ovirt-engine 3.2 running on Linux kernel 3.1 and newer creates certain files world-writeable due to an upstream kernel change which impacted how python's os.chmod() works when passed a mode of '-1'.
There is a vulnerability in the linux kernel versions higher than 5.2 (if kernel compiled with config params CONFIG_BPF_SYSCALL=y , CONFIG_BPF=y , CONFIG_CGROUPS=y , CONFIG_CGROUP_BPF=y , CONFIG_HARDENED_USERCOPY not set, and BPF hook to getsockopt is registered). As result of BPF execution, the local user can trigger bug in __cgroup_bpf_run_filter_getsockopt() function that can lead to heap overflow (because of non-hardened usercopy). The impact of attack could be deny of service or possibly privileges escalation.
An out-of-bounds access flaw was found in the Linux kernel's implementation of the eBPF code verifier in the way a user running the eBPF script calls dev_map_init_map or sock_map_alloc. This flaw allows a local user to crash the system or possibly escalate their privileges. The highest threat from this vulnerability is to confidentiality, integrity, as well as system availability.
NVIDIA vGPU driver contains a vulnerability in the guest kernel mode driver and Virtual GPU Manager (vGPU plugin), in which an input length is not validated, which may lead to information disclosure, tampering of data or denial of service. This affects vGPU version 12.x (prior to 12.2) and version 11.x (prior to 11.4).
NVIDIA vGPU software contains a vulnerability in the guest kernel mode driver and Virtual GPU manager (vGPU plugin), in which an input length is not validated, which may lead to information disclosure, tampering of data, or denial of service. This affects vGPU version 12.x (prior to 12.2), version 11.x (prior to 11.4) and version 8.x (prior 8.7).
The Code42 app before 6.8.4, as used in Code42 for Enterprise, on Linux installs with overly permissive permissions on the /usr/local/crashplan/log directory. This allows a user to manipulate symbolic links to escalate privileges, or show the contents of sensitive files that a regular user would not have access to.
In the Linux kernel through 4.19.6, a local user could exploit a use-after-free in the ALSA driver by supplying a malicious USB Sound device (with zero interfaces) that is mishandled in usb_audio_probe in sound/usb/card.c.
The _xfs_buf_find function in fs/xfs/xfs_buf.c in the Linux kernel before 3.7.6 does not validate block numbers, which allows local users to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact by leveraging the ability to mount an XFS filesystem containing a metadata inode with an invalid extent map.
The apparmor_setprocattr function in security/apparmor/lsm.c in the Linux kernel before 3.0 does not properly handle invalid parameters, which allows local users to cause a denial of service (NULL pointer dereference and OOPS) or possibly have unspecified other impact by writing to a /proc/#####/attr/current file.
mount in util-linux 2.19 and earlier does not remove the /etc/mtab~ lock file after a failed attempt to add a mount entry, which has unspecified impact and local attack vectors.
The proc filesystem implementation in the Linux kernel 2.6.37 and earlier does not restrict access to the /proc directory tree of a process after this process performs an exec of a setuid program, which allows local users to obtain sensitive information or cause a denial of service via open, lseek, read, and write system calls.
Unspecified vulnerability in the ptrace MIPS assembly code in Linux kernel 2.4 before 2.4.17 allows local users to gain privileges via unknown vectors.
Certain USB drivers in the Linux 2.4 kernel use the copy_to_user function on uninitialized structures, which could allow local users to obtain sensitive information by reading memory that was not cleared from previous usage.
Privilege Escalation vulnerability in McAfee Active Response (MAR) for Linux prior to 2.4.3 Hotfix 1 allows a malicious script or program to perform functions that the local executing user has not been granted access to.
block/scsi_ioctl.c in the Linux kernel through 3.8 does not properly consider the SCSI device class during authorization of SCSI commands, which allows local users to bypass intended access restrictions via an SG_IO ioctl call that leverages overlapping opcodes.
Unknown vulnerability in Linux kernel before 2.4.22 allows local users to gain privileges, related to "R128 DRI limits checking."
Moby is an open-source project created by Docker to enable and accelerate software containerization. A bug was found in Moby (Docker Engine) prior to version 20.10.14 where containers were incorrectly started with non-empty inheritable Linux process capabilities, creating an atypical Linux environment and enabling programs with inheritable file capabilities to elevate those capabilities to the permitted set during `execve(2)`. Normally, when executable programs have specified permitted file capabilities, otherwise unprivileged users and processes can execute those programs and gain the specified file capabilities up to the bounding set. Due to this bug, containers which included executable programs with inheritable file capabilities allowed otherwise unprivileged users and processes to additionally gain these inheritable file capabilities up to the container's bounding set. Containers which use Linux users and groups to perform privilege separation inside the container are most directly impacted. This bug did not affect the container security sandbox as the inheritable set never contained more capabilities than were included in the container's bounding set. This bug has been fixed in Moby (Docker Engine) 20.10.14. Running containers should be stopped, deleted, and recreated for the inheritable capabilities to be reset. This fix changes Moby (Docker Engine) behavior such that containers are started with a more typical Linux environment. As a workaround, the entry point of a container can be modified to use a utility like `capsh(1)` to drop inheritable capabilities prior to the primary process starting.
drivers/usb/gadget/legacy/inode.c in the Linux kernel through 5.16.8 mishandles dev->buf release.
Real time clock (RTC) routines in Linux kernel 2.4.23 and earlier do not properly initialize their structures, which could leak kernel data to user space.
Buffer overflow in the ISO9660 file system component for Linux kernel 2.4.x, 2.5.x and 2.6.x, allows local users with physical access to overflow kernel memory and execute arbitrary code via a malformed CD containing a long symbolic link entry.
In the Linux kernel 4.14 longterm through 4.14.165 and 4.19 longterm through 4.19.96 (and 5.x before 5.2), there is a use-after-free (write) in the i915_ppgtt_close function in drivers/gpu/drm/i915/i915_gem_gtt.c, aka CID-7dc40713618c. This is related to i915_gem_context_destroy_ioctl in drivers/gpu/drm/i915/i915_gem_context.c.
Linux kernel before 2.3.18 or 2.2.13pre15, with SLIP and PPP options, allows local unprivileged users to forge IP packets via the TIOCSETD option on tty devices.
IBM QRadar 7.3.0 to 7.3.3 Patch 2 could allow a local user to gain escalated privileges due to weak file permissions. IBM X-ForceID: 175846.
The msm_ipc_router_close function in net/ipc_router/ipc_router_socket.c in the ipc_router component for the Linux kernel 3.x, as used in Qualcomm Innovation Center (QuIC) Android contributions for MSM devices and other products, allow attackers to cause a denial of service (NULL pointer dereference) or possibly have unspecified other impact by triggering failure of an accept system call for an AF_MSM_IPC socket.
An issue was discovered in the Linux kernel before 5.7. The KVM subsystem allows out-of-range access to memslots after a deletion, aka CID-0774a964ef56. This affects arch/s390/kvm/kvm-s390.c, include/linux/kvm_host.h, and virt/kvm/kvm_main.c.
The pt_chown command in Linux allows local users to modify TTY terminal devices that belong to other users.
KDE klock allows local users to kill arbitrary processes by specifying an arbitrary PID in the .kss.pid file.
mknod in Linux 2.2 follows symbolic links, which could allow local users to overwrite files or gain privileges.
Denial of service in Linux 2.2.0 running the ldd command on a core file.
Improper initialization in the Intel(R) SGX SDK before v2.6.100.1 may allow an authenticated user to potentially enable escalation of privilege via local access.
In the Linux kernel before 5.4.2, the io_uring feature leads to requests that inadvertently have UID 0 and full capabilities, aka CID-181e448d8709. This is related to fs/io-wq.c, fs/io_uring.c, and net/socket.c. For example, an attacker can bypass intended restrictions on adding an IPv4 address to the loopback interface. This occurs because IORING_OP_SENDMSG operations, although requested in the context of an unprivileged user, are sometimes performed by a kernel worker thread without considering that context.
In the Linux kernel before 4.20.12, net/ipv4/netfilter/nf_nat_snmp_basic_main.c in the SNMP NAT module has insufficient ASN.1 length checks (aka an array index error), making out-of-bounds read and write operations possible, leading to an OOPS or local privilege escalation. This affects snmp_version and snmp_helper.
The KVM implementation in the Linux kernel through 4.20.5 has a Use-after-Free.
In the Linux kernel before 5.2.3, set_geometry in drivers/block/floppy.c does not validate the sect and head fields, as demonstrated by an integer overflow and out-of-bounds read. It can be triggered by an unprivileged local user when a floppy disk has been inserted. NOTE: QEMU creates the floppy device by default.
An issue was discovered in the Linux kernel before 5.0.19. The XFRM subsystem has a use-after-free, related to an xfrm_state_fini panic, aka CID-dbb2483b2a46.
In the Linux kernel before 5.1.6, there is a use-after-free in serial_ir_init_module() in drivers/media/rc/serial_ir.c.
In the Linux kernel before 5.2.9, there is a use-after-free bug that can be caused by a malicious USB device in the drivers/usb/misc/yurex.c driver, aka CID-fc05481b2fca.
In the Linux kernel before 5.3.9, there are multiple out-of-bounds write bugs that can be caused by a malicious USB device in the Linux kernel HID drivers, aka CID-d9d4b1e46d95. This affects drivers/hid/hid-axff.c, drivers/hid/hid-dr.c, drivers/hid/hid-emsff.c, drivers/hid/hid-gaff.c, drivers/hid/hid-holtekff.c, drivers/hid/hid-lg2ff.c, drivers/hid/hid-lg3ff.c, drivers/hid/hid-lg4ff.c, drivers/hid/hid-lgff.c, drivers/hid/hid-logitech-hidpp.c, drivers/hid/hid-microsoft.c, drivers/hid/hid-sony.c, drivers/hid/hid-tmff.c, and drivers/hid/hid-zpff.c.
vcs_write in drivers/tty/vt/vc_screen.c in the Linux kernel through 5.3.13 does not prevent write access to vcsu devices, aka CID-0c9acb1af77a.
An issue was discovered in Eracent EPA Agent through 10.2.26. The agent executable, when installed for non-root operations (scanning), can be used to start external programs with elevated permissions because of an Untrusted Search Path.
In shiftfs, a non-upstream patch to the Linux kernel included in the Ubuntu 5.0 and 5.3 kernel series, several locations which shift ids translate user/group ids before performing operations in the lower filesystem were translating them into init_user_ns, whereas they should have been translated into the s_user_ns for the lower filesystem. This resulted in using ids other than the intended ones in the lower fs, which likely did not map into the shifts s_user_ns. A local attacker could use this to possibly bypass discretionary access control permissions.
In shiftfs, a non-upstream patch to the Linux kernel included in the Ubuntu 5.0 and 5.3 kernel series, shiftfs_btrfs_ioctl_fd_replace() installs an fd referencing a file from the lower filesystem without taking an additional reference to that file. After the btrfs ioctl completes this fd is closed, which then puts a reference to that file, leading to a refcount underflow.
Insufficient input validation in Intel(R) SGX SDK multiple Linux and Windows versions may allow an authenticated user to enable information disclosure, escalation of privilege or denial of service via local access.
An issue was discovered in drivers/scsi/qedi/qedi_dbg.c in the Linux kernel before 5.1.12. In the qedi_dbg_* family of functions, there is an out-of-bounds read.
Insufficient initialization in Intel(R) SGX SDK Windows versions 2.4.100.51291 and earlier, and Linux versions 2.6.100.51363 and earlier, may allow an authenticated user to enable information disclosure, escalation of privilege or denial of service via local access.
In parse_hid_report_descriptor in drivers/input/tablet/gtco.c in the Linux kernel through 5.2.1, a malicious USB device can send an HID report that triggers an out-of-bounds write during generation of debugging messages.
The Linux kernel before 3.2.2 does not properly restrict SG_IO ioctl calls, which allows local users to bypass intended restrictions on disk read and write operations by sending a SCSI command to (1) a partition block device or (2) an LVM volume.
i915_gem_userptr_get_pages in drivers/gpu/drm/i915/i915_gem_userptr.c in the Linux kernel 4.15.0 on Ubuntu 18.04.2 allows local users to cause a denial of service (NULL pointer dereference and BUG) or possibly have unspecified other impact via crafted ioctl calls to /dev/dri/card0.
The futex_requeue function in kernel/futex.c in the Linux kernel before 4.14.15 might allow attackers to cause a denial of service (integer overflow) or possibly have unspecified other impact by triggering a negative wake or requeue value.
st21nfca_connectivity_event_received in drivers/nfc/st21nfca/se.c in the Linux kernel through 5.16.12 has EVT_TRANSACTION buffer overflows because of untrusted length parameters.