include/linux/irq-entry-common.h:225 [inline] syscall_exit_to_user_mode_work include/linux/entry-common.h:175 [inline] syscall_exit_to_user_mode include/linux/entry-common.h:210 [inline] do_syscall_64+0x41c/0x4c0 arch/x86/entry/syscall_64.c:100 entry_SYSCALL_64_after_hwframe+0x77/0x7f

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2025-38448
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 2.27%
||
7 Day CHG~0.00%
Published-25 Jul, 2025 | 15:27
Updated-22 Dec, 2025 | 21:53
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
usb: gadget: u_serial: Fix race condition in TTY wakeup

In the Linux kernel, the following vulnerability has been resolved: usb: gadget: u_serial: Fix race condition in TTY wakeup A race condition occurs when gs_start_io() calls either gs_start_rx() or gs_start_tx(), as those functions briefly drop the port_lock for usb_ep_queue(). This allows gs_close() and gserial_disconnect() to clear port.tty and port_usb, respectively. Use the null-safe TTY Port helper function to wake up TTY. Example CPU1: CPU2: gserial_connect() // lock gs_close() // await lock gs_start_rx() // unlock usb_ep_queue() gs_close() // lock, reset port.tty and unlock gs_start_rx() // lock tty_wakeup() // NPE

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-debian_linuxlinux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2025-38112
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.03% / 6.11%
||
7 Day CHG~0.00%
Published-03 Jul, 2025 | 08:35
Updated-17 Dec, 2025 | 18:13
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
net: Fix TOCTOU issue in sk_is_readable()

In the Linux kernel, the following vulnerability has been resolved: net: Fix TOCTOU issue in sk_is_readable() sk->sk_prot->sock_is_readable is a valid function pointer when sk resides in a sockmap. After the last sk_psock_put() (which usually happens when socket is removed from sockmap), sk->sk_prot gets restored and sk->sk_prot->sock_is_readable becomes NULL. This makes sk_is_readable() racy, if the value of sk->sk_prot is reloaded after the initial check. Which in turn may lead to a null pointer dereference. Ensure the function pointer does not turn NULL after the check.

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-debian_linuxlinux_kernelLinux
CWE ID-CWE-367
Time-of-check Time-of-use (TOCTOU) Race Condition
CVE-2025-38242
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 1.79%
||
7 Day CHG~0.00%
Published-09 Jul, 2025 | 10:42
Updated-19 Nov, 2025 | 15:44
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
mm: userfaultfd: fix race of userfaultfd_move and swap cache

In the Linux kernel, the following vulnerability has been resolved: mm: userfaultfd: fix race of userfaultfd_move and swap cache This commit fixes two kinds of races, they may have different results: Barry reported a BUG_ON in commit c50f8e6053b0, we may see the same BUG_ON if the filemap lookup returned NULL and folio is added to swap cache after that. If another kind of race is triggered (folio changed after lookup) we may see RSS counter is corrupted: [ 406.893936] BUG: Bad rss-counter state mm:ffff0000c5a9ddc0 type:MM_ANONPAGES val:-1 [ 406.894071] BUG: Bad rss-counter state mm:ffff0000c5a9ddc0 type:MM_SHMEMPAGES val:1 Because the folio is being accounted to the wrong VMA. I'm not sure if there will be any data corruption though, seems no. The issues above are critical already. On seeing a swap entry PTE, userfaultfd_move does a lockless swap cache lookup, and tries to move the found folio to the faulting vma. Currently, it relies on checking the PTE value to ensure that the moved folio still belongs to the src swap entry and that no new folio has been added to the swap cache, which turns out to be unreliable. While working and reviewing the swap table series with Barry, following existing races are observed and reproduced [1]: In the example below, move_pages_pte is moving src_pte to dst_pte, where src_pte is a swap entry PTE holding swap entry S1, and S1 is not in the swap cache: CPU1 CPU2 userfaultfd_move move_pages_pte() entry = pte_to_swp_entry(orig_src_pte); // Here it got entry = S1 ... < interrupted> ... <swapin src_pte, alloc and use folio A> // folio A is a new allocated folio // and get installed into src_pte <frees swap entry S1> // src_pte now points to folio A, S1 // has swap count == 0, it can be freed // by folio_swap_swap or swap // allocator's reclaim. <try to swap out another folio B> // folio B is a folio in another VMA. <put folio B to swap cache using S1 > // S1 is freed, folio B can use it // for swap out with no problem. ... folio = filemap_get_folio(S1) // Got folio B here !!! ... < interrupted again> ... <swapin folio B and free S1> // Now S1 is free to be used again. <swapout src_pte & folio A using S1> // Now src_pte is a swap entry PTE // holding S1 again. folio_trylock(folio) move_swap_pte double_pt_lock is_pte_pages_stable // Check passed because src_pte == S1 folio_move_anon_rmap(...) // Moved invalid folio B here !!! The race window is very short and requires multiple collisions of multiple rare events, so it's very unlikely to happen, but with a deliberately constructed reproducer and increased time window, it can be reproduced easily. This can be fixed by checking if the folio returned by filemap is the valid swap cache folio after acquiring the folio lock. Another similar race is possible: filemap_get_folio may return NULL, but folio (A) could be swapped in and then swapped out again using the same swap entry after the lookup. In such a case, folio (A) may remain in the swap cache, so it must be moved too: CPU1 CPU2 userfaultfd_move move_pages_pte() entry = pte_to_swp_entry(orig_src_pte); // Here it got entry = S1, and S1 is not in swap cache folio = filemap_get ---truncated---

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2025-38306
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 1.79%
||
7 Day CHG~0.00%
Published-10 Jul, 2025 | 07:42
Updated-18 Nov, 2025 | 20:41
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
fs/fhandle.c: fix a race in call of has_locked_children()

In the Linux kernel, the following vulnerability has been resolved: fs/fhandle.c: fix a race in call of has_locked_children() may_decode_fh() is calling has_locked_children() while holding no locks. That's an oopsable race... The rest of the callers are safe since they are holding namespace_sem and are guaranteed a positive refcount on the mount in question. Rename the current has_locked_children() to __has_locked_children(), make it static and switch the fs/namespace.c users to it. Make has_locked_children() a wrapper for __has_locked_children(), calling the latter under read_seqlock_excl(&mount_lock).

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2025-37920
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.02% / 4.31%
||
7 Day CHG~0.00%
Published-20 May, 2025 | 15:21
Updated-06 Feb, 2026 | 17:16
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
xsk: Fix race condition in AF_XDP generic RX path

In the Linux kernel, the following vulnerability has been resolved: xsk: Fix race condition in AF_XDP generic RX path Move rx_lock from xsk_socket to xsk_buff_pool. Fix synchronization for shared umem mode in generic RX path where multiple sockets share single xsk_buff_pool. RX queue is exclusive to xsk_socket, while FILL queue can be shared between multiple sockets. This could result in race condition where two CPU cores access RX path of two different sockets sharing the same umem. Protect both queues by acquiring spinlock in shared xsk_buff_pool. Lock contention may be minimized in the future by some per-thread FQ buffering. It's safe and necessary to move spin_lock_bh(rx_lock) after xsk_rcv_check(): * xs->pool and spinlock_init is synchronized by xsk_bind() -> xsk_is_bound() memory barriers. * xsk_rcv_check() may return true at the moment of xsk_release() or xsk_unbind_dev(), however this will not cause any data races or race conditions. xsk_unbind_dev() removes xdp socket from all maps and waits for completion of all outstanding rx operations. Packets in RX path will either complete safely or drop.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2025-37906
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.02% / 4.71%
||
7 Day CHG-0.00%
Published-20 May, 2025 | 15:21
Updated-17 Nov, 2025 | 18:10
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
ublk: fix race between io_uring_cmd_complete_in_task and ublk_cancel_cmd

In the Linux kernel, the following vulnerability has been resolved: ublk: fix race between io_uring_cmd_complete_in_task and ublk_cancel_cmd ublk_cancel_cmd() calls io_uring_cmd_done() to complete uring_cmd, but we may have scheduled task work via io_uring_cmd_complete_in_task() for dispatching request, then kernel crash can be triggered. Fix it by not trying to canceling the command if ublk block request is started.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2025-37985
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.02% / 4.76%
||
7 Day CHG~0.00%
Published-20 May, 2025 | 17:09
Updated-16 Dec, 2025 | 20:19
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
USB: wdm: close race between wdm_open and wdm_wwan_port_stop

In the Linux kernel, the following vulnerability has been resolved: USB: wdm: close race between wdm_open and wdm_wwan_port_stop Clearing WDM_WWAN_IN_USE must be the last action or we can open a chardev whose URBs are still poisoned

Action-Not Available
Vendor-Linux Kernel Organization, IncDebian GNU/Linux
Product-debian_linuxlinux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2025-38524
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 1.51%
||
7 Day CHG~0.00%
Published-16 Aug, 2025 | 11:12
Updated-18 Nov, 2025 | 21:53
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
rxrpc: Fix recv-recv race of completed call

In the Linux kernel, the following vulnerability has been resolved: rxrpc: Fix recv-recv race of completed call If a call receives an event (such as incoming data), the call gets placed on the socket's queue and a thread in recvmsg can be awakened to go and process it. Once the thread has picked up the call off of the queue, further events will cause it to be requeued, and once the socket lock is dropped (recvmsg uses call->user_mutex to allow the socket to be used in parallel), a second thread can come in and its recvmsg can pop the call off the socket queue again. In such a case, the first thread will be receiving stuff from the call and the second thread will be blocked on call->user_mutex. The first thread can, at this point, process both the event that it picked call for and the event that the second thread picked the call for and may see the call terminate - in which case the call will be "released", decoupling the call from the user call ID assigned to it (RXRPC_USER_CALL_ID in the control message). The first thread will return okay, but then the second thread will wake up holding the user_mutex and, if it sees that the call has been released by the first thread, it will BUG thusly: kernel BUG at net/rxrpc/recvmsg.c:474! Fix this by just dequeuing the call and ignoring it if it is seen to be already released. We can't tell userspace about it anyway as the user call ID has become stale.

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2025-38078
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.02% / 4.43%
||
7 Day CHG~0.00%
Published-18 Jun, 2025 | 09:33
Updated-02 Jan, 2026 | 15:30
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
ALSA: pcm: Fix race of buffer access at PCM OSS layer

In the Linux kernel, the following vulnerability has been resolved: ALSA: pcm: Fix race of buffer access at PCM OSS layer The PCM OSS layer tries to clear the buffer with the silence data at initialization (or reconfiguration) of a stream with the explicit call of snd_pcm_format_set_silence() with runtime->dma_area. But this may lead to a UAF because the accessed runtime->dma_area might be freed concurrently, as it's performed outside the PCM ops. For avoiding it, move the code into the PCM core and perform it inside the buffer access lock, so that it won't be changed during the operation.

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-debian_linuxlinux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2025-38461
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 2.27%
||
7 Day CHG~0.00%
Published-25 Jul, 2025 | 15:27
Updated-22 Dec, 2025 | 21:52
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
vsock: Fix transport_* TOCTOU

In the Linux kernel, the following vulnerability has been resolved: vsock: Fix transport_* TOCTOU Transport assignment may race with module unload. Protect new_transport from becoming a stale pointer. This also takes care of an insecure call in vsock_use_local_transport(); add a lockdep assert. BUG: unable to handle page fault for address: fffffbfff8056000 Oops: Oops: 0000 [#1] SMP KASAN RIP: 0010:vsock_assign_transport+0x366/0x600 Call Trace: vsock_connect+0x59c/0xc40 __sys_connect+0xe8/0x100 __x64_sys_connect+0x6e/0xc0 do_syscall_64+0x92/0x1c0 entry_SYSCALL_64_after_hwframe+0x4b/0x53

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-debian_linuxlinux_kernelLinux
CWE ID-CWE-367
Time-of-check Time-of-use (TOCTOU) Race Condition
CVE-2025-38393
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 2.27%
||
7 Day CHG~0.00%
Published-25 Jul, 2025 | 12:53
Updated-23 Dec, 2025 | 19:31
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
NFSv4/pNFS: Fix a race to wake on NFS_LAYOUT_DRAIN

In the Linux kernel, the following vulnerability has been resolved: NFSv4/pNFS: Fix a race to wake on NFS_LAYOUT_DRAIN We found a few different systems hung up in writeback waiting on the same page lock, and one task waiting on the NFS_LAYOUT_DRAIN bit in pnfs_update_layout(), however the pnfs_layout_hdr's plh_outstanding count was zero. It seems most likely that this is another race between the waiter and waker similar to commit ed0172af5d6f ("SUNRPC: Fix a race to wake a sync task"). Fix it up by applying the advised barrier.

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-debian_linuxlinux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2025-38477
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 2.27%
||
7 Day CHG~0.00%
Published-28 Jul, 2025 | 11:21
Updated-23 Dec, 2025 | 18:28
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
net/sched: sch_qfq: Fix race condition on qfq_aggregate

In the Linux kernel, the following vulnerability has been resolved: net/sched: sch_qfq: Fix race condition on qfq_aggregate A race condition can occur when 'agg' is modified in qfq_change_agg (called during qfq_enqueue) while other threads access it concurrently. For example, qfq_dump_class may trigger a NULL dereference, and qfq_delete_class may cause a use-after-free. This patch addresses the issue by: 1. Moved qfq_destroy_class into the critical section. 2. Added sch_tree_lock protection to qfq_dump_class and qfq_dump_class_stats.

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-debian_linuxlinux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2025-38048
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.02% / 3.24%
||
7 Day CHG~0.00%
Published-18 Jun, 2025 | 09:33
Updated-02 Jan, 2026 | 15:29
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
virtio_ring: Fix data race by tagging event_triggered as racy for KCSAN

In the Linux kernel, the following vulnerability has been resolved: virtio_ring: Fix data race by tagging event_triggered as racy for KCSAN syzbot reports a data-race when accessing the event_triggered, here is the simplified stack when the issue occurred: ================================================================== BUG: KCSAN: data-race in virtqueue_disable_cb / virtqueue_enable_cb_delayed write to 0xffff8881025bc452 of 1 bytes by task 3288 on cpu 0: virtqueue_enable_cb_delayed+0x42/0x3c0 drivers/virtio/virtio_ring.c:2653 start_xmit+0x230/0x1310 drivers/net/virtio_net.c:3264 __netdev_start_xmit include/linux/netdevice.h:5151 [inline] netdev_start_xmit include/linux/netdevice.h:5160 [inline] xmit_one net/core/dev.c:3800 [inline] read to 0xffff8881025bc452 of 1 bytes by interrupt on cpu 1: virtqueue_disable_cb_split drivers/virtio/virtio_ring.c:880 [inline] virtqueue_disable_cb+0x92/0x180 drivers/virtio/virtio_ring.c:2566 skb_xmit_done+0x5f/0x140 drivers/net/virtio_net.c:777 vring_interrupt+0x161/0x190 drivers/virtio/virtio_ring.c:2715 __handle_irq_event_percpu+0x95/0x490 kernel/irq/handle.c:158 handle_irq_event_percpu kernel/irq/handle.c:193 [inline] value changed: 0x01 -> 0x00 ================================================================== When the data race occurs, the function virtqueue_enable_cb_delayed() sets event_triggered to false, and virtqueue_disable_cb_split/packed() reads it as false due to the race condition. Since event_triggered is an unreliable hint used for optimization, this should only cause the driver temporarily suggest that the device not send an interrupt notification when the event index is used. Fix this KCSAN reported data-race issue by explicitly tagging the access as data_racy.

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-debian_linuxlinux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2025-38358
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 1.24%
||
7 Day CHG~0.00%
Published-25 Jul, 2025 | 12:47
Updated-18 Nov, 2025 | 20:34
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
btrfs: fix race between async reclaim worker and close_ctree()

In the Linux kernel, the following vulnerability has been resolved: btrfs: fix race between async reclaim worker and close_ctree() Syzbot reported an assertion failure due to an attempt to add a delayed iput after we have set BTRFS_FS_STATE_NO_DELAYED_IPUT in the fs_info state: WARNING: CPU: 0 PID: 65 at fs/btrfs/inode.c:3420 btrfs_add_delayed_iput+0x2f8/0x370 fs/btrfs/inode.c:3420 Modules linked in: CPU: 0 UID: 0 PID: 65 Comm: kworker/u8:4 Not tainted 6.15.0-next-20250530-syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025 Workqueue: btrfs-endio-write btrfs_work_helper RIP: 0010:btrfs_add_delayed_iput+0x2f8/0x370 fs/btrfs/inode.c:3420 Code: 4e ad 5d (...) RSP: 0018:ffffc9000213f780 EFLAGS: 00010293 RAX: ffffffff83c635b7 RBX: ffff888058920000 RCX: ffff88801c769e00 RDX: 0000000000000000 RSI: 0000000000000100 RDI: 0000000000000000 RBP: 0000000000000001 R08: ffff888058921b67 R09: 1ffff1100b12436c R10: dffffc0000000000 R11: ffffed100b12436d R12: 0000000000000001 R13: dffffc0000000000 R14: ffff88807d748000 R15: 0000000000000100 FS: 0000000000000000(0000) GS:ffff888125c53000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00002000000bd038 CR3: 000000006a142000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> btrfs_put_ordered_extent+0x19f/0x470 fs/btrfs/ordered-data.c:635 btrfs_finish_one_ordered+0x11d8/0x1b10 fs/btrfs/inode.c:3312 btrfs_work_helper+0x399/0xc20 fs/btrfs/async-thread.c:312 process_one_work kernel/workqueue.c:3238 [inline] process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402 kthread+0x70e/0x8a0 kernel/kthread.c:464 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245 </TASK> This can happen due to a race with the async reclaim worker like this: 1) The async metadata reclaim worker enters shrink_delalloc(), which calls btrfs_start_delalloc_roots() with an nr_pages argument that has a value less than LONG_MAX, and that in turn enters start_delalloc_inodes(), which sets the local variable 'full_flush' to false because wbc->nr_to_write is less than LONG_MAX; 2) There it finds inode X in a root's delalloc list, grabs a reference for inode X (with igrab()), and triggers writeback for it with filemap_fdatawrite_wbc(), which creates an ordered extent for inode X; 3) The unmount sequence starts from another task, we enter close_ctree() and we flush the workqueue fs_info->endio_write_workers, which waits for the ordered extent for inode X to complete and when dropping the last reference of the ordered extent, with btrfs_put_ordered_extent(), when we call btrfs_add_delayed_iput() we don't add the inode to the list of delayed iputs because it has a refcount of 2, so we decrement it to 1 and return; 4) Shortly after at close_ctree() we call btrfs_run_delayed_iputs() which runs all delayed iputs, and then we set BTRFS_FS_STATE_NO_DELAYED_IPUT in the fs_info state; 5) The async reclaim worker, after calling filemap_fdatawrite_wbc(), now calls btrfs_add_delayed_iput() for inode X and there we trigger an assertion failure since the fs_info state has the flag BTRFS_FS_STATE_NO_DELAYED_IPUT set. Fix this by setting BTRFS_FS_STATE_NO_DELAYED_IPUT only after we wait for the async reclaim workers to finish, after we call cancel_work_sync() for them at close_ctree(), and by running delayed iputs after wait for the reclaim workers to finish and before setting the bit. This race was recently introduced by commit 19e60b2a95f5 ("btrfs: add extra warning if delayed iput is added when it's not allowed"). Without the new validation at btrfs_add_delayed_iput(), ---truncated---

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2025-38567
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 0.88%
||
7 Day CHG~0.00%
Published-19 Aug, 2025 | 17:02
Updated-26 Nov, 2025 | 20:05
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
nfsd: avoid ref leak in nfsd_open_local_fh()

In the Linux kernel, the following vulnerability has been resolved: nfsd: avoid ref leak in nfsd_open_local_fh() If two calls to nfsd_open_local_fh() race and both successfully call nfsd_file_acquire_local(), they will both get an extra reference to the net to accompany the file reference stored in *pnf. One of them will fail to store (using xchg()) the file reference in *pnf and will drop that reference but WON'T drop the accompanying reference to the net. This leak means that when the nfs server is shut down it will hang in nfsd_shutdown_net() waiting for &nn->nfsd_net_free_done. This patch adds the missing nfsd_net_put().

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2025-38462
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.01% / 2.27%
||
7 Day CHG~0.00%
Published-25 Jul, 2025 | 15:27
Updated-22 Dec, 2025 | 21:52
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
vsock: Fix transport_{g2h,h2g} TOCTOU

In the Linux kernel, the following vulnerability has been resolved: vsock: Fix transport_{g2h,h2g} TOCTOU vsock_find_cid() and vsock_dev_do_ioctl() may race with module unload. transport_{g2h,h2g} may become NULL after the NULL check. Introduce vsock_transport_local_cid() to protect from a potential null-ptr-deref. KASAN: null-ptr-deref in range [0x0000000000000118-0x000000000000011f] RIP: 0010:vsock_find_cid+0x47/0x90 Call Trace: __vsock_bind+0x4b2/0x720 vsock_bind+0x90/0xe0 __sys_bind+0x14d/0x1e0 __x64_sys_bind+0x6e/0xc0 do_syscall_64+0x92/0x1c0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 KASAN: null-ptr-deref in range [0x0000000000000118-0x000000000000011f] RIP: 0010:vsock_dev_do_ioctl.isra.0+0x58/0xf0 Call Trace: __x64_sys_ioctl+0x12d/0x190 do_syscall_64+0x92/0x1c0 entry_SYSCALL_64_after_hwframe+0x4b/0x53

Action-Not Available
Vendor-Debian GNU/LinuxLinux Kernel Organization, Inc
Product-debian_linuxlinux_kernelLinux
CWE ID-CWE-367
Time-of-check Time-of-use (TOCTOU) Race Condition
CVE-2025-38104
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.07% / 21.48%
||
7 Day CHG+0.04%
Published-18 Apr, 2025 | 07:01
Updated-06 Feb, 2026 | 17:16
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
drm/amdgpu: Replace Mutex with Spinlock for RLCG register access to avoid Priority Inversion in SRIOV

In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Replace Mutex with Spinlock for RLCG register access to avoid Priority Inversion in SRIOV RLCG Register Access is a way for virtual functions to safely access GPU registers in a virtualized environment., including TLB flushes and register reads. When multiple threads or VFs try to access the same registers simultaneously, it can lead to race conditions. By using the RLCG interface, the driver can serialize access to the registers. This means that only one thread can access the registers at a time, preventing conflicts and ensuring that operations are performed correctly. Additionally, when a low-priority task holds a mutex that a high-priority task needs, ie., If a thread holding a spinlock tries to acquire a mutex, it can lead to priority inversion. register access in amdgpu_virt_rlcg_reg_rw especially in a fast code path is critical. The call stack shows that the function amdgpu_virt_rlcg_reg_rw is being called, which attempts to acquire the mutex. This function is invoked from amdgpu_sriov_wreg, which in turn is called from gmc_v11_0_flush_gpu_tlb. The [ BUG: Invalid wait context ] indicates that a thread is trying to acquire a mutex while it is in a context that does not allow it to sleep (like holding a spinlock). Fixes the below: [ 253.013423] ============================= [ 253.013434] [ BUG: Invalid wait context ] [ 253.013446] 6.12.0-amdstaging-drm-next-lol-050225 #14 Tainted: G U OE [ 253.013464] ----------------------------- [ 253.013475] kworker/0:1/10 is trying to lock: [ 253.013487] ffff9f30542e3cf8 (&adev->virt.rlcg_reg_lock){+.+.}-{3:3}, at: amdgpu_virt_rlcg_reg_rw+0xf6/0x330 [amdgpu] [ 253.013815] other info that might help us debug this: [ 253.013827] context-{4:4} [ 253.013835] 3 locks held by kworker/0:1/10: [ 253.013847] #0: ffff9f3040050f58 ((wq_completion)events){+.+.}-{0:0}, at: process_one_work+0x3f5/0x680 [ 253.013877] #1: ffffb789c008be40 ((work_completion)(&wfc.work)){+.+.}-{0:0}, at: process_one_work+0x1d6/0x680 [ 253.013905] #2: ffff9f3054281838 (&adev->gmc.invalidate_lock){+.+.}-{2:2}, at: gmc_v11_0_flush_gpu_tlb+0x198/0x4f0 [amdgpu] [ 253.014154] stack backtrace: [ 253.014164] CPU: 0 UID: 0 PID: 10 Comm: kworker/0:1 Tainted: G U OE 6.12.0-amdstaging-drm-next-lol-050225 #14 [ 253.014189] Tainted: [U]=USER, [O]=OOT_MODULE, [E]=UNSIGNED_MODULE [ 253.014203] Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.1 11/18/2024 [ 253.014224] Workqueue: events work_for_cpu_fn [ 253.014241] Call Trace: [ 253.014250] <TASK> [ 253.014260] dump_stack_lvl+0x9b/0xf0 [ 253.014275] dump_stack+0x10/0x20 [ 253.014287] __lock_acquire+0xa47/0x2810 [ 253.014303] ? srso_alias_return_thunk+0x5/0xfbef5 [ 253.014321] lock_acquire+0xd1/0x300 [ 253.014333] ? amdgpu_virt_rlcg_reg_rw+0xf6/0x330 [amdgpu] [ 253.014562] ? __lock_acquire+0xa6b/0x2810 [ 253.014578] __mutex_lock+0x85/0xe20 [ 253.014591] ? amdgpu_virt_rlcg_reg_rw+0xf6/0x330 [amdgpu] [ 253.014782] ? sched_clock_noinstr+0x9/0x10 [ 253.014795] ? srso_alias_return_thunk+0x5/0xfbef5 [ 253.014808] ? local_clock_noinstr+0xe/0xc0 [ 253.014822] ? amdgpu_virt_rlcg_reg_rw+0xf6/0x330 [amdgpu] [ 253.015012] ? srso_alias_return_thunk+0x5/0xfbef5 [ 253.015029] mutex_lock_nested+0x1b/0x30 [ 253.015044] ? mutex_lock_nested+0x1b/0x30 [ 253.015057] amdgpu_virt_rlcg_reg_rw+0xf6/0x330 [amdgpu] [ 253.015249] amdgpu_sriov_wreg+0xc5/0xd0 [amdgpu] [ 253.015435] gmc_v11_0_flush_gpu_tlb+0x44b/0x4f0 [amdgpu] [ 253.015667] gfx_v11_0_hw_init+0x499/0x29c0 [amdgpu] [ 253.015901] ? __pfx_smu_v13_0_update_pcie_parameters+0x10/0x10 [amdgpu] [ 253.016159] ? srso_alias_return_thunk+0x5/0xfbef5 [ 253.016173] ? smu_hw_init+0x18d/0x300 [amdgpu] [ 253.016403] amdgpu_device_init+0x29ad/0x36a0 [amdgpu] [ 253.016614] amdgpu_driver_load_kms+0x1a/0xc0 [amdgpu] [ 253.0170 ---truncated---

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
CVE-2022-48745
Matching Score-8
Assigner-kernel.org
ShareView Details
Matching Score-8
Assigner-kernel.org
CVSS Score-4.7||MEDIUM
EPSS-0.03% / 6.97%
||
7 Day CHG~0.00%
Published-20 Jun, 2024 | 11:13
Updated-29 Sep, 2025 | 17:27
Rejected-Not Available
Known To Be Used In Ransomware Campaigns?-Not Available
KEV Added-Not Available
KEV Action Due Date-Not Available
net/mlx5: Use del_timer_sync in fw reset flow of halting poll

In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Use del_timer_sync in fw reset flow of halting poll Substitute del_timer() with del_timer_sync() in fw reset polling deactivation flow, in order to prevent a race condition which occurs when del_timer() is called and timer is deactivated while another process is handling the timer interrupt. A situation that led to the following call trace: RIP: 0010:run_timer_softirq+0x137/0x420 <IRQ> recalibrate_cpu_khz+0x10/0x10 ktime_get+0x3e/0xa0 ? sched_clock_cpu+0xb/0xc0 __do_softirq+0xf5/0x2ea irq_exit_rcu+0xc1/0xf0 sysvec_apic_timer_interrupt+0x9e/0xc0 asm_sysvec_apic_timer_interrupt+0x12/0x20 </IRQ>

Action-Not Available
Vendor-Linux Kernel Organization, Inc
Product-linux_kernelLinux
CWE ID-CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
  • Previous
  • 1
  • 2
  • ...
  • 6
  • 7
  • 8
  • ...
  • 16
  • 17
  • Next
Details not found