sp5xdec.c in the Sunplus SP5X JPEG decoder in libavcodec in FFmpeg before 0.6.3 and libav through 0.6.2, as used in VideoLAN VLC media player 1.1.9 and earlier and other products, performs a write operation outside the bounds of an unspecified array, which allows remote attackers to cause a denial of service (memory corruption) or possibly execute arbitrary code via a malformed AMV file.
FFmpeg before 0.5.4, as used in MPlayer and other products, allows remote attackers to cause a denial of service (memory corruption and application crash) or possibly execute arbitrary code via a malformed WMV file.
The studio profile decoder in libavcodec/mpeg4videodec.c in FFmpeg 4.0 before 4.0.4 and 4.1 before 4.1.2 allows remote attackers to cause a denial of service (out-of-array access) or possibly have unspecified other impact via crafted MPEG-4 video data.
Integer overflow in the ff_ivi_init_planes function in libavcodec/ivi.c in FFmpeg before 2.6.5, 2.7.x before 2.7.3, and 2.8.x through 2.8.2 allows remote attackers to cause a denial of service (out-of-bounds heap-memory access) or possibly have unspecified other impact via crafted image dimensions in Indeo Video Interactive data.
The jpeg2000_read_main_headers function in libavcodec/jpeg2000dec.c in FFmpeg before 2.6.5, 2.7.x before 2.7.3, and 2.8.x through 2.8.2 does not enforce uniqueness of the SIZ marker in a JPEG 2000 image, which allows remote attackers to cause a denial of service (out-of-bounds heap-memory access) or possibly have unspecified other impact via a crafted image with two or more of these markers.
The decode_uncompressed function in libavcodec/faxcompr.c in FFmpeg before 2.8.2 does not validate uncompressed runs, which allows remote attackers to cause a denial of service (out-of-bounds array access) or possibly have unspecified other impact via crafted CCITT FAX data.
FFmpeg <=4.3 contains a buffer overflow vulnerability in libavcodec through a crafted file that may lead to remote code execution.
libavcodec/hevcdec.c in FFmpeg 3.4 and 4.1.2 mishandles detection of duplicate first slices, which allows remote attackers to cause a denial of service (NULL pointer dereference and out-of-array access) or possibly have unspecified other impact via crafted HEVC data.
The export function in libavfilter/vf_signature.c in FFmpeg through 3.4.2 allows remote attackers to cause a denial of service (out-of-array access) or possibly have unspecified other impact via a long filename.
block_cmp() in libavcodec/zmbvenc.c in FFmpeg 4.1.3 has a heap-based buffer over-read.
The msrle_decode_pal4 function in msrledec.c in Libav before 10.7 and 11.x before 11.4 and FFmpeg before 2.0.7, 2.2.x before 2.2.15, 2.4.x before 2.4.8, 2.5.x before 2.5.6, and 2.6.x before 2.6.2 allows remote attackers to have unspecified impact via a crafted image, related to a pixel pointer, which triggers an out-of-bounds array access.
Use-after-free vulnerability in the ff_h264_free_tables function in libavcodec/h264.c in FFmpeg before 2.3.6 allows remote attackers to cause a denial of service or possibly have unspecified other impact via crafted H.264 data in an MP4 file, as demonstrated by an HTML VIDEO element that references H.264 data.
The ff_mjpeg_decode_sof function in libavcodec/mjpegdec.c in FFmpeg before 2.5.4 does not validate the number of components in a JPEG-LS Start Of Frame segment, which allows remote attackers to cause a denial of service (out-of-bounds array access) or possibly have unspecified other impact via crafted Motion JPEG data.
The smacker_decode_header_tree function in libavcodec/smacker.c in FFmpeg before 0.10 allows remote attackers to have an unspecified impact via crafted Smacker data.
The read_header function in libavcodec/ffv1dec.c in FFmpeg before 2.1 does not prevent changes to global parameters, which allows remote attackers to cause a denial of service (out-of-bounds array access) or possibly have unspecified other impact via crafted FFV1 data.
Multiple integer signedness errors in libavcodec/dsputil.c in FFmpeg before 2.1 allow remote attackers to cause a denial of service (out-of-bounds array access) or possibly have unspecified other impact via crafted data.
Double free vulnerability in the vp3_update_thread_context function in libavcodec/vp3.c in FFmpeg before 0.10 allows remote attackers to have an unspecified impact via crafted vp3 data.
Heap-based buffer overflow in the decode_dds1 function in libavcodec/dfa.c in FFmpeg before 2.8.12, 3.0.x before 3.0.8, 3.1.x before 3.1.8, 3.2.x before 3.2.5, and 3.3.x before 3.3.1 allows remote attackers to cause a denial of service (application crash) or possibly have unspecified other impact via a crafted file.
Integer underflow in the mov_read_default function in libavformat/mov.c in FFmpeg before 2.4.6 allows remote attackers to obtain sensitive information from heap and/or stack memory via a crafted MP4 file.
Integer underflow in glyph handling in FreeType before 2.4.0 allows remote attackers to cause a denial of service (application crash) or possibly execute arbitrary code via a crafted font file.
A code execution vulnerability exists in the DL_Dxf::handleLWPolylineData functionality of Ribbonsoft dxflib 3.17.0. A specially-crafted .dxf file can lead to a heap buffer overflow. An attacker can provide a malicious file to trigger this vulnerability.
An issue was discovered in Amazon Web Services (AWS) FreeRTOS through 1.3.1, FreeRTOS up to V10.0.1 (with FreeRTOS+TCP), and WITTENSTEIN WHIS Connect middleware TCP/IP component. A crafted IP header triggers a full memory space copy in prvProcessIPPacket, leading to denial of service and possibly remote code execution.
In MP4v2 2.0.0, there is an integer underflow (with resultant memory corruption) when parsing MP4Atom in mp4atom.cpp.
An exploitable signed comparison vulnerability exists in the ARMv7 memcpy() implementation of GNU glibc 2.30.9000. Calling memcpy() (on ARMv7 targets that utilize the GNU glibc implementation) with a negative value for the 'num' parameter results in a signed comparison vulnerability. If an attacker underflows the 'num' parameter to memcpy(), this vulnerability could lead to undefined behavior such as writing to out-of-bounds memory and potentially remote code execution. Furthermore, this memcpy() implementation allows for program execution to continue in scenarios where a segmentation fault or crash should have occurred. The dangers occur in that subsequent execution and iterations of this code will be executed with this corrupted data.
A memory corruption vulnerability exists when Windows Media Foundation improperly handles objects in memory, aka 'Media Foundation Memory Corruption Vulnerability'. This CVE ID is unique from CVE-2020-1238.
The hevc_write_frame function in libbpg.c in libbpg 0.9.7 allows remote attackers to cause a denial of service (integer underflow and application crash) or possibly have unspecified other impact via a crafted BPG file, related to improper interaction with copy_CTB_to_hv in hevc_filter.c in libavcodec in FFmpeg and sao_filter_CTB in hevc_filter.c in libavcodec in FFmpeg.
Integer underflow in ANGLE in Google Chrome prior to 96.0.4664.93 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.
An exploitable heap underflow vulnerability exists in the derive_taps_and_gains function in kdu_v7ar.dll of Kakadu Software SDK 7.10.2. A specially crafted jp2 file can cause a heap overflow, which can result in remote code execution. An attacker could provide a malformed file to the victim to trigger this vulnerability.
An exploitable integer underflow vulnerability exists in the CMP-parsing functionality of LEADTOOLS 20. A specially crafted CMP image file can cause an integer underflow, potentially resulting in code execution. An attacker can specially craft a CMP image to trigger this vulnerability.
An Integer Underflow in MP4_EIA608_Convert() in modules/demux/mp4/mp4.c in VideoLAN VLC media player through 3.0.7.1 allows remote attackers to cause a denial of service (heap-based buffer overflow and crash) or possibly have unspecified other impact via a crafted .mp4 file.
An issue was discovered in Schism Tracker through 20190722. There is an integer underflow via a large plen in fmt_okt_load_song in the Amiga Oktalyzer parser in fmt/okt.c.
In Das U-Boot versions 2016.11-rc1 through 2019.07-rc4, an underflow can cause memcpy() to overwrite a very large amount of data (including the whole stack) while reading a crafted ext4 filesystem.
tools/tiffcp.c in LibTIFF 4.0.7 allows remote attackers to cause a denial of service (integer underflow and heap-based buffer under-read) or possibly have unspecified other impact via a crafted TIFF image, related to "READ of size 78490" and libtiff/tif_unix.c:115:23.
FATEK Automation WinProladder Versions 3.30 and prior is vulnerable to an integer underflow, which may cause an out-of-bounds write and allow an attacker to execute arbitrary code.
An exploitable stack-based buffer overflow vulnerability exists in the JPEG parser of Atlantis Word Processor, version 3.2.5.0. A specially crafted image embedded within a document can cause a length to be miscalculated and underflow. This length is then treated as unsigned and then used in a copying operation. Due to the length underflow, the application will then write outside the bounds of a stack buffer, resulting in a buffer overflow. An attacker must convince a victim to open a document in order to trigger this vulnerability.
Integer overflow in drivers/char/diag/diag_dci.c in the Qualcomm components in Android before 2016-08-05 on Nexus 5 and 7 (2013) devices allows attackers to gain privileges or obtain sensitive information via a crafted application, aka Android internal bug 28769912 and Qualcomm internal bug CR565160.
Integer underflow in the MP4_ReadBox_String function in modules/demux/mp4/libmp4.c in VideoLAN VLC media player before 2.1.6 allows remote attackers to cause a denial of service or possibly have unspecified other impact via a box size less than 7.
Integer underflow in LibreOffice before 4.4.5 and Apache OpenOffice before 4.1.2, when the configuration setting "Load printer settings with the document" is enabled, allows remote attackers to cause a denial of service (memory corruption and application crash) or possibly execute arbitrary code via crafted PrinterSetup data in an ODF document.