Buffer overflow in libtelnet/encrypt.c in telnetd in FreeBSD 7.3 through 9.0, MIT Kerberos Version 5 Applications (aka krb5-appl) 1.0.2 and earlier, Heimdal 1.5.1 and earlier, GNU inetutils, and possibly other products allows remote attackers to execute arbitrary code via a long encryption key, as exploited in the wild in December 2011.
Buffer overflows in BSD-based FTP servers allows remote attackers to execute arbitrary commands via a long pattern string containing a {} sequence, as seen in (1) g_opendir, (2) g_lstat, (3) g_stat, and (4) the glob0 buffer as used in the glob functions glob2 and glob3.
Buffer overflow in krb425_conv_principal function in Kerberos 5 allows remote attackers to gain root privileges.
Buffer overflow in krshd in Kerberos 5 allows remote attackers to gain root privileges.
GSSFTP FTP daemon in Kerberos 5 1.1.x does not properly restrict access to some FTP commands, which allows remote attackers to cause a denial of service, and local users to gain root privileges.
Buffer overflow in krb_rd_req function in Kerberos 4 and 5 allows remote attackers to gain root privileges.
Multiple integer underflows in the (1) AES and (2) RC4 decryption functionality in the crypto library in MIT Kerberos 5 (aka krb5) 1.3 through 1.6.3, and 1.7 before 1.7.1, allow remote attackers to cause a denial of service (daemon crash) or possibly execute arbitrary code by providing ciphertext with a length that is too short to be valid.
The asn1_decode_generaltime function in lib/krb5/asn.1/asn1_decode.c in the ASN.1 GeneralizedTime decoder in MIT Kerberos 5 (aka krb5) before 1.6.4 allows remote attackers to cause a denial of service (daemon crash) or possibly execute arbitrary code via vectors involving an invalid DER encoding that triggers a free of an uninitialized pointer.
Stack-based buffer overflow in the svcauth_gss_validate function in lib/rpc/svc_auth_gss.c in the RPCSEC_GSS RPC library (librpcsecgss) in MIT Kerberos 5 (krb5) 1.4 through 1.6.2, as used by the Kerberos administration daemon (kadmind) and some third-party applications that use krb5, allows remote attackers to cause a denial of service (daemon crash) and probably execute arbitrary code via a long string in an RPC message.
The original patch for CVE-2007-3999 in svc_auth_gss.c in the RPCSEC_GSS RPC library in MIT Kerberos 5 (krb5) 1.4 through 1.6.2, as used by the Kerberos administration daemon (kadmind) and other applications that use krb5, does not correctly check the buffer length in some environments and architectures, which might allow remote attackers to conduct a buffer overflow attack.
Buffer overflow in the RPC library used by libgssrpc and kadmind in MIT Kerberos 5 (krb5) 1.4 through 1.6.3 allows remote attackers to execute arbitrary code by triggering a large number of open file descriptors.
The gssrpc__svcauth_gssapi function in the RPC library in MIT Kerberos 5 (krb5) 1.6.1 and earlier might allow remote attackers to execute arbitrary code via a zero-length RPC credential, which causes kadmind to free an uninitialized pointer during cleanup.
The telnet daemon (telnetd) in MIT krb5 before 1.6.1 allows remote attackers to bypass authentication and gain system access via a username beginning with a '-' character, a similar issue to CVE-2007-0882.
Integer overflow in the svcauth_gss_get_principal function in lib/rpc/svc_auth_gss.c in MIT Kerberos 5 (krb5) allows remote attackers to have an unknown impact via a large length value for a GSS client name in an RPC request.
Multiple buffer overflows in krb5_aname_to_localname for MIT Kerberos 5 (krb5) 1.3.3 and earlier allow remote attackers to execute arbitrary code as root.
The kadm_ser_in function in (1) the Kerberos v4compatibility administration daemon (kadmind4) in the MIT Kerberos 5 (krb5) krb5-1.2.6 and earlier, (2) kadmind in KTH Kerberos 4 (eBones) before 1.2.1, and (3) kadmind in KTH Kerberos 5 (Heimdal) before 0.5.1 when compiled with Kerberos 4 support, does not properly verify the length field of a request, which allows remote attackers to execute arbitrary code via a buffer overflow attack.
Kerberos FTP client allows remote FTP sites to execute arbitrary code via a pipe (|) character in a filename that is retrieved by the client.
Buffer overflow in BSD-based telnetd telnet daemon on various operating systems allows remote attackers to execute arbitrary commands via a set of options including AYT (Are You There), which is not properly handled by the telrcv function.
The krb5_db2_lockout_audit function in the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) 1.8 through 1.8.4, when the db2 (aka Berkeley DB) back end is used, allows remote attackers to cause a denial of service (assertion failure and daemon exit) via unspecified vectors, a different vulnerability than CVE-2011-1528.
The kdb_ldap plugin in the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) 1.9 through 1.9.1, when the LDAP back end is used, allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via a kinit operation with incorrect string case for the realm, related to the is_principal_in_realm, krb5_set_error_message, krb5_ldap_get_principal, and process_as_req functions.
The merge_authdata function in kdc_authdata.c in the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) 1.8.x before 1.8.4 does not properly manage an index into an authorization-data list, which allows remote attackers to cause a denial of service (daemon crash), or possibly obtain sensitive information, spoof authorization, or execute arbitrary code, via a TGS request that triggers an uninitialized pointer dereference, as demonstrated by a request from a Windows Active Directory client.
The Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) 1.7 before 1.7.2, and 1.8 alpha, allows remote attackers to cause a denial of service (assertion failure and daemon crash) via an invalid (1) AS-REQ or (2) TGS-REQ request.
The spnego_gss_accept_sec_context function in lib/gssapi/spnego/spnego_mech.c in MIT Kerberos 5 (aka krb5) 1.5 through 1.6.3, when SPNEGO is used, allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via invalid ContextFlags data in the reqFlags field in a negTokenInit token.
Insufficient input validation in the Marvin Minsky 1967 implementation of the Universal Turing Machine allows program users to execute arbitrary code via crafted data. For example, a tape head may have an unexpected location after the processing of input composed of As and Bs (instead of 0s and 1s). NOTE: the discoverer states "this vulnerability has no real-world implications."
do_tgs_req.c in the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) 1.11 before 1.11.4, when a single-component realm name is used, allows remote authenticated users to cause a denial of service (daemon crash) via a TGS-REQ request that triggers an attempted cross-realm referral for a host-based service principal.
The kdc_handle_protected_negotiation function in the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) 1.8.x, 1.9.x before 1.9.5, and 1.10.x before 1.10.3 attempts to calculate a checksum before verifying that the key type is appropriate for a checksum, which allows remote attackers to execute arbitrary code or cause a denial of service (uninitialized pointer free, heap memory corruption, and daemon crash) via a crafted AS-REQ request.
schpw.c in the kpasswd service in kadmind in MIT Kerberos 5 (aka krb5) before 1.11.3 does not properly validate UDP packets before sending responses, which allows remote attackers to cause a denial of service (CPU and bandwidth consumption) via a forged packet that triggers a communication loop, as demonstrated by krb_pingpong.nasl, a related issue to CVE-1999-0103.
The krb5_ldap_lockout_audit function in the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) 1.8 through 1.8.4 and 1.9 through 1.9.1, when the LDAP back end is used, allows remote attackers to cause a denial of service (assertion failure and daemon exit) via unspecified vectors, related to the locked_check_p function. NOTE: the Berkeley DB vector is covered by CVE-2011-4151.
The lookup_lockout_policy function in the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) 1.8 through 1.8.4 and 1.9 through 1.9.1, when the db2 (aka Berkeley DB) or LDAP back end is used, allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via vectors that trigger certain process_as_req errors.
The do_standalone function in the MIT krb5 KDC database propagation daemon (kpropd) in Kerberos 1.7, 1.8, and 1.9, when running in standalone mode, does not properly handle when a worker child process "exits abnormally," which allows remote attackers to cause a denial of service (listening process termination, no new connections, and lack of updates in slave KVC) via unspecified vectors.
The Server Administration Panel in Parallels Plesk Panel 10.2.0_build1011110331.18 does not properly validate string data that is intended for storage in an XML document, which allows remote attackers to cause a denial of service (parsing error) or possibly have unspecified other impact via a crafted REST URL parameter, as demonstrated by parameters to admin/ and certain other files.
IBM Rational DOORS Web Access 1.4.x before 1.4.0.4 does not properly handle exceptions, which has unspecified impact and remote attack vectors.
In all Qualcomm products with Android releases from CAF using the Linux kernel, arguments to several QTEE syscalls are not properly validated.
The regex implementation in Google V8, as used in Google Chrome before 19.0.1084.46, allows remote attackers to cause a denial of service (invalid write operation) or possibly have unspecified other impact via unknown vectors.
The SMB Server in Microsoft Windows XP SP2 and SP3, Windows Server 2003 SP2, Windows Vista SP1 and SP2, Windows Server 2008 Gold, SP2, and R2, and Windows 7 does not properly validate fields in an SMB request, which allows remote attackers to execute arbitrary code via a crafted SMB packet, aka "SMB Pool Overflow Vulnerability."
The ioQuake3 engine, as used in World of Padman 1.2 and earlier, Tremulous 1.1.0, and ioUrbanTerror 2007-12-20, does not check for dangerous file extensions before writing to the quake3 directory, which allows remote attackers to execute arbitrary code via a crafted third-party addon that creates a Trojan horse DLL file, a different vulnerability than CVE-2011-2764.
The OGG container in Google Chrome before 19.0.1084.46 allows remote attackers to cause a denial of service or possibly have unspecified other impact via unknown vectors that trigger an out-of-bounds write.
Winny 2.0b7.1 and earlier does not properly process node information, which has unspecified impact and remote attack vectors that might lead to use of the product's host for DDoS attacks.
The DNS server in Microsoft Windows Server 2008 SP2, R2, and R2 SP1 does not properly handle NAPTR queries that trigger recursive processing, which allows remote attackers to execute arbitrary code via a crafted query, aka "DNS NAPTR Query Vulnerability."
Array index error in the SetDLInfo method in the GIGABYTE Dldrv2 ActiveX control 1.4.206.11 allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via the item argument.
A remote code execution vulnerability exists when Microsoft .NET Framework processes untrusted input, aka ".NET Framework Remote Code Execution Vulnerability." This affects Microsoft .NET Framework 4.6, Microsoft .NET Framework 3.5, Microsoft .NET Framework 4.7/4.7.1/4.7.2, Microsoft .NET Framework 3.0, Microsoft .NET Framework 3.5.1, Microsoft .NET Framework 4.6.2/4.7/4.7.1/4.7.2, Microsoft .NET Framework 4.5.2, Microsoft .NET Framework 4.6/4.6.1/4.6.2/4.7/4.7.1/4.7.1/4.7.2, Microsoft .NET Framework 4.7.1/4.7.2, Microsoft .NET Framework 4.7.2, Microsoft .NET Framework 2.0.
tftpserver.exe in HP Intelligent Management Center (IMC) 5.0 before E0101L02 allows remote attackers to execute arbitrary code via a (1) large or (2) invalid opcode field, related to a function pointer table.
Winny 2.0b7.1 and earlier does not properly process BBS information, which has unspecified impact and remote attack vectors that might lead to use of the product's host for DDoS attacks.
The GIGABYTE Dldrv2 ActiveX control 1.4.206.11 allows remote attackers to (1) download arbitrary programs onto a client system, and execute these programs, via vectors involving the dl method; and (2) download arbitrary programs onto a client system via vectors involving the SetDLInfo method in conjunction with the Bdl method.
Multiple unspecified vulnerabilities in the CA (1) PSFormX and (2) WebScan ActiveX controls, as distributed on the CA Global Advisor web site until May 2009, allow remote attackers to execute arbitrary code via unknown vectors.
The SMB client in Microsoft Windows XP SP2 and SP3, Windows Server 2003 SP2, Windows Vista SP1 and SP2, Windows Server 2008 Gold, SP2, R2, and R2 SP1, and Windows 7 Gold and SP1 allows remote SMB servers to execute arbitrary code via a crafted (1) SMBv1 or (2) SMBv2 response, aka "SMB Response Parsing Vulnerability."
The irccd.exe service in EMC Replication Manager Client before 5.3 and NetWorker Module for Microsoft Applications 2.1.x and 2.2.x allows remote attackers to execute arbitrary commands via the RunProgram function to TCP port 6542.
browser/renderer_host/database_dispatcher_host.cc in Google Chrome before 5.0.375.70 on Linux does not properly handle ViewHostMsg_DatabaseOpenFile messages in chroot-based sandboxing, which allows remote attackers to bypass intended sandbox restrictions via vectors involving fchdir and chdir calls.
The client in HP Data Protector allows remote attackers to execute arbitrary programs via an EXEC_SETUP command that references a UNC share pathname.
HPE Service Manager (SM) 9.3x before 9.35 P4 and 9.4x before 9.41.P2 allows remote attackers to execute arbitrary commands via a crafted serialized Java object, related to the Apache Commons Collections library.