In NTFS-3G versions < 2021.8.22, when specially crafted NTFS attributes are read in the function ntfs_attr_pread_i, a heap buffer overflow can occur and allow for writing to arbitrary memory or denial of service of the application.
The BPF subsystem in the Linux kernel before 4.5.5 mishandles reference counts, which allows local users to cause a denial of service (use-after-free) or possibly have unspecified other impact via a crafted application on (1) a system with more than 32 Gb of memory, related to the program reference count or (2) a 1 Tb system, related to the map reference count.
Buffer overflow in the xfs_readlink function in fs/xfs/xfs_vnodeops.c in XFS in the Linux kernel 2.6, when CONFIG_XFS_DEBUG is disabled, allows local users to cause a denial of service (memory corruption and crash) and possibly execute arbitrary code via an XFS image containing a symbolic link with a long pathname.
NTFS-3G versions < 2021.8.22, when a specially crafted NTFS attribute from the MFT is setup in the function ntfs_attr_setup_flag, a heap buffer overflow can occur allowing for code execution and escalation of privileges.
Untrusted search path vulnerability in pam_motd (aka the MOTD module) in libpam-modules before 1.1.3-2ubuntu2.1 on Ubuntu 11.10, before 1.1.2-2ubuntu8.4 on Ubuntu 11.04, before 1.1.1-4ubuntu2.4 on Ubuntu 10.10, before 1.1.1-2ubuntu5.4 on Ubuntu 10.04 LTS, and before 0.99.7.1-5ubuntu6.5 on Ubuntu 8.04 LTS, when using certain configurations such as "session optional pam_motd.so", allows local users to gain privileges by modifying the PATH environment variable to reference a malicious command, as demonstrated via uname.
sound/soc/msm/qdsp6v2/msm-audio-effects-q6-v2.c in the MSM QDSP6 audio driver for the Linux kernel 3.x, as used in Qualcomm Innovation Center (QuIC) Android contributions for MSM devices and other products, allows attackers to cause a denial of service (buffer over-read) or possibly have unspecified other impact via a crafted application that makes an ioctl call specifying many commands.
arch/powerpc/mm/mmu_context_book3s64.c in the Linux kernel before 5.1.15 for powerpc has a bug where unrelated processes may be able to read/write to one another's virtual memory under certain conditions via an mmap above 512 TB. Only a subset of powerpc systems are affected.
A vulnerability in the shared library loading mechanism of Cisco AnyConnect Secure Mobility Client for Linux and Mac OS could allow an authenticated, local attacker to perform a shared library hijacking attack on an affected device if the VPN Posture (HostScan) Module is installed on the AnyConnect client. This vulnerability is due to a race condition in the signature verification process for shared library files that are loaded on an affected device. An attacker could exploit this vulnerability by sending a series of crafted interprocess communication (IPC) messages to the AnyConnect process. A successful exploit could allow the attacker to execute arbitrary code on the affected device with root privileges. To exploit this vulnerability, the attacker must have a valid account on the system.
A local privilege escalation was discovered in the Linux kernel before 5.10.13. Multiple race conditions in the AF_VSOCK implementation are caused by wrong locking in net/vmw_vsock/af_vsock.c. The race conditions were implicitly introduced in the commits that added VSOCK multi-transport support.
Untrusted search path vulnerability in Adobe Flash Player before 18.0.0.343 and 19.x through 21.x before 21.0.0.213 on Windows and OS X and before 11.2.202.616 on Linux allows local users to gain privileges via a Trojan horse resource in an unspecified directory.
The ACPI subsystem in the Linux kernel before 2.6.36.2 uses 0222 permissions for the debugfs custom_method file, which allows local users to gain privileges by placing a custom ACPI method in the ACPI interpreter tables, related to the acpi_debugfs_init function in drivers/acpi/debugfs.c.
soffice in OpenOffice.org (OOo) 3.x before 3.3 places a zero-length directory name in the LD_LIBRARY_PATH, which allows local users to gain privileges via a Trojan horse shared library in the current working directory.
The sg implementation in the Linux kernel through 4.9 does not properly restrict write operations in situations where the KERNEL_DS option is set, which allows local users to read or write to arbitrary kernel memory locations or cause a denial of service (use-after-free) by leveraging access to a /dev/sg device, related to block/bsg.c and drivers/scsi/sg.c. NOTE: this vulnerability exists because of an incomplete fix for CVE-2016-9576.
The coredump implementation in the Linux kernel before 5.0.10 does not use locking or other mechanisms to prevent vma layout or vma flags changes while it runs, which allows local users to obtain sensitive information, cause a denial of service, or possibly have unspecified other impact by triggering a race condition with mmget_not_zero or get_task_mm calls. This is related to fs/userfaultfd.c, mm/mmap.c, fs/proc/task_mmu.c, and drivers/infiniband/core/uverbs_main.c.
In NTFS-3G versions < 2021.8.22, when a specially crafted MFT section is supplied in an NTFS image a heap buffer overflow can occur and allow for code execution.
In NTFS-3G versions < 2021.8.22, when a specially crafted unicode string is supplied in an NTFS image a heap buffer overflow can occur and allow for code execution.
The networking implementation in the Linux kernel through 4.3.3, as used in Android and other products, does not validate protocol identifiers for certain protocol families, which allows local users to cause a denial of service (NULL function pointer dereference and system crash) or possibly gain privileges by leveraging CLONE_NEWUSER support to execute a crafted SOCK_RAW application.
kernel/ptrace.c in the Linux kernel through 4.4.1 mishandles uid and gid mappings, which allows local users to gain privileges by establishing a user namespace, waiting for a root process to enter that namespace with an unsafe uid or gid, and then using the ptrace system call. NOTE: the vendor states "there is no kernel bug here.
Multiple integer overflows in the (1) agp_allocate_memory and (2) agp_create_user_memory functions in drivers/char/agp/generic.c in the Linux kernel before 2.6.38.5 allow local users to trigger buffer overflows, and consequently cause a denial of service (system crash) or possibly have unspecified other impact, via vectors related to calls that specify a large number of memory pages.
This vulnerability allows local attackers to escalate privileges on affected installations of Linux Kernel 5.11.15. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability. The specific flaw exists within the handling of eBPF programs. The issue results from the lack of proper validation of user-supplied eBPF programs prior to executing them. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of the kernel. Was ZDI-CAN-13661.
PoD operations on misaligned GFNs T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] x86 HVM and PVH guests may be started in populate-on-demand (PoD) mode, to provide a way for them to later easily have more memory assigned. Guests are permitted to control certain P2M aspects of individual pages via hypercalls. These hypercalls may act on ranges of pages specified via page orders (resulting in a power-of-2 number of pages). The implementation of some of these hypercalls for PoD does not enforce the base page frame number to be suitably aligned for the specified order, yet some code involved in PoD handling actually makes such an assumption. These operations are XENMEM_decrease_reservation (CVE-2021-28704) and XENMEM_populate_physmap (CVE-2021-28707), the latter usable only by domains controlling the guest, i.e. a de-privileged qemu or a stub domain. (Patch 1, combining the fix to both these two issues.) In addition handling of XENMEM_decrease_reservation can also trigger a host crash when the specified page order is neither 4k nor 2M nor 1G (CVE-2021-28708, patch 2).
PoD operations on misaligned GFNs T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] x86 HVM and PVH guests may be started in populate-on-demand (PoD) mode, to provide a way for them to later easily have more memory assigned. Guests are permitted to control certain P2M aspects of individual pages via hypercalls. These hypercalls may act on ranges of pages specified via page orders (resulting in a power-of-2 number of pages). The implementation of some of these hypercalls for PoD does not enforce the base page frame number to be suitably aligned for the specified order, yet some code involved in PoD handling actually makes such an assumption. These operations are XENMEM_decrease_reservation (CVE-2021-28704) and XENMEM_populate_physmap (CVE-2021-28707), the latter usable only by domains controlling the guest, i.e. a de-privileged qemu or a stub domain. (Patch 1, combining the fix to both these two issues.) In addition handling of XENMEM_decrease_reservation can also trigger a host crash when the specified page order is neither 4k nor 2M nor 1G (CVE-2021-28708, patch 2).
Integer overflow in the agp_generic_insert_memory function in drivers/char/agp/generic.c in the Linux kernel before 2.6.38.5 allows local users to gain privileges or cause a denial of service (system crash) via a crafted AGPIOC_BIND agp_ioctl ioctl call.
In PHP versions 7.3.x up to and including 7.3.31, 7.4.x below 7.4.25 and 8.0.x below 8.0.12, when running PHP FPM SAPI with main FPM daemon process running as root and child worker processes running as lower-privileged users, it is possible for the child processes to access memory shared with the main process and write to it, modifying it in a way that would cause the root process to conduct invalid memory reads and writes, which can be used to escalate privileges from local unprivileged user to the root user.
Integer overflow in the _ctl_do_mpt_command function in drivers/scsi/mpt2sas/mpt2sas_ctl.c in the Linux kernel 2.6.38 and earlier might allow local users to gain privileges or cause a denial of service (memory corruption) via an ioctl call specifying a crafted value that triggers a heap-based buffer overflow.
arch/x86/kvm/svm/nested.c in the Linux kernel before 5.11.12 has a use-after-free in which an AMD KVM guest can bypass access control on host OS MSRs when there are nested guests, aka CID-a58d9166a756. This occurs because of a TOCTOU race condition associated with a VMCB12 double fetch in nested_svm_vmrun.
certain VT-d IOMMUs may not work in shared page table mode For efficiency reasons, address translation control structures (page tables) may (and, on suitable hardware, by default will) be shared between CPUs, for second-level translation (EPT), and IOMMUs. These page tables are presently set up to always be 4 levels deep. However, an IOMMU may require the use of just 3 page table levels. In such a configuration the lop level table needs to be stripped before inserting the root table's address into the hardware pagetable base register. When sharing page tables, Xen erroneously skipped this stripping. Consequently, the guest is able to write to leaf page table entries.
Firejail before 0.9.64.4 allows attackers to bypass intended access restrictions because there is a TOCTOU race condition between a stat operation and an OverlayFS mount operation.
An issue was discovered in the Linux kernel before 5.0.4. There is a use-after-free upon attempted read access to /proc/ioports after the ipmi_si module is removed, related to drivers/char/ipmi/ipmi_si_intf.c, drivers/char/ipmi/ipmi_si_mem_io.c, and drivers/char/ipmi/ipmi_si_port_io.c.
NVIDIA GPU and Tegra hardware contain a vulnerability in an internal microcontroller, which may allow a user with elevated privileges to generate valid microcode by identifying, exploiting, and loading vulnerable microcode. Such an attack could lead to information disclosure, data corruption, or denial of service of the device. The scope may extend to other components.
NVIDIA GPU and Tegra hardware contain a vulnerability in the internal microcontroller, which may allow a user with elevated privileges to instantiate a DMA write operation only within a specific time window timed to corrupt code execution, which may impact confidentiality, integrity, or availability. The scope impact may extend to other components.
The aaa_base package before 11.3-8.9.1 in SUSE openSUSE 11.3, and before 11.4-54.62.1 in openSUSE 11.4, allows local users to gain privileges via shell metacharacters in a filename, related to tab expansion.
Stack-based buffer overflow in the econet_sendmsg function in net/econet/af_econet.c in the Linux kernel before 2.6.36.2, when an econet address is configured, allows local users to gain privileges by providing a large number of iovec structures.
A certain Red Hat modification to the ChrootDirectory feature in OpenSSH 4.8, as used in sshd in OpenSSH 4.3 in Red Hat Enterprise Linux (RHEL) 5.4 and Fedora 11, allows local users to gain privileges via hard links to setuid programs that use configuration files within the chroot directory, related to requirements for directory ownership.
Heap-based buffer overflow in the parse_tag_3_packet function in fs/ecryptfs/keystore.c in the eCryptfs subsystem in the Linux kernel before 2.6.30.4 allows local users to cause a denial of service (system crash) or possibly gain privileges via vectors involving a crafted eCryptfs file, related to a large encrypted key size in a Tag 3 packet.
Stack-based buffer overflow in the parse_tag_11_packet function in fs/ecryptfs/keystore.c in the eCryptfs subsystem in the Linux kernel before 2.6.30.4 allows local users to cause a denial of service (system crash) or possibly gain privileges via vectors involving a crafted eCryptfs file, related to not ensuring that the key signature length in a Tag 11 packet is compatible with the key signature buffer size.
An issue was discovered in Xen through 4.12.x allowing attackers to gain host OS privileges via DMA in a situation where an untrusted domain has access to a physical device. This occurs because passed through PCI devices may corrupt host memory after deassignment. When a PCI device is assigned to an untrusted domain, it is possible for that domain to program the device to DMA to an arbitrary address. The IOMMU is used to protect the host from malicious DMA by making sure that the device addresses can only target memory assigned to the guest. However, when the guest domain is torn down, or the device is deassigned, the device is assigned back to dom0, thus allowing any in-flight DMA to potentially target critical host data. An untrusted domain with access to a physical device can DMA into host memory, leading to privilege escalation. Only systems where guests are given direct access to physical devices capable of DMA (PCI pass-through) are vulnerable. Systems which do not use PCI pass-through are not vulnerable.
The Linux kernel before 3.12, when UDP Fragmentation Offload (UFO) is enabled, does not properly initialize certain data structures, which allows local users to cause a denial of service (memory corruption and system crash) or possibly gain privileges via a crafted application that uses the UDP_CORK option in a setsockopt system call and sends both short and long packets, related to the ip_ufo_append_data function in net/ipv4/ip_output.c and the ip6_ufo_append_data function in net/ipv6/ip6_output.c.
The pit_ioport_read in i8254.c in the Linux kernel before 2.6.33 and QEMU before 2.3.1 does not distinguish between read lengths and write lengths, which might allow guest OS users to execute arbitrary code on the host OS by triggering use of an invalid index.
Stack-based buffer overflow in the get_matching_model_microcode function in arch/x86/kernel/cpu/microcode/intel_early.c in the Linux kernel before 4.0 allows context-dependent attackers to gain privileges by constructing a crafted microcode header and leveraging root privileges for write access to the initrd.
The prepend_path function in fs/dcache.c in the Linux kernel before 4.2.4 does not properly handle rename actions inside a bind mount, which allows local users to bypass an intended container protection mechanism by renaming a directory, related to a "double-chroot attack."
Multiple untrusted search path vulnerabilities in updater.exe in Mozilla Firefox before 36.0, Firefox ESR 31.x before 31.5, and Thunderbird before 31.5 on Windows, when the Maintenance Service is not used, allow local users to gain privileges via a Trojan horse DLL in (1) the current working directory or (2) a temporary directory, as demonstrated by bcrypt.dll.
An issue was discovered in Xen through 4.11.x on AMD x86 platforms, possibly allowing guest OS users to gain host OS privileges because small IOMMU mappings are unsafely combined into larger ones.
A crafted NTFS image can cause out-of-bounds reads in ntfs_attr_find and ntfs_external_attr_find in NTFS-3G < 2021.8.22.
In NTFS-3G versions < 2021.8.22, when a specially crafted NTFS attribute is supplied to the function ntfs_get_attribute_value, a heap buffer overflow can occur allowing for memory disclosure or denial of service. The vulnerability is caused by an out-of-bound buffer access which can be triggered by mounting a crafted ntfs partition. The root cause is a missing consistency check after reading an MFT record : the "bytes_in_use" field should be less than the "bytes_allocated" field. When it is not, the parsing of the records proceeds into the wild.
issues with partially successful P2M updates on x86 T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] x86 HVM and PVH guests may be started in populate-on-demand (PoD) mode, to provide a way for them to later easily have more memory assigned. Guests are permitted to control certain P2M aspects of individual pages via hypercalls. These hypercalls may act on ranges of pages specified via page orders (resulting in a power-of-2 number of pages). In some cases the hypervisor carries out the requests by splitting them into smaller chunks. Error handling in certain PoD cases has been insufficient in that in particular partial success of some operations was not properly accounted for. There are two code paths affected - page removal (CVE-2021-28705) and insertion of new pages (CVE-2021-28709). (We provide one patch which combines the fix to both issues.)
A vulnerability in Google Cloud Platform's guest-oslogin versions between 20190304 and 20200507 allows a user that is only granted the role "roles/compute.osLogin" to escalate privileges to root. Using their membership to the "docker" group, an attacker with this role is able to run docker and mount the host OS. Within docker, it is possible to modify the host OS filesystem and modify /etc/groups to gain administrative privileges. All images created after 2020-May-07 (20200507) are fixed, and if you cannot update, we recommend you edit /etc/group/security.conf and remove the "docker" user from the OS Login entry.
net/xfrm/xfrm_policy.c in the Linux kernel through 4.12.3, when CONFIG_XFRM_MIGRATE is enabled, does not ensure that the dir value of xfrm_userpolicy_id is XFRM_POLICY_MAX or less, which allows local users to cause a denial of service (out-of-bounds access) or possibly have unspecified other impact via an XFRM_MSG_MIGRATE xfrm Netlink message.
The package `node-cli` before 1.0.0 insecurely uses the lock_file and log_file. Both of these are temporary, but it allows the starting user to overwrite any file they have access to.
An issue was discovered in SaltStack Salt before 3003.3. The salt minion installer will accept and use a minion config file at C:\salt\conf if that file is in place before the installer is run. This allows for a malicious actor to subvert the proper behaviour of the given minion software.