The edge_bulk_in_callback function in drivers/usb/serial/io_ti.c in the Linux kernel before 4.10.4 allows local users to obtain sensitive information (in the dmesg ringbuffer and syslog) from uninitialized kernel memory by using a crafted USB device (posing as an io_ti USB serial device) to trigger an integer underflow.
Linux kernel vhost since version 4.8 does not properly initialize memory in messages passed between virtual guests and the host operating system in the vhost/vhost.c:vhost_new_msg() function. This can allow local privileged users to read some kernel memory contents when reading from the /dev/vhost-net device file.
pep_sock_accept in net/phonet/pep.c in the Linux kernel through 5.15.8 has a refcount leak.
A missing address check in the callers of the show_opcodes() in the Linux kernel allows an attacker to dump the kernel memory at an arbitrary kernel address into the dmesg log.
The mmc_ioctl_cdrom_read_data function in drivers/cdrom/cdrom.c in the Linux kernel through 3.10 allows local users to obtain sensitive information from kernel memory via a read operation on a malfunctioning CD-ROM drive.
The do_tkill function in kernel/signal.c in the Linux kernel before 3.8.9 does not initialize a certain data structure, which allows local users to obtain sensitive information from kernel memory via a crafted application that makes a (1) tkill or (2) tgkill system call.
The report API in the crypto user configuration API in the Linux kernel through 3.8.2 uses an incorrect C library function for copying strings, which allows local users to obtain sensitive information from kernel stack memory by leveraging the CAP_NET_ADMIN capability.
The crypto_report_one function in crypto/crypto_user.c in the report API in the crypto user configuration API in the Linux kernel through 3.8.2 does not initialize certain structure members, which allows local users to obtain sensitive information from kernel heap memory by leveraging the CAP_NET_ADMIN capability.
The key_notify_policy_flush function in net/key/af_key.c in the Linux kernel before 3.9 does not initialize a certain structure member, which allows local users to obtain sensitive information from kernel heap memory by reading a broadcast message from the notify_policy interface of an IPSec key_socket.
The check_alu_op() function in kernel/bpf/verifier.c in the Linux kernel through v5.16-rc5 did not properly update bounds while handling the mov32 instruction, which allows local users to obtain potentially sensitive address information, aka a "pointer leak."
The fill_event_metadata function in fs/notify/fanotify/fanotify_user.c in the Linux kernel through 3.9.4 does not initialize a certain structure member, which allows local users to obtain sensitive information from kernel memory via a read operation on the fanotify descriptor.
An issue was discovered in fs/io_uring.c in the Linux kernel before 5.6. It unsafely handles the root directory during path lookups, and thus a process inside a mount namespace can escape to unintended filesystem locations, aka CID-ff002b30181d.
The (1) key_notify_sa_flush and (2) key_notify_policy_flush functions in net/key/af_key.c in the Linux kernel before 3.10 do not initialize certain structure members, which allows local users to obtain sensitive information from kernel heap memory by reading a broadcast message from the notify interface of an IPSec key_socket.
The HP Smart Array controller disk-array driver and Compaq SMART2 controller disk-array driver in the Linux kernel through 3.9.4 do not initialize certain data structures, which allows local users to obtain sensitive information from kernel memory via (1) a crafted IDAGETPCIINFO command for a /dev/ida device, related to the ida_locked_ioctl function in drivers/block/cpqarray.c or (2) a crafted CCISS_PASSTHRU32 command for a /dev/cciss device, related to the cciss_ioctl32_passthru function in drivers/block/cciss.c.
An information disclosure vulnerability exists in the /proc/pid/syscall functionality of Linux Kernel 5.1 Stable and 5.4.66. More specifically, this issue has been introduced in v5.1-rc4 (commit 631b7abacd02b88f4b0795c08b54ad4fc3e7c7c0) and is still present in v5.10-rc4, so it’s likely that all versions in between are affected. An attacker can read /proc/pid/syscall to trigger this vulnerability, which leads to the kernel leaking memory contents.
The compat_get_timex function in kernel/compat.c in the Linux kernel before 4.16.9 allows local users to obtain sensitive information from kernel memory via adjtimex.
An issue was discovered in romfs_dev_read in fs/romfs/storage.c in the Linux kernel before 5.8.4. Uninitialized memory leaks to userspace, aka CID-bcf85fcedfdd.
kernel/bpf/verifier.c in the Linux kernel through 5.12.1 performs undesirable speculative loads, leading to disclosure of stack content via side-channel attacks, aka CID-801c6058d14a. The specific concern is not protecting the BPF stack area against speculative loads. Also, the BPF stack can contain uninitialized data that might represent sensitive information previously operated on by the kernel.
The Linux kernel through 3.7.9 allows local users to obtain sensitive information about keystroke timing by using the inotify API on the /dev/ptmx device.
The sys_get_thread_area function in process.c in Linux 2.6 before 2.6.12.4 and 2.6.13 does not clear a data structure before copying it to userspace, which might allow a user process to obtain sensitive information.
The load_script function in fs/binfmt_script.c in the Linux kernel before 3.7.2 does not properly handle recursion, which allows local users to obtain sensitive information from kernel stack memory via a crafted application.
An issue was discovered in EMC ScaleIO 2.0.1.x. In a Linux environment, one of the support scripts saves the credentials of the ScaleIO MDM user who executed the script in clear text in temporary log files. The temporary files may potentially be read by an unprivileged user with access to the server where the script was executed to recover exposed credentials.
Incorrect error handling in the set_mempolicy and mbind compat syscalls in mm/mempolicy.c in the Linux kernel through 4.10.9 allows local users to obtain sensitive information from uninitialized stack data by triggering failure of a certain bitmap operation.
net/xfrm/xfrm_user.c in the Linux kernel before 3.6 does not verify that the actual Netlink message length is consistent with a certain header field, which allows local users to obtain sensitive information from kernel heap memory by leveraging the CAP_NET_ADMIN capability and providing a (1) new or (2) updated state.
The OS Installation Management component in CA Client Automation r12.9, r14.0, and r14.0 SP1 places an encrypted password into a readable local file during operating system installation, which allows local users to obtain sensitive information by reading this file after operating system installation.
The rds_recvmsg function in net/rds/recv.c in the Linux kernel before 3.0.44 does not initialize a certain structure member, which allows local users to obtain potentially sensitive information from kernel stack memory via a (1) recvfrom or (2) recvmsg system call on an RDS socket.
Linux kernel 2.6.10 and 2.6.11rc1-bk6 uses different size types for offset arguments to the proc_file_read and locks_read_proc functions, which leads to a heap-based buffer overflow when a signed comparison causes negative integers to be used in a positive context.
Signedness error in the copy_from_read_buf function in n_tty.c for Linux kernel 2.6.10 and 2.6.11rc1 allows local users to read kernel memory via a negative argument.
fs/ext4/inode.c in the Linux kernel before 4.6.2, when ext4 data=ordered mode is used, mishandles a needs-flushing-before-commit list, which allows local users to obtain sensitive information from other users' files in opportunistic circumstances by waiting for a hardware reset, creating a new file, making write system calls, and reading this file.
The do_check function in kernel/bpf/verifier.c in the Linux kernel before 4.11.1 does not make the allow_ptr_leaks value available for restricting the output of the print_bpf_insn function, which allows local users to obtain sensitive address information via crafted bpf system calls.
Off-by-one error in the pipe_advance function in lib/iov_iter.c in the Linux kernel before 4.9.5 allows local users to obtain sensitive information from uninitialized heap-memory locations in opportunistic circumstances by reading from a pipe after an incorrect buffer-release decision.
The time subsystem in the Linux kernel through 4.9.9, when CONFIG_TIMER_STATS is enabled, allows local users to discover real PID values (as distinguished from PID values inside a PID namespace) by reading the /proc/timer_list file, related to the print_timer function in kernel/time/timer_list.c and the __timer_stats_timer_set_start_info function in kernel/time/timer.c.
The klsi_105_get_line_state function in drivers/usb/serial/kl5kusb105.c in the Linux kernel before 4.9.5 places uninitialized heap-memory contents into a log entry upon a failure to read the line status, which allows local users to obtain sensitive information by reading the log.
dm-crypt on Linux kernel 2.6.x, when used on certain file systems with a block size 1024 or greater, has certain "IV computation" weaknesses that allow watermarked files to be detected without decryption.
IBM Security Guardium 10.5 stores user credentials in plain clear text which can be read by a local privileged user. IBM X-Force ID: 215589.
net/netfilter/nf_conntrack_standalone.c in the Linux kernel before 5.12.2 allows observation of changes in any net namespace because these changes are leaked into all other net namespaces. This is related to the NF_SYSCTL_CT_MAX, NF_SYSCTL_CT_EXPECT_MAX, and NF_SYSCTL_CT_BUCKETS sysctls.
cryptoloop on Linux kernel 2.6.x, when used on certain file systems with a block size 1024 or greater, has certain "IV computation" weaknesses that allow watermarked files to be detected without decryption.
IBM Tivoli Key Lifecycle Manager 3.0, 3.0.1, 4.0, and 4.1 stores user credentials in plain clear text which can be read by a local user. X-Force ID: 212781.
IBM MQ 7.5, 8.0, 9.0 LTS, 9.1 CD, and 9.1 LTS stores user credentials in plain clear text which can be read by a local user. IBM X-Force ID: 211403.
An issue was discovered in drivers/scsi/aacraid/commctrl.c in the Linux kernel before 4.13. There is potential exposure of kernel stack memory because aac_send_raw_srb does not initialize the reply structure.
kernel/bpf/verifier.c in the Linux kernel through 4.14.8 mishandles states_equal comparisons between the pointer data type and the UNKNOWN_VALUE data type, which allows local users to obtain potentially sensitive address information, aka a "pointer leak."
The timer_create syscall implementation in kernel/time/posix-timers.c in the Linux kernel before 4.14.8 doesn't properly validate the sigevent->sigev_notify field, which leads to out-of-bounds access in the show_timer function (called when /proc/$PID/timers is read). This allows userspace applications to read arbitrary kernel memory (on a kernel built with CONFIG_POSIX_TIMERS and CONFIG_CHECKPOINT_RESTORE).
A vulnerability was found in the Linux kernel in versions prior to v5.14-rc1. Missing size validations on inbound SCTP packets may allow the kernel to read uninitialized memory.
A flaw was found in the Linux kernel's OverlayFS subsystem in the way the user mounts the TmpFS filesystem with OverlayFS. This flaw allows a local user to gain access to hidden files that should not be accessible.
The walk_hugetlb_range function in mm/pagewalk.c in the Linux kernel before 4.14.2 mishandles holes in hugetlb ranges, which allows local users to obtain sensitive information from uninitialized kernel memory via crafted use of the mincore() system call.
The KVM implementation in the Linux kernel through 4.14.7 allows attackers to obtain potentially sensitive information from kernel memory, aka a write_mmio stack-based out-of-bounds read, related to arch/x86/kvm/x86.c and include/trace/events/kvm.h.
In the Linux kernel through 5.13.7, an unprivileged BPF program can obtain sensitive information from kernel memory via a Speculative Store Bypass side-channel attack because a certain preempting store operation does not necessarily occur before a store operation that has an attacker-controlled value.
Floating point information leak in the context switch code for Linux 2.4.x only checks the MFH bit but does not verify the FPH owner, which allows local users to read register values of other processes by setting the MFH bit.
The e1000 driver for Linux kernel 2.4.26 and earlier does not properly initialize memory before using it, which allows local users to read portions of kernel memory. NOTE: this issue was originally incorrectly reported as a "buffer overflow" by some sources.
NVIDIA GPU and Tegra hardware contain a vulnerability in the internal microcontroller which may allow a user with elevated privileges to gain access to information from unscrubbed memory, which may lead to information disclosure.