Integer underflow in the e1000_clean_rx_irq function in drivers/net/e1000/e1000_main.c in the e1000 driver in the Linux kernel before 2.6.30-rc8, the e1000e driver in the Linux kernel, and Intel Wired Ethernet (aka e1000) before 7.5.5 allows remote attackers to cause a denial of service (panic) via a crafted frame size.
The cache manager in the client in OpenAFS 1.0 through 1.4.8 and 1.5.0 through 1.5.58, and IBM AFS 3.6 before Patch 19, on Linux allows remote attackers to cause a denial of service (system crash) via an RX response with a large error-code value that is interpreted as a pointer and dereferenced, related to use of the ERR_PTR macro.
The ip_frag_reasm function in net/ipv4/ip_fragment.c in the Linux kernel 2.6.32-rc8, and 2.6.29 and later versions before 2.6.32, calls IP_INC_STATS_BH with an incorrect argument, which allows remote attackers to cause a denial of service (NULL pointer dereference and hang) via long IP packets, possibly related to the ip_defrag function.
The sctp_assoc_lookup_asconf_ack function in net/sctp/associola.c in the SCTP implementation in the Linux kernel through 3.17.2 allows remote attackers to cause a denial of service (panic) via duplicate ASCONF chunks that trigger an incorrect uncork within the side-effect interpreter.
A remote denial of service vulnerability in HPE System Management Homepage for Windows and Linux version prior to v7.6.1 was found.
In the Linux kernel before 4.20.5, attackers can trigger a drivers/char/ipmi/ipmi_msghandler.c use-after-free and OOPS by arranging for certain simultaneous execution of the code, as demonstrated by a "service ipmievd restart" loop.
Memory leak in the virtio_gpu_object_create function in drivers/gpu/drm/virtio/virtgpu_object.c in the Linux kernel through 4.11.8 allows attackers to cause a denial of service (memory consumption) by triggering object-initialization failures.
A memory leak in the kernel_read_file function in fs/exec.c in the Linux kernel through 4.20.11 allows attackers to cause a denial of service (memory consumption) by triggering vfs_read failures.
The igmp_heard_query function in net/ipv4/igmp.c in the Linux kernel before 3.2.1 allows remote attackers to cause a denial of service (divide-by-zero error and panic) via IGMP packets.
The icmp6_send function in net/ipv6/icmp.c in the Linux kernel through 4.8.12 omits a certain check of the dst data structure, which allows remote attackers to cause a denial of service (panic) via a fragmented IPv6 packet.
The IP stack in the Linux kernel before 4.6 allows remote attackers to cause a denial of service (stack consumption and panic) or possibly have unspecified other impact by triggering use of the GRO path for packets with tunnel stacking, as demonstrated by interleaved IPv4 headers and GRE headers, a related issue to CVE-2016-7039.
The IP stack in the Linux kernel through 4.8.2 allows remote attackers to cause a denial of service (stack consumption and panic) or possibly have unspecified other impact by triggering use of the GRO path for large crafted packets, as demonstrated by packets that contain only VLAN headers, a related issue to CVE-2016-8666.
A certain Red Hat patch to the sctp_sock_migrate function in net/sctp/socket.c in the Linux kernel before 2.6.21, as used in Red Hat Enterprise Linux (RHEL) 5, allows remote attackers to cause a denial of service (NULL pointer dereference and OOPS) via a crafted SCTP packet.
The br_mdb_ip_get function in net/bridge/br_multicast.c in the Linux kernel before 2.6.35-rc5 allows remote attackers to cause a denial of service (NULL pointer dereference and system crash) via an IGMP packet, related to lack of a multicast table.
The nfattr_to_tcp function in ip_conntrack_proto_tcp.c in ctnetlink in Linux kernel 2.6.14 up to 2.6.14.3 allows attackers to cause a denial of service (kernel oops) via an update message without private protocol information, which triggers a null dereference.
Linux kernel before after 2.6.12 and before 2.6.13.1 might allow attackers to cause a denial of service (Oops) via certain IPSec packets that cause alignment problems in standard multi-block cipher processors. NOTE: it is not clear whether this issue can be triggered by an attacker.
The selinux_parse_skb_ipv6 function in security/selinux/hooks.c in the Linux kernel before 2.6.12-rc4 allows remote attackers to cause a denial of service (OOPS) via vectors associated with an incorrect call to the ipv6_skip_exthdr function.
The nfs_wait_on_request function in fs/nfs/pagelist.c in Linux kernel 2.6.x through 2.6.33-rc5 allows attackers to cause a denial of service (Oops) via unknown vectors related to truncating a file and an operation that is not interruptible.
The sctp_rcv_ootb function in the SCTP implementation in the Linux kernel before 2.6.23 allows remote attackers to cause a denial of service (infinite loop) via (1) an Out Of The Blue (OOTB) chunk or (2) a chunk of zero length.
The Linux kernel 2.6.20 through 2.6.21.1 allows remote attackers to cause a denial of service (panic) via a certain IPv6 packet, possibly involving the Jumbo Payload hop-by-hop option (jumbogram).
The ipv6_hop_jumbo function in net/ipv6/exthdrs.c in the Linux kernel before 2.6.22 does not properly validate the hop-by-hop IPv6 extended header, which allows remote attackers to cause a denial of service (NULL pointer dereference and kernel panic) via a crafted IPv6 packet.
The tcp_cwnd_reduction function in net/ipv4/tcp_input.c in the Linux kernel before 4.3.5 allows remote attackers to cause a denial of service (divide-by-zero error and system crash) via crafted TCP traffic.
The hfsplus_block_allocate function in fs/hfsplus/bitmap.c in the Linux kernel before 2.6.28-rc1 does not check a certain return value from the read_mapping_page function before calling kmap, which allows attackers to cause a denial of service (system crash) via a crafted hfsplus filesystem image.
The chip_command function in drivers/media/video/tvaudio.c in the Linux kernel 2.6.25.x before 2.6.25.19, 2.6.26.x before 2.6.26.7, and 2.6.27.x before 2.6.27.3 allows attackers to cause a denial of service (NULL function pointer dereference and OOPS) via unknown vectors.
Buffer overflow in the hfsplus_find_cat function in fs/hfsplus/catalog.c in the Linux kernel before 2.6.28-rc1 allows attackers to cause a denial of service (memory corruption or system crash) via an hfsplus filesystem image with an invalid catalog namelength field, related to the hfsplus_cat_build_key_uni function.
Stack-based buffer overflow in the hfs_cat_find_brec function in fs/hfs/catalog.c in the Linux kernel before 2.6.28-rc1 allows attackers to cause a denial of service (memory corruption or system crash) via an hfs filesystem image with an invalid catalog namelength field, a related issue to CVE-2008-4933.
sctp in Linux kernel before 2.6.25.18 allows remote attackers to cause a denial of service (OOPS) via an INIT-ACK that states the peer does not support AUTH, which causes the sctp_process_init function to clean up active transports and triggers the OOPS when the T1-Init timer expires.
The Stream Control Transmission Protocol (sctp) implementation in the Linux kernel before 2.6.27 does not properly handle a protocol violation in which a parameter has an invalid length, which allows attackers to cause a denial of service (panic) via unspecified vectors, related to sctp_sf_violation_paramlen, sctp_sf_abort_violation, sctp_make_abort_violation, and incorrect data types in function calls.
net/ipv6/netfilter/nf_conntrack_reasm.c in the Linux kernel before 2.6.34, when the nf_conntrack_ipv6 module is enabled, allows remote attackers to cause a denial of service (NULL pointer dereference and system crash) via certain types of fragmented IPv6 packets.
The pppol2tp_recvmsg function in drivers/net/pppol2tp.c in the Linux kernel 2.6 before 2.6.26-rc6 allows remote attackers to cause a denial of service (kernel heap memory corruption and system crash) and possibly have unspecified other impact via a crafted PPPOL2TP packet that results in a large value for a certain length variable.
The socket implementation in net/core/sock.c in the Linux kernel before 2.6.35 does not properly manage a backlog of received packets, which allows remote attackers to cause a denial of service by sending a large amount of network traffic, related to the sk_add_backlog function and the sk_rmem_alloc socket field. NOTE: this vulnerability exists because of an incomplete fix for CVE-2010-4251.
Integer overflow in the sctp_setsockopt_auth_key function in net/sctp/socket.c in the Stream Control Transmission Protocol (sctp) implementation in the Linux kernel 2.6.24-rc1 through 2.6.26.3 allows remote attackers to cause a denial of service (panic) or possibly have unspecified other impact via a crafted sca_keylength field associated with the SCTP_AUTH_KEY option.
client/NmdcHub.cpp in Linux DC++ (linuxdcpp) before 0.707 allows remote attackers to cause a denial of service (crash) via an empty private message, which triggers an out-of-bounds read.
A memory leak in the dwc3_pci_probe() function in drivers/usb/dwc3/dwc3-pci.c in the Linux kernel through 5.3.9 allows attackers to cause a denial of service (memory consumption) by triggering platform_device_add_properties() failures, aka CID-9bbfceea12a8.
A memory leak in the crypto_reportstat() function in crypto/crypto_user_stat.c in the Linux kernel through 5.3.11 allows attackers to cause a denial of service (memory consumption) by triggering crypto_reportstat_alg() failures, aka CID-c03b04dcdba1.
Two memory leaks in the v3d_submit_cl_ioctl() function in drivers/gpu/drm/v3d/v3d_gem.c in the Linux kernel before 5.3.11 allow attackers to cause a denial of service (memory consumption) by triggering kcalloc() or v3d_job_init() failures, aka CID-29cd13cfd762.
A memory leak in the sof_dfsentry_write() function in sound/soc/sof/debug.c in the Linux kernel through 5.3.9 allows attackers to cause a denial of service (memory consumption), aka CID-c0a333d842ef.
A memory leak in the fastrpc_dma_buf_attach() function in drivers/misc/fastrpc.c in the Linux kernel before 5.3.9 allows attackers to cause a denial of service (memory consumption) by triggering dma_get_sgtable() failures, aka CID-fc739a058d99.
A memory leak in the rsi_send_beacon() function in drivers/net/wireless/rsi/rsi_91x_mgmt.c in the Linux kernel through 5.3.11 allows attackers to cause a denial of service (memory consumption) by triggering rsi_prepare_beacon() failures, aka CID-d563131ef23c.
A memory leak in the adis_update_scan_mode_burst() function in drivers/iio/imu/adis_buffer.c in the Linux kernel before 5.3.9 allows attackers to cause a denial of service (memory consumption), aka CID-9c0530e898f3.
A memory leak in the fsl_lpspi_probe() function in drivers/spi/spi-fsl-lpspi.c in the Linux kernel through 5.3.11 allows attackers to cause a denial of service (memory consumption) by triggering pm_runtime_get_sync() failures, aka CID-057b8945f78f. NOTE: third parties dispute the relevance of this because an attacker cannot realistically control these failures at probe time
Memory leak in the ipip6_rcv function in net/ipv6/sit.c in the Linux kernel 2.4 before 2.4.36.5 and 2.6 before 2.6.25.3 allows remote attackers to cause a denial of service (memory consumption) via network traffic to a Simple Internet Transition (SIT) tunnel interface, related to the pskb_may_pull and kfree_skb functions, and management of an skb reference count.
A memory leak in the komeda_wb_connector_add() function in drivers/gpu/drm/arm/display/komeda/komeda_wb_connector.c in the Linux kernel before 5.3.8 allows attackers to cause a denial of service (memory consumption) by triggering drm_writeback_connector_init() failures, aka CID-a0ecd6fdbf5d.
A memory leak in the gs_can_open() function in drivers/net/can/usb/gs_usb.c in the Linux kernel before 5.3.11 allows attackers to cause a denial of service (memory consumption) by triggering usb_submit_urb() failures, aka CID-fb5be6a7b486.
A memory leak in the ath9k_wmi_cmd() function in drivers/net/wireless/ath/ath9k/wmi.c in the Linux kernel through 5.3.11 allows attackers to cause a denial of service (memory consumption), aka CID-728c1e2a05e4.
Unspecified vulnerability in Cisco Security Agent 5.2 before 5.2.0.285, when running on Linux, allows remote attackers to cause a denial of service (kernel panic) via "a series of TCP packets."
A memory leak in the unittest_data_add() function in drivers/of/unittest.c in the Linux kernel before 5.3.10 allows attackers to cause a denial of service (memory consumption) by triggering of_fdt_unflatten_tree() failures, aka CID-e13de8fe0d6a. NOTE: third parties dispute the relevance of this because unittest.c can only be reached during boot
An issue was discovered in the Linux kernel 4.4.x before 4.4.195. There is a NULL pointer dereference in rds_tcp_kill_sock() in net/rds/tcp.c that will cause denial of service, aka CID-91573ae4aed0.
A memory leak in the rpmsg_eptdev_write_iter() function in drivers/rpmsg/rpmsg_char.c in the Linux kernel through 5.3.11 allows attackers to cause a denial of service (memory consumption) by triggering copy_from_iter_full() failures, aka CID-bbe692e349e2.
A memory leak in the spi_gpio_probe() function in drivers/spi/spi-gpio.c in the Linux kernel through 5.3.11 allows attackers to cause a denial of service (memory consumption) by triggering devm_add_action_or_reset() failures, aka CID-d3b0ffa1d75d. NOTE: third parties dispute the relevance of this because the system must have already been out of memory before the probe began