Squid 3.x before 3.5.16 and 4.x before 4.0.8 improperly perform bounds checking, which allows remote attackers to cause a denial of service via a crafted HTTP response, related to Vary headers.
cachemgr.cgi in Squid 3.1.x and 3.2.x, possibly 3.1.22, 3.2.4, and other versions, allows remote attackers to cause a denial of service (resource consumption) via a crafted request. NOTE: this issue is due to an incorrect fix for CVE-2012-5643, possibly involving an incorrect order of arguments or incorrect comparison.
The string-comparison functions in String.cci in Squid 3.x before 3.1.8 and 3.2.x before 3.2.0.2 allow remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via a crafted request.
dns_internal.cc in Squid 3.1.6, when IPv6 DNS resolution is not enabled, accesses an invalid socket during an IPv4 TCP DNS query, which allows remote attackers to cause a denial of service (assertion failure and daemon exit) via vectors that trigger an IPv4 DNS response with the TC bit set.
The htcpHandleTstRequest function in htcp.c in Squid 2.x before 2.6.STABLE24 and 2.7 before 2.7.STABLE8, and htcp.cc in 3.0 before 3.0.STABLE24, allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via crafted packets to the HTCP port.
The strListGetItem function in src/HttpHeaderTools.c in Squid 2.7 allows remote attackers to cause a denial of service via a crafted auth header with certain comma delimiters that trigger an infinite loop of calls to the strcspn function.
Squid 3.0 through 3.0.STABLE16 and 3.1 through 3.1.0.11 allows remote attackers to cause a denial of service via malformed requests including (1) "missing or mismatched protocol identifier," (2) missing or negative status value," (3) "missing version," or (4) "missing or invalid status number," related to (a) HttpMsg.cc and (b) HttpReply.cc.
client_side_request.cc in Squid 3.x before 3.5.18 and 4.x before 4.0.10 allows remote servers to cause a denial of service (crash) via crafted Edge Side Includes (ESI) responses.
Double free vulnerability in Esi.cc in Squid 3.x before 3.5.18 and 4.x before 4.0.10 allows remote servers to cause a denial of service (crash) via a crafted Edge Side Includes (ESI) response.
Squid 3.x before 3.5.15 and 4.x before 4.0.7 does not properly append data to String objects, which allows remote servers to cause a denial of service (assertion failure and daemon exit) via a long string, as demonstrated by a crafted HTTP Vary header.
The Edge Side Includes (ESI) parser in Squid 3.x before 3.5.15 and 4.x before 4.0.7 does not check buffer limits during XML parsing, which allows remote HTTP servers to cause a denial of service (assertion failure and daemon exit) via a crafted XML document, related to esi/CustomParser.cc and esi/CustomParser.h.
An issue was discovered in Squid before 4.15 and 5.x before 5.0.6. Due to a buffer-management bug, it allows a denial of service. When resolving a request with the urn: scheme, the parser leaks a small amount of memory. However, there is an unspecified attack methodology that can easily trigger a large amount of memory consumption.
An issue was discovered in Squid before 4.12 and 5.x before 5.0.3. Due to use of a potentially dangerous function, Squid and the default certificate validation helper are vulnerable to a Denial of Service when opening a TLS connection to an attacker-controlled server for HTTPS. This occurs because unrecognized error values are mapped to NULL, but later code expects that each error value is mapped to a valid error string.
Due to incorrect string termination, Squid cachemgr.cgi 4.0 through 4.7 may access unallocated memory. On systems with memory access protections, this can cause the CGI process to terminate unexpectedly, resulting in a denial of service for all clients using it.
HttpHdrRange.cc in Squid 3.x before 3.3.12 and 3.4.x before 3.4.6 allows remote attackers to cause a denial of service (crash) via a request with crafted "Range headers with unidentifiable byte-range values."
http.cc in Squid 3.x before 3.5.15 and 4.x before 4.0.7 proceeds with the storage of certain data after a response-parsing failure, which allows remote HTTP servers to cause a denial of service (assertion failure and daemon exit) via a malformed response.
http.cc in Squid 4.x before 4.0.7 relies on the HTTP status code after a response-parsing failure, which allows remote HTTP servers to cause a denial of service (assertion failure and daemon exit) via a malformed response.
client_side_request.cc in Squid 3.2.x before 3.2.13 and 3.3.x before 3.3.8 allows remote attackers to cause a denial of service via a crafted port number in a HTTP Host header.
Squid 3.1 before 3.3.12 and 3.4 before 3.4.4, when SSL-Bump is enabled, allows remote attackers to cause a denial of service (assertion failure) via a crafted range request, related to state management.
Multiple memory leaks in tools/cachemgr.cc in cachemgr.cgi in Squid 2.x and 3.x before 3.1.22, 3.2.x before 3.2.4, and 3.3.x before 3.3.0.2 allow remote attackers to cause a denial of service (memory consumption) via (1) invalid Content-Length headers, (2) long POST requests, or (3) crafted authentication credentials.
An issue was discovered in Squid 3.x and 4.x through 4.8. Due to incorrect input validation, there is a heap-based buffer overflow that can result in Denial of Service to all clients using the proxy. Severity is high due to this vulnerability occurring before normal security checks; any remote client that can reach the proxy port can trivially perform the attack via a crafted URI scheme.
The idnsGrokReply function in Squid before 3.1.16 does not properly free memory, which allows remote attackers to cause a denial of service (daemon abort) via a DNS reply containing a CNAME record that references another CNAME record that contains an empty A record.
The Squid Software Foundation Squid HTTP Caching Proxy version prior to version 4.0.23 contains a NULL Pointer Dereference vulnerability in HTTP Response X-Forwarded-For header processing that can result in Denial of Service to all clients of the proxy. This attack appear to be exploitable via Remote HTTP server responding with an X-Forwarded-For header to certain types of HTTP request. This vulnerability appears to have been fixed in 4.0.23 and later.
The Squid Software Foundation Squid HTTP Caching Proxy version 3.0 to 3.5.27, 4.0 to 4.0.22 contains a Incorrect Pointer Handling vulnerability in ESI Response Processing that can result in Denial of Service for all clients using the proxy.. This attack appear to be exploitable via Remote server delivers an HTTP response payload containing valid but unusual ESI syntax.. This vulnerability appears to have been fixed in 4.0.23 and later.
An issue was discovered in Squid before 4.10. Due to incorrect input validation, the NTLM authentication credentials parser in ext_lm_group_acl may write to memory outside the credentials buffer. On systems with memory access protections, this can result in the helper process being terminated unexpectedly. This leads to the Squid process also terminating and a denial of service for all clients using the proxy.
Multiple stack-based buffer overflows in Squid 3.x before 3.5.17 and 4.x before 4.0.9 allow remote HTTP servers to cause a denial of service or execute arbitrary code via crafted Edge Side Includes (ESI) responses.
Squid 3.x before 3.5.17 and 4.x before 4.0.9 allow remote attackers to obtain sensitive stack layout information via crafted Edge Side Includes (ESI) responses, related to incorrect use of assert and compiler optimization.
Off-by-one error in the snmpHandleUdp function in snmp_core.cc in Squid 2.x and 3.x, when an SNMP port is configured, allows remote attackers to cause a denial of service (crash) or possibly execute arbitrary code via a crafted UDP SNMP request, which triggers a heap-based buffer overflow.
Buffer overflow in cachemgr.cgi in Squid 2.x, 3.x before 3.5.17, and 4.x before 4.0.9 might allow remote attackers to cause a denial of service or execute arbitrary code by seeding manager reports with crafted data.
Buffer overflow in Squid 3.x before 3.5.17 and 4.x before 4.0.9 allows remote attackers to execute arbitrary code via crafted Edge Side Includes (ESI) responses.
Buffer overflow in the idnsALookup function in dns_internal.cc in Squid 3.2 through 3.2.11 and 3.3 through 3.3.6 allows remote attackers to cause a denial of service (memory corruption and server termination) via a long name in a DNS lookup request.
Heap-based buffer overflow in the Icmp6::Recv function in icmp/Icmp6.cc in the pinger utility in Squid before 3.5.16 and 4.x before 4.0.8 allows remote servers to cause a denial of service (performance degradation or transition failures) or write sensitive information to log files via an ICMPv6 packet.
Buffer overflow in wccp.c in Squid 2.5 before 2.5.STABLE7 allows remote attackers to cause a denial of service and possibly execute arbitrary code via a long WCCP packet, which is processed by a recvfrom function call that uses an incorrect length parameter.
Samba 3.x before 3.3.15, 3.4.x before 3.4.12, and 3.5.x before 3.5.7 does not perform range checks for file descriptors before use of the FD_SET macro, which allows remote attackers to cause a denial of service (stack memory corruption, and infinite loop or daemon crash) by opening a large number of files, related to (1) Winbind or (2) smbd.
The zbx_get_next_field function in libs/zbxcommon/str.c in Zabbix Server before 1.6.8 allows remote attackers to cause a denial of service (crash) via a request that lacks expected separators, which triggers a NULL pointer dereference, as demonstrated using the Command keyword.
The SslHandler in Netty before 3.9.2 allows remote attackers to cause a denial of service (infinite loop and CPU consumption) via a crafted SSLv2Hello message.
The RDS service (rds.exe) in HP Data Protector Manager 6.11 allows remote attackers to cause a denial of service (crash) via a packet with a large data size to TCP port 1530.
wxBitcoin and bitcoind before 0.3.13 do not properly handle bitcoins associated with Bitcoin transactions that have zero confirmations, which allows remote attackers to cause a denial of service (invalid-transaction flood) by sending low-valued transactions without transaction fees.
Buffer overflow in the decrypt_out function in Pidgin (formerly Gaim) before 2.5.6 allows remote attackers to cause a denial of service (application crash) via a QQ packet.
An issue was discovered in libpbc.a in cloudwu PBC through 2017-03-02. A SEGV can occur in set_field_one in bootstrap.c while making a query.
The X.25 implementation in the Linux kernel before 2.6.36.2 does not properly parse facilities, which allows remote attackers to cause a denial of service (heap memory corruption and panic) or possibly have unspecified other impact via malformed (1) X25_FAC_CALLING_AE or (2) X25_FAC_CALLED_AE data, related to net/x25/x25_facilities.c and net/x25/x25_in.c, a different vulnerability than CVE-2010-4164.
Stack-based buffer overflow in the GD extension in PHP before 5.2.15 and 5.3.x before 5.3.4 allows context-dependent attackers to cause a denial of service (application crash) via a large number of anti-aliasing steps in an argument to the imagepstext function.
IBM Tivoli Directory Server (TDS) 6.0.0.x before 6.0.0.8-TIV-ITDS-IF0007 does not properly handle invalid buffer references in LDAP BER requests, which might allow remote attackers to cause a denial of service (daemon crash) via vectors involving a buffer that has a memory address near the maximum possible address.
Multiple buffer overflows in the iSNS implementation in isns.c in (1) Linux SCSI target framework (aka tgt or scsi-target-utils) before 1.0.6, (2) iSCSI Enterprise Target (aka iscsitarget or IET) 1.4.20.1 and earlier, and (3) Generic SCSI Target Subsystem for Linux (aka SCST or iscsi-scst) 1.0.1.1 and earlier allow remote attackers to cause a denial of service (memory corruption and daemon crash) or possibly execute arbitrary code via (a) a long iSCSI Name string in an SCN message or (b) an invalid PDU.
Dolphin Browser 2.5.0 on the HTC Hero allows remote attackers to cause a denial of service (application crash) via JavaScript that writes <marquee> sequences in an infinite loop.
Google Chrome before 4.1.249.1064 does not properly handle HTML5 media, which allows remote attackers to cause a denial of service (memory corruption) and possibly have unspecified other impact via unknown vectors.
Multiple buffer underflows in the base64 decoder in base64.c in (1) bogofilter and (2) bogolexer in bogofilter before 1.2.2 allow remote attackers to cause a denial of service (heap memory corruption and application crash) via an e-mail message with invalid base64 data that begins with an = (equals) character.
Stack-based buffer overflow in lpd.exe in Mocha W32 LPD 1.9 allows remote attackers to cause a denial of service (crash) and possibly execute arbitrary code via a crafted "recieve jobs" request. NOTE: some of these details are obtained from third party information.
Multiple stack-based buffer overflows in Tembria Server Monitor before 5.6.1 allow remote attackers to cause a denial of service (daemon crash) or possibly execute arbitrary code via a crafted (1) GET, (2) PUT, or (3) HEAD request, as demonstrated by a malformed GET request containing a long PATH_INFO to index.asp.
Transmission before 1.92 allows attackers to prevent download of a file by corrupted data during the endgame.