Mozilla Firefox 3.0.1 and earlier allows remote attackers to cause a denial of service (browser hang) by calling the window.print function in a loop, aka a "printing DoS attack," possibly a related issue to CVE-2009-0821.
Memory leak in Libxul, as used in Mozilla Firefox 3.0.5 and other products, allows remote attackers to cause a denial of service (memory consumption and browser hang) via a long CLASS attribute in an HR element in an HTML document.
The user interface event dispatcher in Mozilla Firefox 3.0.3 on Windows XP SP2 allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) via a series of keypress, click, onkeydown, onkeyup, onmousedown, and onmouseup events. NOTE: it was later reported that Firefox 3.0.2 on Mac OS X 10.5 is also affected.
Mozilla Firefox 3.0 beta 5 allows remote attackers to cause a denial of service (application crash) via JavaScript code that calls document.write in an infinite loop.
The js_watch_set function in js/src/jsdbgapi.cpp in the JavaScript engine in Mozilla Firefox before 3.0.12 allows remote attackers to cause a denial of service (assertion failure and application exit) or possibly execute arbitrary code via a crafted .js file, related to a "memory safety bug." NOTE: this was originally reported as affecting versions before 3.0.13.
The nsObserverList::FillObserverArray function in xpcom/ds/nsObserverList.cpp in Mozilla Firefox before 3.5.7 allows remote attackers to cause a denial of service (application crash) via a crafted web site that triggers memory consumption and an accompanying Low Memory alert dialog, and also triggers attempted removal of an observer from an empty observers array.
The SVG component in Mozilla Firefox 3.0.4 allows remote attackers to cause a denial of service (application hang) via a large value in the r (aka Radius) attribute of a circle element, related to an "unclamped loop."
If the source for resources on a page is through an FTP connection, it is possible to trigger a series of modal alert messages for these resources through invalid credentials or locations. These messages cannot be immediately dismissed, allowing for a denial of service (DOS) attack. This vulnerability affects Firefox < 66.
A vulnerability exists during authorization prompting for FTP transaction where successive modal prompts are displayed and cannot be immediately dismissed. This allows for a denial of service (DOS) attack. This vulnerability affects Firefox < 66.
The browser engine in Mozilla Firefox 3.x before 3.0.9, Thunderbird before 2.0.0.22, and SeaMonkey before 1.1.16 allows remote attackers to cause a denial of service (application crash) and possibly trigger memory corruption via vectors related to (1) nsAsyncInstantiateEvent::Run, (2) nsStyleContext::Destroy, (3) nsComputedDOMStyle::GetWidth, (4) the xslt_attributeset_ImportSameName.html test case for the XSLT stylesheet compiler, (5) nsXULDocument::SynchronizeBroadcastListener, (6) IsBindingAncestor, (7) PL_DHashTableOperate and nsEditor::EndUpdateViewBatch, and (8) gfxSkipCharsIterator::SetOffsets, and other vectors.
Mozilla Firefox 3.0.6 through 3.0.13, and 3.5.x, allows remote attackers to cause a denial of service (CPU consumption) via JavaScript code with a long string value for the hash property (aka location.hash), a related issue to CVE-2008-5715.
Mozilla Firefox 3.0.10 allows remote attackers to cause a denial of service (infinite loop, application hang, and memory consumption) via a KEYGEN element in conjunction with (1) a META element specifying automatic page refresh or (2) a JavaScript onLoad event handler for a BODY element. NOTE: it was later reported that earlier versions are also affected.
The JavaScript engine in Mozilla Firefox 3.x before 3.0.9, Thunderbird before 2.0.0.22, and SeaMonkey before 1.1.16 allows remote attackers to cause a denial of service (application crash) and possibly trigger memory corruption via vectors involving (1) js_FindPropertyHelper, related to the definitions of Math and Date; and (2) js_CheckRedeclaration.
Mozilla Firefox 2.0.0.20 and earlier allows remote attackers to cause a denial of service (application crash) via nested calls to the window.print function, as demonstrated by a window.print(window.print()) in the onclick attribute of an INPUT element.
The JavaScript engine in Mozilla Firefox before 3.0.9, Thunderbird before 2.0.0.22, and SeaMonkey before 1.1.16 allows remote attackers to cause a denial of service (application crash) and possibly trigger memory corruption via vectors involving JSOP_DEFVAR and properties that lack the JSPROP_PERMANENT attribute.
The layout engine in Mozilla Firefox 3.x before 3.0.4, Thunderbird 2.x before 2.0.0.18, and SeaMonkey 1.x before 1.1.13 allows remote attackers to cause a denial of service (crash) via multiple vectors that trigger an assertion failure or other consequences.
A vulnerability exists in XSLT during number formatting where a negative buffer size may be allocated in some instances, leading to a buffer overflow and crash if it occurs. This vulnerability affects Firefox < 60.
A use-after-free vulnerability can occur during WebGL operations. While this results in a potentially exploitable crash, the vulnerability is limited because the memory is freed and reused in a brief window of time during the freeing of the same callstack. This vulnerability affects Firefox < 60.
WebRTC can use a "WrappedI420Buffer" pixel buffer but the owning image object can be freed while it is still in use. This can result in the WebRTC encoder using uninitialized memory, leading to a potentially exploitable crash. This vulnerability affects Firefox < 60.
A heap buffer overflow vulnerability may occur in WebAssembly during Memory/Table resizing, resulting in a potentially exploitable crash. This vulnerability affects Firefox < 58.
A use-after-free vulnerability can occur when arguments passed to the "IsPotentiallyScrollable" function are freed while still in use by scripts. This results in a potentially exploitable crash. This vulnerability affects Firefox < 58.
A use-after-free vulnerability can occur when manipulating floating "first-letter" style elements, resulting in a potentially exploitable crash. This vulnerability affects Firefox < 58.
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: JAXP). Supported versions that are affected are Java SE: 7u171, 8u162 and 10; Java SE Embedded: 8u161; JRockit: R28.3.17. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: Applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: Libraries). Supported versions that are affected are Java SE: 6u171, 7u161, 8u152 and 9.0.1; Java SE Embedded: 8u151; JRockit: R28.3.16. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: This vulnerability applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: Concurrency). Supported versions that are affected are Java SE: 7u171, 8u162 and 10; Java SE Embedded: 8u161; JRockit: R28.3.17. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: Applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: JMX). Supported versions that are affected are Java SE: 6u181, 7u171, 8u162 and 10; Java SE Embedded: 8u161; JRockit: R28.3.17. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: Applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
The layout engine in Mozilla Firefox 3.x before 3.0.5, Thunderbird 2.x before 2.0.0.19, and SeaMonkey 1.x before 1.1.14 allows remote attackers to cause a denial of service via vectors that trigger an assertion failure.
Mozilla Firefox 3.0.5 on Windows Vista allows remote attackers to cause a denial of service (application crash) via JavaScript code with a long string value for the hash property (aka location.hash). NOTE: it was later reported that earlier versions are also affected, and that the impact is CPU consumption and application hang in unspecified circumstances perhaps involving other platforms.
In Dovecot before 2.3.11.3, sending a specially formatted NTLM request will crash the auth service because of an out-of-bounds read.
hw/rdma/vmw/pvrdma_main.c in QEMU does not implement a read operation (such as uar_read by analogy to uar_write), which allows attackers to cause a denial of service (NULL pointer dereference).
hw/rdma/vmw/pvrdma_cmd.c in QEMU allows attackers to cause a denial of service (NULL pointer dereference or excessive memory allocation) in create_cq_ring or create_qp_rings.
An issue was discovered in dns.c in HAProxy through 1.8.14. In the case of a compressed pointer, a crafted packet can trigger infinite recursion by making the pointer point to itself, or create a long chain of valid pointers resulting in stack exhaustion.
LibVNC before commit 4a21bbd097ef7c44bb000c3bd0907f96a10e4ce7 contains null pointer dereference in VNC client code that can result DoS.
os/unix/ngx_files.c in nginx before 1.10.1 and 1.11.x before 1.11.1 allows remote attackers to cause a denial of service (NULL pointer dereference and worker process crash) via a crafted request, involving writing a client request body to a temporary file.
php_imap.c in PHP 5.2.5, 5.2.6, 4.x, and other versions, uses obsolete API calls that allow context-dependent attackers to cause a denial of service (crash) and possibly execute arbitrary code via a long IMAP request, which triggers an "rfc822.c legacy routine buffer overflow" error message, related to the rfc822_write_address function.
The email-ingestion feature in Best Practical Request Tracker 4.1.13 through 4.4 allows denial of service by remote attackers via an algorithmic complexity attack on email address parsing.
Qemu has a Buffer Overflow in rtl8139_do_receive in hw/net/rtl8139.c because an incorrect integer data type is used.
A crash can occur when processing a crafted S/MIME message or an XPI package containing a crafted signature. This can be used as a denial-of-service (DOS) attack because Thunderbird reopens the last seen message on restart, triggering the crash again. This vulnerability affects Thunderbird < 60.5.
client_side_request.cc in Squid 3.x before 3.5.18 and 4.x before 4.0.10 allows remote servers to cause a denial of service (crash) via crafted Edge Side Includes (ESI) responses.
Double free vulnerability in Esi.cc in Squid 3.x before 3.5.18 and 4.x before 4.0.10 allows remote servers to cause a denial of service (crash) via a crafted Edge Side Includes (ESI) response.
cachemgr.cgi in Squid 3.1.x and 3.2.x, possibly 3.1.22, 3.2.4, and other versions, allows remote attackers to cause a denial of service (resource consumption) via a crafted request. NOTE: this issue is due to an incorrect fix for CVE-2012-5643, possibly involving an incorrect order of arguments or incorrect comparison.
ImageMagick version 7.0.7-2 contains a memory leak in ReadYUVImage in coders/yuv.c.
The xmlParseElementDecl function in parser.c in libxml2 before 2.9.4 allows context-dependent attackers to cause a denial of service (heap-based buffer underread and application crash) via a crafted file, involving xmlParseName.
Off-by-one error in the append_utf8_value function in the DN decoder (dn.c) in Libksba before 1.3.4 allows remote attackers to cause a denial of service (out-of-bounds read) via invalid utf-8 encoded data. NOTE: this vulnerability exists because of an incomplete fix for CVE-2016-4356.
hostapd 0.6.7 through 2.5 and wpa_supplicant 0.6.7 through 2.5 do not reject \n and \r characters in passphrase parameters, which allows remote attackers to cause a denial of service (daemon outage) via a crafted WPS operation.
The ap_proxy_http_process_response function in mod_proxy_http.c in the mod_proxy module in the Apache HTTP Server 2.0.63 and 2.2.8 does not limit the number of forwarded interim responses, which allows remote HTTP servers to cause a denial of service (memory consumption) via a large number of interim responses.
Stack-based buffer overflow in the nss_dns implementation of the getnetbyname function in GNU C Library (aka glibc) before 2.24 allows context-dependent attackers to cause a denial of service (stack consumption and application crash) via a long name.
Integer signedness error in the archive_write_zip_data function in archive_write_set_format_zip.c in libarchive 3.1.2 and earlier, when running on 64-bit machines, allows context-dependent attackers to cause a denial of service (crash) via unspecified vectors, which triggers an improper conversion between unsigned and signed types, leading to a buffer overflow.
Memory leak in dnsmasq before 2.78, when the --add-mac, --add-cpe-id or --add-subnet option is specified, allows remote attackers to cause a denial of service (memory consumption) via vectors involving DNS response creation.
Integer overflow in the DHCP client (udhcpc) in BusyBox before 1.25.0 allows remote attackers to cause a denial of service (crash) via a malformed RFC1035-encoded domain name, which triggers an out-of-bounds heap write.