A race problem was found in fs/proc/task_mmu.c in the memory management sub-component in the Linux kernel. This issue may allow a local attacker with user privilege to cause a denial of service.
In the Linux kernel, the following vulnerability has been resolved: blk-mq: fix IO hang from sbitmap wakeup race In blk_mq_mark_tag_wait(), __add_wait_queue() may be re-ordered with the following blk_mq_get_driver_tag() in case of getting driver tag failure. Then in __sbitmap_queue_wake_up(), waitqueue_active() may not observe the added waiter in blk_mq_mark_tag_wait() and wake up nothing, meantime blk_mq_mark_tag_wait() can't get driver tag successfully. This issue can be reproduced by running the following test in loop, and fio hang can be observed in < 30min when running it on my test VM in laptop. modprobe -r scsi_debug modprobe scsi_debug delay=0 dev_size_mb=4096 max_queue=1 host_max_queue=1 submit_queues=4 dev=`ls -d /sys/bus/pseudo/drivers/scsi_debug/adapter*/host*/target*/*/block/* | head -1 | xargs basename` fio --filename=/dev/"$dev" --direct=1 --rw=randrw --bs=4k --iodepth=1 \ --runtime=100 --numjobs=40 --time_based --name=test \ --ioengine=libaio Fix the issue by adding one explicit barrier in blk_mq_mark_tag_wait(), which is just fine in case of running out of tag.
In the Linux kernel, the following vulnerability has been resolved: net: bridge: switchdev: Skip MDB replays of deferred events on offload Before this change, generation of the list of MDB events to replay would race against the creation of new group memberships, either from the IGMP/MLD snooping logic or from user configuration. While new memberships are immediately visible to walkers of br->mdb_list, the notification of their existence to switchdev event subscribers is deferred until a later point in time. So if a replay list was generated during a time that overlapped with such a window, it would also contain a replay of the not-yet-delivered event. The driver would thus receive two copies of what the bridge internally considered to be one single event. On destruction of the bridge, only a single membership deletion event was therefore sent. As a consequence of this, drivers which reference count memberships (at least DSA), would be left with orphan groups in their hardware database when the bridge was destroyed. This is only an issue when replaying additions. While deletion events may still be pending on the deferred queue, they will already have been removed from br->mdb_list, so no duplicates can be generated in that scenario. To a user this meant that old group memberships, from a bridge in which a port was previously attached, could be reanimated (in hardware) when the port joined a new bridge, without the new bridge's knowledge. For example, on an mv88e6xxx system, create a snooping bridge and immediately add a port to it: root@infix-06-0b-00:~$ ip link add dev br0 up type bridge mcast_snooping 1 && \ > ip link set dev x3 up master br0 And then destroy the bridge: root@infix-06-0b-00:~$ ip link del dev br0 root@infix-06-0b-00:~$ mvls atu ADDRESS FID STATE Q F 0 1 2 3 4 5 6 7 8 9 a DEV:0 Marvell 88E6393X 33:33:00:00:00:6a 1 static - - 0 . . . . . . . . . . 33:33:ff:87:e4:3f 1 static - - 0 . . . . . . . . . . ff:ff:ff:ff:ff:ff 1 static - - 0 1 2 3 4 5 6 7 8 9 a root@infix-06-0b-00:~$ The two IPv6 groups remain in the hardware database because the port (x3) is notified of the host's membership twice: once via the original event and once via a replay. Since only a single delete notification is sent, the count remains at 1 when the bridge is destroyed. Then add the same port (or another port belonging to the same hardware domain) to a new bridge, this time with snooping disabled: root@infix-06-0b-00:~$ ip link add dev br1 up type bridge mcast_snooping 0 && \ > ip link set dev x3 up master br1 All multicast, including the two IPv6 groups from br0, should now be flooded, according to the policy of br1. But instead the old memberships are still active in the hardware database, causing the switch to only forward traffic to those groups towards the CPU (port 0). Eliminate the race in two steps: 1. Grab the write-side lock of the MDB while generating the replay list. This prevents new memberships from showing up while we are generating the replay list. But it leaves the scenario in which a deferred event was already generated, but not delivered, before we grabbed the lock. Therefore: 2. Make sure that no deferred version of a replay event is already enqueued to the switchdev deferred queue, before adding it to the replay list, when replaying additions.
In the Linux kernel, the following vulnerability has been resolved: netfilter: ipset: fix performance regression in swap operation The patch "netfilter: ipset: fix race condition between swap/destroy and kernel side add/del/test", commit 28628fa9 fixes a race condition. But the synchronize_rcu() added to the swap function unnecessarily slows it down: it can safely be moved to destroy and use call_rcu() instead. Eric Dumazet pointed out that simply calling the destroy functions as rcu callback does not work: sets with timeout use garbage collectors which need cancelling at destroy which can wait. Therefore the destroy functions are split into two: cancelling garbage collectors safely at executing the command received by netlink and moving the remaining part only into the rcu callback.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_max_reordering. While reading sysctl_tcp_max_reordering, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: sysctl: Fix data-races in proc_dou8vec_minmax(). A sysctl variable is accessed concurrently, and there is always a chance of data-race. So, all readers and writers need some basic protection to avoid load/store-tearing. This patch changes proc_dou8vec_minmax() to use READ_ONCE() and WRITE_ONCE() internally to fix data-races on the sysctl side. For now, proc_dou8vec_minmax() itself is tolerant to a data-race, but we still need to add annotations on the other subsystem's side.
In the Linux kernel, the following vulnerability has been resolved: ip: Fix a data-race around sysctl_ip_autobind_reuse. While reading sysctl_ip_autobind_reuse, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: ip: Fix data-races around sysctl_ip_fwd_use_pmtu. While reading sysctl_ip_fwd_use_pmtu, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: ip: Fix data-races around sysctl_ip_fwd_update_priority. While reading sysctl_ip_fwd_update_priority, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: ipv4: Fix a data-race around sysctl_fib_sync_mem. While reading sysctl_fib_sync_mem, it can be changed concurrently. So, we need to add READ_ONCE() to avoid a data-race.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_mtu_probing. While reading sysctl_tcp_mtu_probing, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: cipso: Fix data-races around sysctl. While reading cipso sysctl variables, they can be changed concurrently. So, we need to add READ_ONCE() to avoid data-races.
In the Linux kernel, the following vulnerability has been resolved: udp: Fix a data-race around sysctl_udp_l3mdev_accept. While reading sysctl_udp_l3mdev_accept, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix a data-race around sysctl_tcp_mtu_probe_floor. While reading sysctl_tcp_mtu_probe_floor, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: nexthop: Fix data-races around nexthop_compat_mode. While reading nexthop_compat_mode, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: ip: Fix a data-race around sysctl_fwmark_reflect. While reading sysctl_fwmark_reflect, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: sysctl: Fix data races in proc_douintvec(). A sysctl variable is accessed concurrently, and there is always a chance of data-race. So, all readers and writers need some basic protection to avoid load/store-tearing. This patch changes proc_douintvec() to use READ_ONCE() and WRITE_ONCE() internally to fix data-races on the sysctl side. For now, proc_douintvec() itself is tolerant to a data-race, but we still need to add annotations on the other subsystem's side.
In the Linux kernel, the following vulnerability has been resolved: sysctl: Fix data races in proc_douintvec_minmax(). A sysctl variable is accessed concurrently, and there is always a chance of data-race. So, all readers and writers need some basic protection to avoid load/store-tearing. This patch changes proc_douintvec_minmax() to use READ_ONCE() and WRITE_ONCE() internally to fix data-races on the sysctl side. For now, proc_douintvec_minmax() itself is tolerant to a data-race, but we still need to add annotations on the other subsystem's side.
In the Linux kernel, the following vulnerability has been resolved: icmp: Fix data-races around sysctl. While reading icmp sysctl variables, they can be changed concurrently. So, we need to add READ_ONCE() to avoid data-races.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_recovery. While reading sysctl_tcp_recovery, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix a data-race around sysctl_tcp_early_retrans. While reading sysctl_tcp_early_retrans, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_slow_start_after_idle. While reading sysctl_tcp_slow_start_after_idle, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_fastopen_blackhole_timeout. While reading sysctl_tcp_fastopen_blackhole_timeout, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_l3mdev_accept. While reading sysctl_tcp_l3mdev_accept, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix a data-race around sysctl_tcp_thin_linear_timeouts. While reading sysctl_tcp_thin_linear_timeouts, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: ipv4: Fix data-races around sysctl_fib_multipath_hash_fields. While reading sysctl_fib_multipath_hash_fields, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: netlink notifier might race to release objects commit release path is invoked via call_rcu and it runs lockless to release the objects after rcu grace period. The netlink notifier handler might win race to remove objects that the transaction context is still referencing from the commit release path. Call rcu_barrier() to ensure pending rcu callbacks run to completion if the list of transactions to be destroyed is not empty.
In the Linux kernel, the following vulnerability has been resolved: icmp: Fix data-races around sysctl_icmp_echo_enable_probe. While reading sysctl_icmp_echo_enable_probe, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_migrate_req. While reading sysctl_tcp_migrate_req, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: tcp/dccp: Fix a data-race around sysctl_tcp_fwmark_accept. While reading sysctl_tcp_fwmark_accept, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: ipv4: Fix data-races around sysctl_fib_multipath_hash_policy. While reading sysctl_fib_multipath_hash_policy, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix a data-race around sysctl_tcp_notsent_lowat. While reading sysctl_tcp_notsent_lowat, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix a data-race around sysctl_tcp_probe_interval. While reading sysctl_tcp_probe_interval, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: igmp: Fix data-races around sysctl_igmp_llm_reports. While reading sysctl_igmp_llm_reports, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers. This test can be packed into a helper, so such changes will be in the follow-up series after net is merged into net-next. if (ipv4_is_local_multicast(pmc->multiaddr) && !READ_ONCE(net->ipv4.sysctl_igmp_llm_reports))
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix a data-race around sysctl_tcp_probe_threshold. While reading sysctl_tcp_probe_threshold, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: af_unix: Fix a data-race in unix_dgram_peer_wake_me(). unix_dgram_poll() calls unix_dgram_peer_wake_me() without `other`'s lock held and check if its receive queue is full. Here we need to use unix_recvq_full_lockless() instead of unix_recvq_full(), otherwise KCSAN will report a data-race.
In the Linux kernel, the following vulnerability has been resolved: ipv4: Fix a data-race around sysctl_fib_multipath_use_neigh. While reading sysctl_fib_multipath_use_neigh, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: ip: Fix data-races around sysctl_ip_prot_sock. sysctl_ip_prot_sock is accessed concurrently, and there is always a chance of data-race. So, all readers and writers need some basic protection to avoid load/store-tearing.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_fastopen. While reading sysctl_tcp_fastopen, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix a data-race around sysctl_tcp_ecn_fallback. While reading sysctl_tcp_ecn_fallback, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: xsk: Fix race at socket teardown Fix a race in the xsk socket teardown code that can lead to a NULL pointer dereference splat. The current xsk unbind code in xsk_unbind_dev() starts by setting xs->state to XSK_UNBOUND, sets xs->dev to NULL and then waits for any NAPI processing to terminate using synchronize_net(). After that, the release code starts to tear down the socket state and free allocated memory. BUG: kernel NULL pointer dereference, address: 00000000000000c0 PGD 8000000932469067 P4D 8000000932469067 PUD 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 25 PID: 69132 Comm: grpcpp_sync_ser Tainted: G I 5.16.0+ #2 Hardware name: Dell Inc. PowerEdge R730/0599V5, BIOS 1.2.10 03/09/2015 RIP: 0010:__xsk_sendmsg+0x2c/0x690 [...] RSP: 0018:ffffa2348bd13d50 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000040 RCX: ffff8d5fc632d258 RDX: 0000000000400000 RSI: ffffa2348bd13e10 RDI: ffff8d5fc5489800 RBP: ffffa2348bd13db0 R08: 0000000000000000 R09: 00007ffffffff000 R10: 0000000000000000 R11: 0000000000000000 R12: ffff8d5fc5489800 R13: ffff8d5fcb0f5140 R14: ffff8d5fcb0f5140 R15: 0000000000000000 FS: 00007f991cff9400(0000) GS:ffff8d6f1f700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000000c0 CR3: 0000000114888005 CR4: 00000000001706e0 Call Trace: <TASK> ? aa_sk_perm+0x43/0x1b0 xsk_sendmsg+0xf0/0x110 sock_sendmsg+0x65/0x70 __sys_sendto+0x113/0x190 ? debug_smp_processor_id+0x17/0x20 ? fpregs_assert_state_consistent+0x23/0x50 ? exit_to_user_mode_prepare+0xa5/0x1d0 __x64_sys_sendto+0x29/0x30 do_syscall_64+0x3b/0xc0 entry_SYSCALL_64_after_hwframe+0x44/0xae There are two problems with the current code. First, setting xs->dev to NULL before waiting for all users to stop using the socket is not correct. The entry to the data plane functions xsk_poll(), xsk_sendmsg(), and xsk_recvmsg() are all guarded by a test that xs->state is in the state XSK_BOUND and if not, it returns right away. But one process might have passed this test but still have not gotten to the point in which it uses xs->dev in the code. In this interim, a second process executing xsk_unbind_dev() might have set xs->dev to NULL which will lead to a crash for the first process. The solution here is just to get rid of this NULL assignment since it is not used anymore. Before commit 42fddcc7c64b ("xsk: use state member for socket synchronization"), xs->dev was the gatekeeper to admit processes into the data plane functions, but it was replaced with the state variable xs->state in the aforementioned commit. The second problem is that synchronize_net() does not wait for any process in xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() to complete, which means that the state they rely on might be cleaned up prematurely. This can happen when the notifier gets called (at driver unload for example) as it uses xsk_unbind_dev(). Solve this by extending the RCU critical region from just the ndo_xsk_wakeup to the whole functions mentioned above, so that both the test of xs->state == XSK_BOUND and the last use of any member of xs is covered by the RCU critical section. This will guarantee that when synchronize_net() completes, there will be no processes left executing xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() and state can be cleaned up safely. Note that we need to drop the RCU lock for the skb xmit path as it uses functions that might sleep. Due to this, we have to retest the xs->state after we grab the mutex that protects the skb xmit code from, among a number of things, an xsk_unbind_dev() being executed from the notifier at the same time.
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_min_snd_mss. While reading sysctl_tcp_min_snd_mss, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved: ibmvnic: fix race between xmit and reset There is a race between reset and the transmit paths that can lead to ibmvnic_xmit() accessing an scrq after it has been freed in the reset path. It can result in a crash like: Kernel attempted to read user page (0) - exploit attempt? (uid: 0) BUG: Kernel NULL pointer dereference on read at 0x00000000 Faulting instruction address: 0xc0080000016189f8 Oops: Kernel access of bad area, sig: 11 [#1] ... NIP [c0080000016189f8] ibmvnic_xmit+0x60/0xb60 [ibmvnic] LR [c000000000c0046c] dev_hard_start_xmit+0x11c/0x280 Call Trace: [c008000001618f08] ibmvnic_xmit+0x570/0xb60 [ibmvnic] (unreliable) [c000000000c0046c] dev_hard_start_xmit+0x11c/0x280 [c000000000c9cfcc] sch_direct_xmit+0xec/0x330 [c000000000bfe640] __dev_xmit_skb+0x3a0/0x9d0 [c000000000c00ad4] __dev_queue_xmit+0x394/0x730 [c008000002db813c] __bond_start_xmit+0x254/0x450 [bonding] [c008000002db8378] bond_start_xmit+0x40/0xc0 [bonding] [c000000000c0046c] dev_hard_start_xmit+0x11c/0x280 [c000000000c00ca4] __dev_queue_xmit+0x564/0x730 [c000000000cf97e0] neigh_hh_output+0xd0/0x180 [c000000000cfa69c] ip_finish_output2+0x31c/0x5c0 [c000000000cfd244] __ip_queue_xmit+0x194/0x4f0 [c000000000d2a3c4] __tcp_transmit_skb+0x434/0x9b0 [c000000000d2d1e0] __tcp_retransmit_skb+0x1d0/0x6a0 [c000000000d2d984] tcp_retransmit_skb+0x34/0x130 [c000000000d310e8] tcp_retransmit_timer+0x388/0x6d0 [c000000000d315ec] tcp_write_timer_handler+0x1bc/0x330 [c000000000d317bc] tcp_write_timer+0x5c/0x200 [c000000000243270] call_timer_fn+0x50/0x1c0 [c000000000243704] __run_timers.part.0+0x324/0x460 [c000000000243894] run_timer_softirq+0x54/0xa0 [c000000000ea713c] __do_softirq+0x15c/0x3e0 [c000000000166258] __irq_exit_rcu+0x158/0x190 [c000000000166420] irq_exit+0x20/0x40 [c00000000002853c] timer_interrupt+0x14c/0x2b0 [c000000000009a00] decrementer_common_virt+0x210/0x220 --- interrupt: 900 at plpar_hcall_norets_notrace+0x18/0x2c The immediate cause of the crash is the access of tx_scrq in the following snippet during a reset, where the tx_scrq can be either NULL or an address that will soon be invalid: ibmvnic_xmit() { ... tx_scrq = adapter->tx_scrq[queue_num]; txq = netdev_get_tx_queue(netdev, queue_num); ind_bufp = &tx_scrq->ind_buf; if (test_bit(0, &adapter->resetting)) { ... } But beyond that, the call to ibmvnic_xmit() itself is not safe during a reset and the reset path attempts to avoid this by stopping the queue in ibmvnic_cleanup(). However just after the queue was stopped, an in-flight ibmvnic_complete_tx() could have restarted the queue even as the reset is progressing. Since the queue was restarted we could get a call to ibmvnic_xmit() which can then access the bad tx_scrq (or other fields). We cannot however simply have ibmvnic_complete_tx() check the ->resetting bit and skip starting the queue. This can race at the "back-end" of a good reset which just restarted the queue but has not cleared the ->resetting bit yet. If we skip restarting the queue due to ->resetting being true, the queue would remain stopped indefinitely potentially leading to transmit timeouts. IOW ->resetting is too broad for this purpose. Instead use a new flag that indicates whether or not the queues are active. Only the open/ reset paths control when the queues are active. ibmvnic_complete_tx() and others wake up the queue only if the queue is marked active. So we will have: A. reset/open thread in ibmvnic_cleanup() and __ibmvnic_open() ->resetting = true ->tx_queues_active = false disable tx queues ... ->tx_queues_active = true start tx queues B. Tx interrupt in ibmvnic_complete_tx(): if (->tx_queues_active) netif_wake_subqueue(); To ensure that ->tx_queues_active and state of the queues are consistent, we need a lock which: - must also be taken in the interrupt path (ibmvnic_complete_tx()) - shared across the multiple ---truncated---
In the Linux kernel, the following vulnerability has been resolved: raw: Fix a data-race around sysctl_raw_l3mdev_accept. While reading sysctl_raw_l3mdev_accept, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: icmp: Fix a data-race around sysctl_icmp_errors_use_inbound_ifaddr. While reading sysctl_icmp_errors_use_inbound_ifaddr, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved: sched/fair: Fix fault in reweight_entity Syzbot found a GPF in reweight_entity. This has been bisected to commit 4ef0c5c6b5ba ("kernel/sched: Fix sched_fork() access an invalid sched_task_group") There is a race between sched_post_fork() and setpriority(PRIO_PGRP) within a thread group that causes a null-ptr-deref in reweight_entity() in CFS. The scenario is that the main process spawns number of new threads, which then call setpriority(PRIO_PGRP, 0, -20), wait, and exit. For each of the new threads the copy_process() gets invoked, which adds the new task_struct and calls sched_post_fork() for it. In the above scenario there is a possibility that setpriority(PRIO_PGRP) and set_one_prio() will be called for a thread in the group that is just being created by copy_process(), and for which the sched_post_fork() has not been executed yet. This will trigger a null pointer dereference in reweight_entity(), as it will try to access the run queue pointer, which hasn't been set. Before the mentioned change the cfs_rq pointer for the task has been set in sched_fork(), which is called much earlier in copy_process(), before the new task is added to the thread_group. Now it is done in the sched_post_fork(), which is called after that. To fix the issue the remove the update_load param from the update_load param() function and call reweight_task() only if the task flag doesn't have the TASK_NEW flag set.
In the Linux kernel, the following vulnerability has been resolved: ice: fix concurrent reset and removal of VFs Commit c503e63200c6 ("ice: Stop processing VF messages during teardown") introduced a driver state flag, ICE_VF_DEINIT_IN_PROGRESS, which is intended to prevent some issues with concurrently handling messages from VFs while tearing down the VFs. This change was motivated by crashes caused while tearing down and bringing up VFs in rapid succession. It turns out that the fix actually introduces issues with the VF driver caused because the PF no longer responds to any messages sent by the VF during its .remove routine. This results in the VF potentially removing its DMA memory before the PF has shut down the device queues. Additionally, the fix doesn't actually resolve concurrency issues within the ice driver. It is possible for a VF to initiate a reset just prior to the ice driver removing VFs. This can result in the remove task concurrently operating while the VF is being reset. This results in similar memory corruption and panics purportedly fixed by that commit. Fix this concurrency at its root by protecting both the reset and removal flows using the existing VF cfg_lock. This ensures that we cannot remove the VF while any outstanding critical tasks such as a virtchnl message or a reset are occurring. This locking change also fixes the root cause originally fixed by commit c503e63200c6 ("ice: Stop processing VF messages during teardown"), so we can simply revert it. Note that I kept these two changes together because simply reverting the original commit alone would leave the driver vulnerable to worse race conditions.
In the Linux kernel, the following vulnerability has been resolved: cfg80211: fix race in netlink owner interface destruction My previous fix here to fix the deadlock left a race where the exact same deadlock (see the original commit referenced below) can still happen if cfg80211_destroy_ifaces() already runs while nl80211_netlink_notify() is still marking some interfaces as nl_owner_dead. The race happens because we have two loops here - first we dev_close() all the netdevs, and then we destroy them. If we also have two netdevs (first one need only be a wdev though) then we can find one during the first iteration, close it, and go to the second iteration -- but then find two, and try to destroy also the one we didn't close yet. Fix this by only iterating once.
A race condition was found in the Linux kernel's drm/exynos device driver in exynos_drm_crtc_atomic_disable() function. This can result in a null pointer dereference issue, possibly leading to a kernel panic or denial of service issue.
In the Linux kernel, the following vulnerability has been resolved: ice: Fix race condition during interface enslave Commit 5dbbbd01cbba83 ("ice: Avoid RTNL lock when re-creating auxiliary device") changes a process of re-creation of aux device so ice_plug_aux_dev() is called from ice_service_task() context. This unfortunately opens a race window that can result in dead-lock when interface has left LAG and immediately enters LAG again. Reproducer: ``` #!/bin/sh ip link add lag0 type bond mode 1 miimon 100 ip link set lag0 for n in {1..10}; do echo Cycle: $n ip link set ens7f0 master lag0 sleep 1 ip link set ens7f0 nomaster done ``` This results in: [20976.208697] Workqueue: ice ice_service_task [ice] [20976.213422] Call Trace: [20976.215871] __schedule+0x2d1/0x830 [20976.219364] schedule+0x35/0xa0 [20976.222510] schedule_preempt_disabled+0xa/0x10 [20976.227043] __mutex_lock.isra.7+0x310/0x420 [20976.235071] enum_all_gids_of_dev_cb+0x1c/0x100 [ib_core] [20976.251215] ib_enum_roce_netdev+0xa4/0xe0 [ib_core] [20976.256192] ib_cache_setup_one+0x33/0xa0 [ib_core] [20976.261079] ib_register_device+0x40d/0x580 [ib_core] [20976.266139] irdma_ib_register_device+0x129/0x250 [irdma] [20976.281409] irdma_probe+0x2c1/0x360 [irdma] [20976.285691] auxiliary_bus_probe+0x45/0x70 [20976.289790] really_probe+0x1f2/0x480 [20976.298509] driver_probe_device+0x49/0xc0 [20976.302609] bus_for_each_drv+0x79/0xc0 [20976.306448] __device_attach+0xdc/0x160 [20976.310286] bus_probe_device+0x9d/0xb0 [20976.314128] device_add+0x43c/0x890 [20976.321287] __auxiliary_device_add+0x43/0x60 [20976.325644] ice_plug_aux_dev+0xb2/0x100 [ice] [20976.330109] ice_service_task+0xd0c/0xed0 [ice] [20976.342591] process_one_work+0x1a7/0x360 [20976.350536] worker_thread+0x30/0x390 [20976.358128] kthread+0x10a/0x120 [20976.365547] ret_from_fork+0x1f/0x40 ... [20976.438030] task:ip state:D stack: 0 pid:213658 ppid:213627 flags:0x00004084 [20976.446469] Call Trace: [20976.448921] __schedule+0x2d1/0x830 [20976.452414] schedule+0x35/0xa0 [20976.455559] schedule_preempt_disabled+0xa/0x10 [20976.460090] __mutex_lock.isra.7+0x310/0x420 [20976.464364] device_del+0x36/0x3c0 [20976.467772] ice_unplug_aux_dev+0x1a/0x40 [ice] [20976.472313] ice_lag_event_handler+0x2a2/0x520 [ice] [20976.477288] notifier_call_chain+0x47/0x70 [20976.481386] __netdev_upper_dev_link+0x18b/0x280 [20976.489845] bond_enslave+0xe05/0x1790 [bonding] [20976.494475] do_setlink+0x336/0xf50 [20976.502517] __rtnl_newlink+0x529/0x8b0 [20976.543441] rtnl_newlink+0x43/0x60 [20976.546934] rtnetlink_rcv_msg+0x2b1/0x360 [20976.559238] netlink_rcv_skb+0x4c/0x120 [20976.563079] netlink_unicast+0x196/0x230 [20976.567005] netlink_sendmsg+0x204/0x3d0 [20976.570930] sock_sendmsg+0x4c/0x50 [20976.574423] ____sys_sendmsg+0x1eb/0x250 [20976.586807] ___sys_sendmsg+0x7c/0xc0 [20976.606353] __sys_sendmsg+0x57/0xa0 [20976.609930] do_syscall_64+0x5b/0x1a0 [20976.613598] entry_SYSCALL_64_after_hwframe+0x65/0xca 1. Command 'ip link ... set nomaster' causes that ice_plug_aux_dev() is called from ice_service_task() context, aux device is created and associated device->lock is taken. 2. Command 'ip link ... set master...' calls ice's notifier under RTNL lock and that notifier calls ice_unplug_aux_dev(). That function tries to take aux device->lock but this is already taken by ice_plug_aux_dev() in step 1 3. Later ice_plug_aux_dev() tries to take RTNL lock but this is already taken in step 2 4. Dead-lock The patch fixes this issue by following changes: - Bit ICE_FLAG_PLUG_AUX_DEV is kept to be set during ice_plug_aux_dev() call in ice_service_task() - The bit is checked in ice_clear_rdma_cap() and only if it is not set then ice_unplug_aux_dev() is called. If it is set (in other words plugging of aux device was requested and ice_plug_aux_dev() is potentially running) then the function only clears the ---truncated---