schpw.c in the kpasswd service in kadmind in MIT Kerberos 5 (aka krb5) before 1.11.3 does not properly validate UDP packets before sending responses, which allows remote attackers to cause a denial of service (CPU and bandwidth consumption) via a forged packet that triggers a communication loop, as demonstrated by krb_pingpong.nasl, a related issue to CVE-1999-0103.
The do_standalone function in the MIT krb5 KDC database propagation daemon (kpropd) in Kerberos 1.7, 1.8, and 1.9, when running in standalone mode, does not properly handle when a worker child process "exits abnormally," which allows remote attackers to cause a denial of service (listening process termination, no new connections, and lack of updates in slave KVC) via unspecified vectors.
Kerberos 4 KDC program does not properly check for null termination of AUTH_MSG_KDC_REQUEST requests, which allows remote attackers to cause a denial of service via a malformed request.
Buffer overflow in Kerberos 4 KDC program allows remote attackers to cause a denial of service via the e_msg variable in the kerb_err_reply function.
Buffer overflow in Kerberos 4 KDC program allows remote attackers to cause a denial of service via the localrealm variable in the process_v4 function.
Kerberos 4 KDC program improperly frees memory twice (aka "double-free"), which allows remote attackers to cause a denial of service.
Buffer overflow in Kerberos 4 KDC program allows remote attackers to cause a denial of service via the lastrealm variable in the set_tgtkey function.
The spnego_gss_accept_sec_context function in lib/gssapi/spnego/spnego_mech.c in the SPNEGO GSS-API functionality in MIT Kerberos 5 (aka krb5) 1.7 before 1.7.2 and 1.8 before 1.8.1 allows remote attackers to cause a denial of service (assertion failure and daemon crash) via an invalid packet that triggers incorrect preparation of an error token.
The Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) 1.6.x through 1.9, when an LDAP backend is used, allows remote attackers to cause a denial of service (NULL pointer dereference or buffer over-read, and daemon crash) via a crafted principal name.
The unparse implementation in the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) 1.6.x through 1.9, when an LDAP backend is used, allows remote attackers to cause a denial of service (file descriptor exhaustion and daemon hang) via a principal name that triggers use of a backslash escape sequence, as demonstrated by a \n sequence.
The Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) 1.9 allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via a malformed request packet that does not trigger a response packet.
The prep_reprocess_req function in kdc/do_tgs_req.c in the cross-realm referral implementation in the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) 1.7 before 1.7.1 allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via a ticket request.
The (1) kadm5_create_principal_3 and (2) kadm5_modify_principal functions in lib/kadm5/srv/svr_principal.c in kadmind in MIT Kerberos 5 (aka krb5) 1.12.x and 1.13.x before 1.13.4 and 1.14.x before 1.14.1 allow remote authenticated users to cause a denial of service (NULL pointer dereference and daemon crash) by specifying KADM5_POLICY with a NULL policy name.
ec_verify in kdc/kdc_preauth_ec.c in the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) before 1.18.4 and 1.19.x before 1.19.2 allows remote attackers to cause a NULL pointer dereference and daemon crash. This occurs because a return value is not properly managed in a certain situation.
MIT Kerberos 5 (aka krb5) through 1.13.1 incorrectly expects that a krb5_read_message data field is represented as a string ending with a '\0' character, which allows remote attackers to (1) cause a denial of service (NULL pointer dereference) via a zero-byte version string or (2) cause a denial of service (out-of-bounds read) by omitting the '\0' character, related to appl/user_user/server.c and lib/krb5/krb/recvauth.c.
MIT Kerberos 5 (aka krb5) 1.7.x through 1.12.x before 1.12.2 allows remote attackers to cause a denial of service (buffer over-read or NULL pointer dereference, and application crash) by injecting invalid tokens into a GSSAPI application session.
Integer signedness error in MIT Kerberos V5 ASN.1 decoder before krb5 1.2.5 allows remote attackers to cause a denial of service via a large unsigned data element length, which is later used as a negative value.
MIT Kerberos 5 (aka krb5) before 1.12.2 allows remote attackers to cause a denial of service (buffer over-read and application crash) by injecting invalid tokens into a GSSAPI application session.
The pkinit_server_return_padata function in plugins/preauth/pkinit/pkinit_srv.c in the PKINIT implementation in the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) before 1.10.4 attempts to find an agility KDF identifier in inappropriate circumstances, which allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via a crafted Draft 9 request.
The "mechglue" abstraction interface of the GSS-API library for Kerberos 5 1.5 through 1.5.1, as used in Kerberos administration daemon (kadmind) and other products that use this library, allows remote attackers to cause a denial of service (crash) via unspecified vectors that cause mechglue to free uninitialized pointers.
The pkinit_check_kdc_pkid function in plugins/preauth/pkinit/pkinit_crypto_openssl.c in the PKINIT implementation in the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) before 1.10.4 and 1.11.x before 1.11.1 does not properly handle errors during extraction of fields from an X.509 certificate, which allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via a malformed KRB5_PADATA_PK_AS_REQ AS-REQ request.
MIT Kerberos 5 (aka krb5) before 1.17.2 and 1.18.x before 1.18.3 allows unbounded recursion via an ASN.1-encoded Kerberos message because the lib/krb5/asn.1/asn1_encode.c support for BER indefinite lengths lacks a recursion limit.
MIT Kerberos 5 (krb5) 1.3 through 1.4.1 Key Distribution Center (KDC) allows remote attackers to cause a denial of service (application crash) via a certain valid TCP connection that causes a free of unallocated memory.
The Key Distribution Center (KDC) in Kerberos 5 (krb5) 1.2.7 and earlier allows remote, authenticated attackers to cause a denial of service (crash) on KDCs within the same realm using a certain protocol request that causes an out-of-bounds read of an array (aka "array overrun").
MIT Kerberos V5 Key Distribution Center (KDC) before 1.2.5 allows remote authenticated attackers to cause a denial of service (crash) on KDCs within the same realm via a certain protocol request that causes a null dereference.
A flaw was found in, Fedora versions of krb5 from 1.16.1 to, including 1.17.x, in the way a Kerberos client could crash the KDC by sending one of the RFC 4556 "enctypes". A remote unauthenticated user could use this flaw to crash the KDC.
The asn1buf_skiptail function in the ASN.1 decoder library for MIT Kerberos 5 (krb5) 1.2.2 through 1.3.4 allows remote attackers to cause a denial of service (infinite loop) via a certain BER encoding.
lib/gssapi/spnego/spnego_mech.c in MIT Kerberos 5 (aka krb5) before 1.14 relies on an inappropriate context handle, which allows remote attackers to cause a denial of service (incorrect pointer read and process crash) via a crafted SPNEGO packet that is mishandled during a gss_inquire_context call.
The Key Distribution Center (KDC) in Kerberos 5 (krb5) 1.2.7 and earlier allows remote, authenticated attackers to cause a denial of service (crash) on KDCs within the same realm using a certain protocol request that causes the KDC to corrupt its heap (aka "buffer underrun").
The krb5_db2_lockout_audit function in the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) 1.8 through 1.8.4, when the db2 (aka Berkeley DB) back end is used, allows remote attackers to cause a denial of service (assertion failure and daemon exit) via unspecified vectors, a different vulnerability than CVE-2011-1528.
The kdb_ldap plugin in the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) 1.9 through 1.9.1, when the LDAP back end is used, allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via a kinit operation with incorrect string case for the realm, related to the is_principal_in_realm, krb5_set_error_message, krb5_ldap_get_principal, and process_as_req functions.
The merge_authdata function in kdc_authdata.c in the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) 1.8.x before 1.8.4 does not properly manage an index into an authorization-data list, which allows remote attackers to cause a denial of service (daemon crash), or possibly obtain sensitive information, spoof authorization, or execute arbitrary code, via a TGS request that triggers an uninitialized pointer dereference, as demonstrated by a request from a Windows Active Directory client.
The Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) 1.7 before 1.7.2, and 1.8 alpha, allows remote attackers to cause a denial of service (assertion failure and daemon crash) via an invalid (1) AS-REQ or (2) TGS-REQ request.
The process_chpw_request function in schpw.c in the password-changing functionality in kadmind in MIT Kerberos 5 (aka krb5) 1.7 through 1.9 frees an invalid pointer, which allows remote attackers to execute arbitrary code or cause a denial of service (daemon crash) via a crafted request that triggers an error condition.
Insufficient input validation in the Marvin Minsky 1967 implementation of the Universal Turing Machine allows program users to execute arbitrary code via crafted data. For example, a tape head may have an unexpected location after the processing of input composed of As and Bs (instead of 0s and 1s). NOTE: the discoverer states "this vulnerability has no real-world implications."
do_tgs_req.c in the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) 1.11 before 1.11.4, when a single-component realm name is used, allows remote authenticated users to cause a denial of service (daemon crash) via a TGS-REQ request that triggers an attempted cross-realm referral for a host-based service principal.
The kdc_handle_protected_negotiation function in the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) 1.8.x, 1.9.x before 1.9.5, and 1.10.x before 1.10.3 attempts to calculate a checksum before verifying that the key type is appropriate for a checksum, which allows remote attackers to execute arbitrary code or cause a denial of service (uninitialized pointer free, heap memory corruption, and daemon crash) via a crafted AS-REQ request.
The krb5_ldap_lockout_audit function in the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) 1.8 through 1.8.4 and 1.9 through 1.9.1, when the LDAP back end is used, allows remote attackers to cause a denial of service (assertion failure and daemon exit) via unspecified vectors, related to the locked_check_p function. NOTE: the Berkeley DB vector is covered by CVE-2011-4151.
The lookup_lockout_policy function in the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) 1.8 through 1.8.4 and 1.9 through 1.9.1, when the db2 (aka Berkeley DB) or LDAP back end is used, allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via vectors that trigger certain process_as_req errors.
programs/pluto/ikev1.c in libreswan before 3.17 retransmits in initial-responder states, which allows remote attackers to cause a denial of service (traffic amplification) via a spoofed UDP packet. NOTE: the original behavior complies with the IKEv1 protocol, but has a required security update from the libreswan vendor; as of 2016-06-10, it is expected that several other IKEv1 implementations will have vendor-required security updates, with separate CVE IDs assigned to each.
Dragonfly in Opera before 11.60 allows remote attackers to cause a denial of service (application crash) via unspecified content on a web page, as demonstrated by forbes.com.
Open Ticket Request System (OTRS) 2.3.x before 2.3.6 and 2.4.x before 2.4.8 does not properly handle the matching of Perl regular expressions against HTML e-mail messages, which allows remote attackers to cause a denial of service (CPU consumption) via a large message, a different vulnerability than CVE-2010-2080.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, the MP4 dissector could crash. This was addressed in epan/dissectors/file-mp4.c by restricting the box recursion depth.
The XMPP protocol plugin in libpurple in Pidgin before 2.10.1 does not properly handle missing fields in (1) voice-chat and (2) video-chat stanzas, which allows remote attackers to cause a denial of service (application crash) via a crafted message.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, the VLAN dissector could crash. This was addressed in epan/dissectors/packet-vlan.c by limiting VLAN tag nesting to restrict the recursion depth.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, the IEEE 802.15.4 dissector could crash. This was addressed in epan/dissectors/packet-ieee802154.c by ensuring that an allocation step occurs.
The ReadMetaFromId3v2 function in taglib.cpp in the TagLib plugin in VideoLAN VLC media player 0.9.0 through 1.1.2 does not properly process ID3v2 tags, which allows remote attackers to cause a denial of service (application crash) via a crafted media file.
The am_read_post_data function in mod_auth_mellon before 0.11.1 does not check if the ap_get_client_block function returns an error, which allows remote attackers to cause a denial of service (segmentation fault and process crash) via a crafted POST data.
In Wireshark 2.4.0 to 2.4.5, the TCP dissector could crash. This was addressed in epan/dissectors/packet-tcp.c by preserving valid data sources.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, the LWAPP dissector could crash. This was addressed in epan/dissectors/packet-lwapp.c by limiting the encapsulation levels to restrict the recursion depth.