A vulnerability has been identified in SCALANCE S602 (All versions >= V3.0 and < V4.1), SCALANCE S612 (All versions >= V3.0 and < V4.1), SCALANCE S623 (All versions >= V3.0 and < V4.1), SCALANCE S627-2M (All versions >= V3.0 and < V4.1). Specially crafted packets sent to port 443/tcp of affected devices could cause a Denial-of-Service condition of the web server.
An issue was discovered in GitLab Community and Enterprise Edition before 12.0.3. One of the parsers used by Gilab CI was vulnerable to a resource exhaustion attack. It allows Uncontrolled Resource Consumption.
Tornado is a Python web framework and asynchronous networking library. The algorithm used for parsing HTTP cookies in Tornado versions prior to 6.4.2 sometimes has quadratic complexity, leading to excessive CPU consumption when parsing maliciously-crafted cookie headers. This parsing occurs in the event loop thread and may block the processing of other requests. Version 6.4.2 fixes the issue.
ClamAV versions prior to 0.101.3 are susceptible to a zip bomb vulnerability where an unauthenticated attacker can cause a denial of service condition by sending crafted messages to an affected system.
An Uncontrolled Resource Consumption vulnerability in the aftmand process of Juniper Networks Junos OS Evolved allows an unauthenticated, network-based attacker to consume memory resources, resulting in a Denial of Service (DoS) condition. The processes do not recover on their own and must be manually restarted. This issue affects both IPv4 and IPv6. Changes in memory usage can be monitored using the following CLI command: user@device> show system memory node <fpc slot> | grep evo-aftmann This issue affects Junos OS Evolved: * All versions before 21.2R3-S8-EVO, * 21.3 versions before 21.3R3-S5-EVO, * 21.4 versions before 21.4R3-S5-EVO, * 22.1 versions before 22.1R3-S4-EVO, * 22.2 versions before 22.2R3-S4-EVO, * 22.3 versions before 22.3R3-S3-EVO, * 22.4 versions before 22.4R2-S2-EVO, 22.4R3-EVO, * 23.2 versions before 23.2R1-S1-EVO, 23.2R2-EVO.
A flaw was found in XNIO. The XNIO NotifierState that can cause a Stack Overflow Exception when the chain of notifier states becomes problematically large can lead to uncontrolled resource management and a possible denial of service (DoS).
A vulnerability in the WebVPN feature of Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause increased CPU utilization on an affected device. The vulnerability is due to excessive processing load for a specific WebVPN HTTP page request. An attacker could exploit this vulnerability by sending multiple WebVPN HTTP page load requests for a specific URL. A successful exploit could allow the attacker to increase CPU load on the device, resulting in a denial of service (DoS) condition, which could cause traffic to be delayed through the device.
A vulnerability in the HTTP server code of Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause the HTTP server to crash. The vulnerability is due to a logical error in the logging mechanism. An attacker could exploit this vulnerability by generating a high amount of long-lived connections to the HTTP service on the device. A successful exploit could allow the attacker to cause the HTTP server to crash.
A vulnerability in the filesystem resource management code of Cisco IOS XE Software could allow an unauthenticated, remote attacker to exhaust filesystem resources on an affected device and cause a denial of service (DoS) condition. The vulnerability is due to ineffective management of the underlying filesystem resources. An attacker could exploit this vulnerability by performing specific actions that result in messages being sent to specific operating system log files. A successful exploit could allow the attacker to exhaust available filesystem space on an affected device. This could cause the device to crash and reload, resulting in a DoS condition for clients whose network traffic is transiting the device. Upon reload of the device, the impacted filesystem space is cleared, and the device will return to normal operation. However, continued exploitation of this vulnerability could cause subsequent forced crashes and reloads, which could lead to an extended DoS condition.
In Helix Core versions prior to 2023.2, an unauthenticated remote Denial of Service (DoS) via the buffer was identified. Reported by Jason Geffner.
In Apache SpamAssassin before 3.4.3, a message can be crafted in a way to use excessive resources. Upgrading to SA 3.4.3 as soon as possible is the recommended fix but details will not be shared publicly.
The Security Team noticed that the termination condition of the for loop in the readExternal method is a controllable variable, which, if tampered with, may lead to CPU exhaustion. As a fix, we added an upper bound and termination condition in the read and write logic. We classify it as a "low-priority but useful improvement". SystemDS is a distributed system and needs to serialize/deserialize data but in many code paths (e.g., on Spark broadcast/shuffle or writing to sequence files) the byte stream is anyway protected by additional CRC fingerprints. In this particular case though, the number of decoders is upper-bounded by twice the number of columns, which means an attacker would need to modify two entries in the byte stream in a consistent manner. By adding these checks robustness was strictly improved with almost zero overhead. These code changes are available in versions higher than 2.2.1.
AdonisJS is a TypeScript-first web framework. Prior to versions 10.1.3 and 11.0.0-next.9, a denial of service (DoS) vulnerability exists in the multipart file handling logic of @adonisjs/bodyparser. When processing file uploads, the multipart parser may accumulate an unbounded amount of data in memory while attempting to detect file types, potentially leading to excessive memory consumption and process termination. This issue has been patched in versions 10.1.3 and 11.0.0-next.9.
Affected devices improperly handle large amounts of specially crafted UDP packets. This could allow an unauthenticated remote attacker to trigger a denial of service condition.
Sliver is a command and control framework that uses a custom Wireguard netstack. Prior to 1.7.0, the DNS C2 listener accepts unauthenticated TOTP bootstrap messages and allocates server-side DNS sessions without validating OTP values, even when EnforceOTP is enabled. Because sessions are stored without a cleanup/expiry path in this flow, an unauthenticated remote actor can repeatedly create sessions and drive memory exhaustion. This vulnerability is fixed in 1.7.0.
Microsoft Internet Explorer 6 through 6.0.2900.2180, and 7.0.6000.16711, allows remote attackers to cause a denial of service (CPU consumption) via an automatically submitted form containing a KEYGEN element, a related issue to CVE-2009-1828.
A vulnerability has been identified in SCALANCE X-200 switch family (incl. SIPLUS NET variants) (All versions < V5.2.5), SCALANCE X-200IRT switch family (incl. SIPLUS NET variants) (All versions < V5.5.0), SCALANCE X204RNA (HSR) (All versions), SCALANCE X204RNA (PRP) (All versions), SCALANCE X204RNA EEC (HSR) (All versions), SCALANCE X204RNA EEC (PRP) (All versions), SCALANCE X204RNA EEC (PRP/HSR) (All versions). The device contains a vulnerability that could allow an attacker to trigger a denial-of-service condition by sending large message packages repeatedly to the telnet service. The security vulnerability could be exploited by an attacker with network access to the affected systems. Successful exploitation requires no system privileges and no user interaction. An attacker could use the vulnerability to compromise availability of the device.
A possible denial of service vulnerability exists in Rack <2.0.9.1, <2.1.4.1 and <2.2.3.1 in the multipart parsing component of Rack.
The web browser on the Sony PLAYSTATION 3 (PS3) allows remote attackers to cause a denial of service (memory consumption and console hang) via a large integer value for the length property of a Select object, a related issue to CVE-2009-1692.
A flaw was found in JBossWeb in versions before 7.5.31.Final-redhat-3. The fix for CVE-2020-13935 was incomplete in JBossWeb, leaving it vulnerable to a denial of service attack when sending multiple requests with invalid payload length in a WebSocket frame. The highest threat from this vulnerability is to system availability.
Microsoft Internet Explorer 7 through 7.0.6000.16711 allows remote attackers to cause a denial of service (unusable browser) by calling the window.print function in a loop, aka a "printing DoS attack," possibly a related issue to CVE-2009-0821.
Drivers are not always robust to extremely large draw calls and in some cases this scenario could have led to a crash. This vulnerability affects Firefox < 119, Firefox ESR < 115.4, and Thunderbird < 115.4.1.
An attacker with network access to an affected product may cause a denial of service condition by breaking the real-time synchronization (IRT) of the affected installation.
Pivotal RabbitMQ, versions 3.7.x prior to 3.7.21 and 3.8.x prior to 3.8.1, and RabbitMQ for Pivotal Platform, 1.16.x versions prior to 1.16.7 and 1.17.x versions prior to 1.17.4, contain a web management plugin that is vulnerable to a denial of service attack. The "X-Reason" HTTP Header can be leveraged to insert a malicious Erlang format string that will expand and consume the heap, resulting in the server crashing.
In PHP versions 7.2.x below 7.2.31, 7.3.x below 7.3.18 and 7.4.x below 7.4.6, when HTTP file uploads are allowed, supplying overly long filenames or field names could lead PHP engine to try to allocate oversized memory storage, hit the memory limit and stop processing the request, without cleaning up temporary files created by upload request. This potentially could lead to accumulation of uncleaned temporary files exhausting the disk space on the target server.
ABB, Phoenix Contact, Schneider Electric, Siemens, WAGO - Programmable Logic Controllers, multiple versions. Researchers have found some controllers are susceptible to a denial-of-service attack due to a flood of network packets.
Traefik is an HTTP reverse proxy and load balancer. Prior to 3.6.8, there is a potential vulnerability in Traefik managing STARTTLS requests. An unauthenticated client can bypass Traefik entrypoint respondingTimeouts.readTimeout by sending the 8-byte Postgres SSLRequest (STARTTLS) prelude and then stalling, causing connections to remain open indefinitely, leading to a denial of service. This vulnerability is fixed in 3.6.8.
Jonathan Looney discovered that the TCP retransmission queue implementation in tcp_fragment in the Linux kernel could be fragmented when handling certain TCP Selective Acknowledgment (SACK) sequences. A remote attacker could use this to cause a denial of service. This has been fixed in stable kernel releases 4.4.182, 4.9.182, 4.14.127, 4.19.52, 5.1.11, and is fixed in commit f070ef2ac66716357066b683fb0baf55f8191a2e.
An issue was discovered in OWASP ModSecurity Core Rule Set (CRS) through 3.1.0. /rules/REQUEST-933-APPLICATION-ATTACK-PHP.conf allows remote attackers to cause a denial of service (ReDOS) by entering a specially crafted string with $a# at the beginning and nested repetition operators. NOTE: the software maintainer disputes that this is a vulnerability because the issue cannot be exploited via ModSecurity
In Mitsubishi Electric MELSEC-Q series Ethernet module QJ71E71-100 serial number 20121 and prior, an attacker could send crafted TCP packets against the FTP service, forcing the target devices to enter an error mode and cause a denial-of-service condition.
The web api server on Port 8080 of ASUS HG100 firmware up to 1.05.12, which is vulnerable to Slowloris HTTP Denial of Service: an attacker can cause a Denial of Service (DoS) by sending headers very slowly to keep HTTP or HTTPS connections and associated resources alive for a long period of time. CVSS 3.0 Base score 7.4 (Availability impacts). CVSS vector: (CVSS:3.0/AV:A/AC:L/PR:N/UI:N/S:C/C:N/I:N/A:H).
apko allows users to build and publish OCI container images built from apk packages. From version 0.14.8 to before 1.1.1, an attacker who controls or compromises an APK repository used by apko could cause resource exhaustion on the build host. The ExpandApk function in pkg/apk/expandapk/expandapk.go expands .apk streams without enforcing decompression limits, allowing a malicious repository to serve a small, highly-compressed .apk that inflates into a large tar stream, consuming excessive disk space and CPU time, causing build failures or denial of service. This issue has been patched in version 1.1.1.
A regression was introduced in the Red Hat build of python-eventlet due to a change in the patch application strategy, resulting in a patch for CVE-2021-21419 not being applied for all builds of all products.
Hawk is an HTTP authentication scheme providing mechanisms for making authenticated HTTP requests with partial cryptographic verification of the request and response, covering the HTTP method, request URI, host, and optionally the request payload. Hawk used a regular expression to parse `Host` HTTP header (`Hawk.utils.parseHost()`), which was subject to regular expression DoS attack - meaning each added character in the attacker's input increases the computation time exponentially. `parseHost()` was patched in `9.0.1` to use built-in `URL` class to parse hostname instead. `Hawk.authenticate()` accepts `options` argument. If that contains `host` and `port`, those would be used instead of a call to `utils.parseHost()`.
An issue was discovered in GitLab Community and Enterprise Edition before 11.7.8, 11.8.x before 11.8.4, and 11.9.x before 11.9.2. Making concurrent GET /api/v4/projects/<id>/languages requests may allow Uncontrolled Resource Consumption.
Pexip Infinity before 18 allows Remote Denial of Service (TLS handshakes in RTMP).
ChatterBot is a machine learning, conversational dialog engine for creating chat bots. ChatterBot versions up to 1.2.10 are vulnerable to a denial-of-service condition caused by improper database session and connection pool management. Concurrent invocations of the get_response() method can exhaust the underlying SQLAlchemy connection pool, resulting in persistent service unavailability and requiring a manual restart to recover. Version 1.2.11 fixes the issue.
The skge driver 1.5 in Linux kernel 2.6.15 on Ubuntu does not properly use the spin_lock and spin_unlock functions, which allows remote attackers to cause a denial of service (machine crash) via a flood of network traffic.
Suricata is a network IDS, IPS and NSM engine. Prior to versions 8.0.3 and 7.0.14, specially crafted traffic can cause Suricata to consume large amounts of memory while parsing DNP3 traffic. This can lead to the process slowing down and running out of memory, potentially leading to it getting killed by the OOM killer. Versions 8.0.3 or 7.0.14 contain a patch. As a workaround, disable the DNP3 parser in the suricata yaml (disabled by default).
Multiple denial of service vulnerabilities exist in React Server Components, affecting the following packages: react-server-dom-parcel, react-server-dom-turbopack, react-server-dom-webpack. The vulnerabilities are triggered by sending specially crafted HTTP requests to Server Function endpoints, and could lead to server crashes, out-of-memory exceptions or excessive CPU usage; depending on the vulnerable code path being exercised, the application configuration and application code. Strongly consider upgrading to the latest package versions to reduce risk and prevent availability issues in applications using React Server Components.
Next.js is a React framework. A Denial of Service (DoS) condition was identified in Next.js. Exploitation of the bug can trigger a crash, affecting the availability of the server. his vulnerability was resolved in Next.js 13.5 and later.
Jsish 2.4.84 2.0484 is affected by: Uncontrolled Resource Consumption. The impact is: denial of service. The component is: function jsiValueGetString (jsiUtils.c). The attack vector is: executing crafted javascript code. The fixed version is: after commit f3a8096e0ce44bbf36c1dcb6e603adf9c8670c39.
Firmware not able to send EXT scan response to host within 1 sec due to resource consumption issue in Snapdragon Auto, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon IoT, Snapdragon Mobile, Snapdragon Wearables in MDM9206, MDM9607, MSM8909W, Qualcomm 215, SD 210/SD 212/SD 205, SD 425, SD 427, SD 430, SD 435, SD 439 / SD 429, SD 450, SD 625, SD 632, SD 636, SD 650/52, SD 665, SD 845 / SD 850, SDA660, SDM439, SDM630, SDM660, Snapdragon_High_Med_2016
A vulnerability has been found in PowerDNS Authoritative Server before versions 4.1.10, 4.0.8 allowing an authorized user to cause the server to exit by inserting a crafted record in a MASTER type zone under their control. The issue is due to the fact that the Authoritative Server will exit when it runs into a parsing error while looking up the NS/A/AAAA records it is about to use for an outgoing notify.
Suricata is a network IDS, IPS and NSM engine. Prior to versions 8.0.3 and 7.0.14, crafted DCERPC traffic can cause Suricata to expand a buffer w/o limits, leading to memory exhaustion and the process getting killed. While reported for DCERPC over UDP, it is believed that DCERPC over TCP and SMB are also vulnerable. DCERPC/TCP in the default configuration should not be vulnerable as the default stream depth is limited to 1MiB. Versions 8.0.3 and 7.0.14 contain a patch. Some workarounds are available. For DCERPC/UDP, disable the parser. For DCERPC/TCP, the `stream.reassembly.depth` setting will limit the amount of data that can be buffered. For DCERPC/SMB, the `stream.reassembly.depth` can be used as well, but is set to unlimited by default. Imposing a limit here may lead to loss of visibility in SMB.
A memory leak vulnerability in the of Juniper Networks Junos OS allows an attacker to cause a Denial of Service (DoS) to the device by sending specific commands from a peered BGP host and having those BGP states delivered to the vulnerable device. This issue affects: Juniper Networks Junos OS: 18.1 versions prior to 18.1R2-S4, 18.1R3-S1; 18.1X75 all versions. Versions before 18.1R1 are not affected.
A denial of service vulnerability exists when .NET Framework and .NET Core improperly process RegEx strings, aka '.NET Framework and .NET Core Denial of Service Vulnerability'. This CVE ID is unique from CVE-2019-0980, CVE-2019-0981.
MessagePack for Java is a serializer implementation for Java. A denial-of-service vulnerability exists in versions prior to 0.9.11 when deserializing .msgpack files containing EXT32 objects with attacker-controlled payload lengths. While MessagePack-Java parses extension headers lazily, it later trusts the declared EXT payload length when materializing the extension data. When ExtensionValue.getData() is invoked, the library attempts to allocate a byte array of the declared length without enforcing any upper bound. A malicious .msgpack file of only a few bytes can therefore trigger unbounded heap allocation, resulting in JVM heap exhaustion, process termination, or service unavailability. This vulnerability is triggered during model loading / deserialization, making it a model format vulnerability suitable for remote exploitation. The vulnerability enables a remote denial-of-service attack against applications that deserialize untrusted .msgpack model files using MessagePack for Java. A specially crafted but syntactically valid .msgpack file containing an EXT32 object with an attacker-controlled, excessively large payload length can trigger unbounded memory allocation during deserialization. When the model file is loaded, the library trusts the declared length metadata and attempts to allocate a byte array of that size, leading to rapid heap exhaustion, excessive garbage collection, or immediate JVM termination with an OutOfMemoryError. The attack requires no malformed bytes, user interaction, or elevated privileges and can be exploited remotely in real-world environments such as model registries, inference services, CI/CD pipelines, and cloud-based model hosting platforms that accept or fetch .msgpack artifacts. Because the malicious file is extremely small yet valid, it can bypass basic validation and scanning mechanisms, resulting in complete service unavailability and potential cascading failures in production systems. Version 0.9.11 fixes the vulnerability.
Some HTTP/2 implementations are vulnerable to resource loops, potentially leading to a denial of service. The attacker creates multiple request streams and continually shuffles the priority of the streams in a way that causes substantial churn to the priority tree. This can consume excess CPU.
Some HTTP/2 implementations are vulnerable to a flood of empty frames, potentially leading to a denial of service. The attacker sends a stream of frames with an empty payload and without the end-of-stream flag. These frames can be DATA, HEADERS, CONTINUATION and/or PUSH_PROMISE. The peer spends time processing each frame disproportionate to attack bandwidth. This can consume excess CPU.