A vulnerability has been identified in SIMATIC S7-1500 CPU (All versions >= V2.0 and < V2.5), SIMATIC S7-1500 CPU (All versions <= V1.8.5). Specially crafted network packets sent to port 80/tcp or 443/tcp could allow an unauthenticated remote attacker to cause a Denial-of-Service condition of the device. The security vulnerability could be exploited by an attacker with network access to the affected systems on port 80/tcp or 443/tcp. Successful exploitation requires no system privileges and no user interaction. An attacker could use the vulnerability to compromise availability of the device. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SIMATIC CP 443-1 OPC UA (All versions), SIMATIC ET 200SP Open Controller CPU 1515SP PC2 (incl. SIPLUS variants) (All versions < V2.7), SIMATIC HMI Comfort Outdoor Panels 7" & 15" (incl. SIPLUS variants) (All versions < V15.1 Upd 4), SIMATIC HMI Comfort Panels 4" - 22" (incl. SIPLUS variants) (All versions < V15.1 Upd 4), SIMATIC HMI KTP Mobile Panels KTP400F, KTP700, KTP700F, KTP900 and KTP900F (All versions < V15.1 Upd 4), SIMATIC IPC DiagMonitor (All versions < V5.1.3), SIMATIC NET PC Software V13 (All versions), SIMATIC NET PC Software V14 (All versions < V14 SP1 Update 14), SIMATIC NET PC Software V15 (All versions), SIMATIC RF188C (All versions < V1.1.0), SIMATIC RF600R family (All versions < V3.2.1), SIMATIC S7-1500 CPU family (incl. related ET200 CPUs and SIPLUS variants) (All versions >= V2.5 < V2.6.1), SIMATIC S7-1500 Software Controller (All versions between V2.5 (including) and V2.7 (excluding)), SIMATIC WinCC OA (All versions < V3.15 P018), SIMATIC WinCC Runtime Advanced (All versions < V15.1 Upd 4), SINEC NMS (All versions < V1.0 SP1), SINEMA Server (All versions < V14 SP2), SINUMERIK OPC UA Server (All versions < V2.1), TeleControl Server Basic (All versions < V3.1.1). Specially crafted network packets sent to affected devices on port 4840/tcp could allow an unauthenticated remote attacker to cause a denial of service condition of the OPC communication or crash the device. The security vulnerability could be exploited by an attacker with network access to the affected systems. Successful exploitation requires no system privileges and no user interaction. An attacker could use the vulnerability to compromise availability of the OPC communication.
A vulnerability has been identified in SIEMENS LOGO!8 (6ED1052-xyyxx-0BA8 FS:01 to FS:06 / Firmware version V1.80.xx and V1.81.xx), SIEMENS LOGO!8 (6ED1052-xyy08-0BA0 FS:01 / Firmware version < V1.82.02). An attacker with network access to port 10005/tcp of the LOGO! device could cause a Denial-of-Service condition by sending specially crafted packets. The security vulnerability could be exploited by an unauthenticated attacker with network access to the affected service. No user interaction is required to exploit this security vulnerability. Successful exploitation of the security vulnerability compromises availability of the targeted system. At the time of advisory publication no public exploitation of this security vulnerability was known.
Siemens SIMATIC S7-300 CPU devices allow remote attackers to cause a denial of service (defect-mode transition) via crafted packets on (1) TCP port 102 or (2) Profibus.
Siemens SPC controllers SPC4000, SPC5000, and SPC6000 before 3.6.0 allow remote attackers to cause a denial of service (device restart) via crafted packets.
A vulnerability has been identified in SINUMERIK 808D (All versions), SINUMERIK 828D (All versions < V4.95). Affected devices don't process correctly certain special crafted packets sent to port 102/tcp, which could allow an attacker to cause a denial-of-service in the device.
Node.js before 10.24.0, 12.21.0, 14.16.0, and 15.10.0 is vulnerable to a denial of service attack when too many connection attempts with an 'unknownProtocol' are established. This leads to a leak of file descriptors. If a file descriptor limit is configured on the system, then the server is unable to accept new connections and prevent the process also from opening, e.g. a file. If no file descriptor limit is configured, then this lead to an excessive memory usage and cause the system to run out of memory.
An issue was discovered in Siemens ETA4 firmware (all versions prior to Revision 08) of the SM-2558 extension module for: SICAM AK, SICAM TM 1703, SICAM BC 1703, and SICAM AK 3. Specially crafted packets sent to Port 2404/TCP could cause the affected device to go into defect mode. A cold start might be required to recover the system, a Denial-of-Service Vulnerability.
A vulnerability has been identified in Siveillance Video DLNA Server (2019 R1), Siveillance Video DLNA Server (2019 R2), Siveillance Video DLNA Server (2019 R3), Siveillance Video DLNA Server (2020 R1), Siveillance Video DLNA Server (2020 R2), Siveillance Video DLNA Server (2020 R3), Siveillance Video DLNA Server (2021 R1). The affected application contains a path traversal vulnerability that could allow to read arbitrary files on the server that are outside the application’s web document directory. An unauthenticated remote attacker could exploit this issue to access sensitive information for subsequent attacks.
A vulnerability has been identified in SIMATIC eaSie PCS 7 Skill Package (All versions < V21.00 SP3). When downloading files, the affected systems do not properly neutralize special elements within the pathname. An attacker could then cause the pathname to resolve to a location outside of the restricted directory on the server and read unexpected critical files. The affected file download function is disabled by default.
An issue was discovered in OpenSSH 7.9. Due to the scp implementation being derived from 1983 rcp, the server chooses which files/directories are sent to the client. However, the scp client only performs cursory validation of the object name returned (only directory traversal attacks are prevented). A malicious scp server (or Man-in-The-Middle attacker) can overwrite arbitrary files in the scp client target directory. If recursive operation (-r) is performed, the server can manipulate subdirectories as well (for example, to overwrite the .ssh/authorized_keys file).
A vulnerability has been identified in Teamcenter Active Workspace V4.3 (All versions < V4.3.11), Teamcenter Active Workspace V5.0 (All versions < V5.0.10), Teamcenter Active Workspace V5.1 (All versions < V5.1.6), Teamcenter Active Workspace V5.2 (All versions < V5.2.3). The application contains an unsafe unzipping pattern that could lead to a zip path traversal attack. This could allow and attacker to execute a remote shell with admin rights.
Directory traversal vulnerability in the web server in Siemens WinCC before 7.2, as used in SIMATIC PCS7 before 8.0 SP1 and other products, allows remote authenticated users to read arbitrary files via vectors involving a query for a pathname.
A vulnerability has been identified in Teamcenter Active Workspace V4.3 (All versions < V4.3.10), Teamcenter Active Workspace V5.0 (All versions < V5.0.8), Teamcenter Active Workspace V5.1 (All versions < V5.1.5), Teamcenter Active Workspace V5.2 (All versions < V5.2.1). A path traversal vulnerability in the application could allow an attacker to bypass certain restrictions such as direct access to other services within the host.
A remote path traversal vulnerability was discovered in Aruba SD-WAN Software and Gateways; Aruba Operating System Software version(s): Prior to 8.6.0.0-2.2.0.4; Prior to 8.7.1.3, 8.6.0.9, 8.5.0.12, 8.3.0.16, 6.5.4.19, 6.4.4.25. Aruba has released patches for Aruba SD-WAN Software and Gateways and ArubaOS that address this security vulnerability.
A remote path traversal vulnerability was discovered in Aruba SD-WAN Software and Gateways; Aruba Operating System Software version(s): Prior to 8.6.0.4-2.2.0.4; Prior to 8.7.1.1, 8.6.0.7, 8.5.0.11, 8.3.0.16. Aruba has released patches for Aruba SD-WAN Software and Gateways and ArubaOS that address this security vulnerability.
A vulnerability has been identified in SINEC NMS (All versions < V1.0 SP1). An attacker with access to the webserver of an affected system could download arbitrary files from the underlying filesystem by sending a specially crafted HTTP request.
The npm package "tar" (aka node-tar) before versions 4.4.18, 5.0.10, and 6.1.9 has an arbitrary file creation/overwrite and arbitrary code execution vulnerability. node-tar aims to guarantee that any file whose location would be outside of the extraction target directory is not extracted. This is, in part, accomplished by sanitizing absolute paths of entries within the archive, skipping archive entries that contain `..` path portions, and resolving the sanitized paths against the extraction target directory. This logic was insufficient on Windows systems when extracting tar files that contained a path that was not an absolute path, but specified a drive letter different from the extraction target, such as `C:some\path`. If the drive letter does not match the extraction target, for example `D:\extraction\dir`, then the result of `path.resolve(extractionDirectory, entryPath)` would resolve against the current working directory on the `C:` drive, rather than the extraction target directory. Additionally, a `..` portion of the path could occur immediately after the drive letter, such as `C:../foo`, and was not properly sanitized by the logic that checked for `..` within the normalized and split portions of the path. This only affects users of `node-tar` on Windows systems. These issues were addressed in releases 4.4.18, 5.0.10 and 6.1.9. The v3 branch of node-tar has been deprecated and did not receive patches for these issues. If you are still using a v3 release we recommend you update to a more recent version of node-tar. There is no reasonable way to work around this issue without performing the same path normalization procedures that node-tar now does. Users are encouraged to upgrade to the latest patched versions of node-tar, rather than attempt to sanitize paths themselves.
The npm package "tar" (aka node-tar) before versions 4.4.18, 5.0.10, and 6.1.9 has an arbitrary file creation/overwrite and arbitrary code execution vulnerability. node-tar aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary stat calls to determine whether a given path is a directory, paths are cached when directories are created. This logic was insufficient when extracting tar files that contained both a directory and a symlink with names containing unicode values that normalized to the same value. Additionally, on Windows systems, long path portions would resolve to the same file system entities as their 8.3 "short path" counterparts. A specially crafted tar archive could thus include a directory with one form of the path, followed by a symbolic link with a different string that resolves to the same file system entity, followed by a file using the first form. By first creating a directory, and then replacing that directory with a symlink that had a different apparent name that resolved to the same entry in the filesystem, it was thus possible to bypass node-tar symlink checks on directories, essentially allowing an untrusted tar file to symlink into an arbitrary location and subsequently extracting arbitrary files into that location, thus allowing arbitrary file creation and overwrite. These issues were addressed in releases 4.4.18, 5.0.10 and 6.1.9. The v3 branch of node-tar has been deprecated and did not receive patches for these issues. If you are still using a v3 release we recommend you update to a more recent version of node-tar. If this is not possible, a workaround is available in the referenced GHSA-qq89-hq3f-393p.
A remote path traversal vulnerability was discovered in Aruba Operating System Software version(s): Prior to 8.8.0.1, 8.7.1.4, 8.6.0.11, 8.5.0.13. Aruba has released patches for ArubaOS that address this security vulnerability.
A local path traversal vulnerability was discovered in Aruba SD-WAN Software and Gateways; Aruba Operating System Software version(s): Prior to 8.6.0.0-2.2.0.4; Prior to 8.7.1.1, 8.6.0.7, 8.5.0.12, 8.3.0.16. Aruba has released patches for Aruba SD-WAN Software and Gateways and ArubaOS that address this security vulnerability.
A vulnerability has been identified in COMOS V10.2 (All versions only if web components are used), COMOS V10.3 (All versions < V10.3.3.3 only if web components are used), COMOS V10.3 (All versions >= V10.3.3.3 only if web components are used), COMOS V10.4 (All versions < V10.4.1 only if web components are used). The COMOS Web component of COMOS unpacks specially crafted archive files to relative paths. This vulnerability could allow an attacker to store files in any folder accessible by the COMOS Web webservice.
Multiple directory traversal vulnerabilities in Siemens WinCC 7.0 SP3 before Update 2 allow remote authenticated users to read arbitrary files via a crafted parameter in a URL.
A vulnerability has been identified in Omnivise T3000 Application Server R9.2 (All versions), Omnivise T3000 R8.2 SP3 (All versions), Omnivise T3000 R8.2 SP4 (All versions). Affected devices allow authenticated users to export diagnostics data. The corresponding API endpoint is susceptible to path traversal and could allow an authenticated attacker to download arbitrary files from the file system.
A vulnerability has been identified in SINEC NMS (All versions < V1.0 SP2 Update 1). The affected system allows to delete arbitrary files or directories under a user controlled path and does not correctly check if the relative path is still within the intended target directory.
The npm package "tar" (aka node-tar) before versions 6.1.1, 5.0.6, 4.4.14, and 3.3.2 has a arbitrary File Creation/Overwrite vulnerability due to insufficient absolute path sanitization. node-tar aims to prevent extraction of absolute file paths by turning absolute paths into relative paths when the `preservePaths` flag is not set to `true`. This is achieved by stripping the absolute path root from any absolute file paths contained in a tar file. For example `/home/user/.bashrc` would turn into `home/user/.bashrc`. This logic was insufficient when file paths contained repeated path roots such as `////home/user/.bashrc`. `node-tar` would only strip a single path root from such paths. When given an absolute file path with repeating path roots, the resulting path (e.g. `///home/user/.bashrc`) would still resolve to an absolute path, thus allowing arbitrary file creation and overwrite. This issue was addressed in releases 3.2.2, 4.4.14, 5.0.6 and 6.1.1. Users may work around this vulnerability without upgrading by creating a custom `onentry` method which sanitizes the `entry.path` or a `filter` method which removes entries with absolute paths. See referenced GitHub Advisory for details. Be aware of CVE-2021-32803 which fixes a similar bug in later versions of tar.
The npm package "tar" (aka node-tar) before versions 6.1.2, 5.0.7, 4.4.15, and 3.2.3 has an arbitrary File Creation/Overwrite vulnerability via insufficient symlink protection. `node-tar` aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary `stat` calls to determine whether a given path is a directory, paths are cached when directories are created. This logic was insufficient when extracting tar files that contained both a directory and a symlink with the same name as the directory. This order of operations resulted in the directory being created and added to the `node-tar` directory cache. When a directory is present in the directory cache, subsequent calls to mkdir for that directory are skipped. However, this is also where `node-tar` checks for symlinks occur. By first creating a directory, and then replacing that directory with a symlink, it was thus possible to bypass `node-tar` symlink checks on directories, essentially allowing an untrusted tar file to symlink into an arbitrary location and subsequently extracting arbitrary files into that location, thus allowing arbitrary file creation and overwrite. This issue was addressed in releases 3.2.3, 4.4.15, 5.0.7 and 6.1.2.
Directory traversal vulnerability in HmiLoad in the runtime loader in Siemens WinCC flexible 2004, 2005, 2007, and 2008; WinCC V11 (aka TIA portal); the TP, OP, MP, Comfort Panels, and Mobile Panels SIMATIC HMI panels; WinCC V11 Runtime Advanced; and WinCC flexible Runtime, when Transfer Mode is enabled, allows remote attackers to execute, read, create, modify, or delete arbitrary files via a .. (dot dot) in a string.
A vulnerability has been identified in RUGGEDCOM CROSSBOW (All versions < V5.5). Downloading files overwrites files with the same name in the installation directory of the affected systems. The filename for the target file can be specified, thus arbitrary files can be overwritten by an attacker with the required privileges.
A vulnerability has been identified in CP-8031 MASTER MODULE (All versions < CPCI85 V05.11), CP-8050 MASTER MODULE (All versions < CPCI85 V05.11). The web server of affected devices fails to properly sanitize user input for the /sicweb-ajax/tmproot/ endpoint. This could allow an authenticated remote attacker to traverse directories on the system and download arbitrary files. By exploring active session IDs, the vulnerability could potentially be leveraged to escalate privileges to the administrator role.
A vulnerability has been identified in SiNVR/SiVMS Video Server (All versions < V5.0.0). The two FTP services (default ports 21/tcp and 5411/tcp) of the SiVMS/SiNVR Video Server contain a path traversal vulnerability that could allow an authenticated remote attacker to access and download arbitrary files from the server, if the FTP services are enabled.
A vulnerability has been identified in Control Center Server (CCS) (All versions < V1.5.0). The DOWNLOADS section in the web interface of the Control Center Server (CCS) contains a path traversal vulnerability that could allow an authenticated remote attacker to access and download arbitrary files from the server where CCS is installed.
A vulnerability has been identified in SiNVR/SiVMS Video Server (All versions < V5.0.0). The streaming service (default port 5410/tcp) of the SiVMS/SiNVR Video Server contains a path traversal vulnerability, that could allow an unauthenticated remote attacker to access and download arbitrary files from the server.
A vulnerability has been identified in Control Center Server (CCS) (All versions < V1.5.0). The Control Center Server (CCS) contains a directory traversal vulnerability in its XML-based communication protocol as provided by default on ports 5444/tcp and 5440/tcp. An authenticated remote attacker with network access to the CCS server could exploit this vulnerability to list arbitrary directories or read files outside of the CCS application context.
A vulnerability has been identified in TIA Portal V14 (All versions), TIA Portal V15 (All versions < V15.1 Update 7), TIA Portal V16 (All versions < V16 Update 6), TIA Portal V17 (All versions < V17 Update 4). Changing the contents of a configuration file could allow an attacker to execute arbitrary code with SYSTEM privileges. The security vulnerability could be exploited by an attacker with a valid account and limited access rights on the system. No user interaction is required. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in SIMATIC Cloud Connect 7 CC712 (All versions >= V2.0 < V2.1), SIMATIC Cloud Connect 7 CC716 (All versions >= V2.0 < V2.1). The filename in the upload feature of the web based management of the affected device is susceptible to a path traversal vulnerability. This could allow an authenticated privileged remote attacker to write any file with the extension `.db`.
A vulnerability has been identified in SIMATIC Cloud Connect 7 CC712 (All versions >= V2.0 < V2.1), SIMATIC Cloud Connect 7 CC716 (All versions >= V2.0 < V2.1). The filename in the upload feature of the web based management of the affected device is susceptible to a path traversal vulnerability. This could allow an authenticated privileged remote attacker to overwrite any file the Linux user `ccuser` has write access to, or to download any file the Linux user `ccuser` has read-only access to.
A vulnerability has been identified in SCALANCE LPE9403 (All versions < V2.1). A path traversal vulnerability was found in the `deviceinfo` binary via the `mac` parameter. This could allow an authenticated attacker with access to the SSH interface on the affected device to read the contents of any file named `address`.
A vulnerability has been identified in EN100 Ethernet module DNP3 variant (All versions), EN100 Ethernet module IEC 61850 variant (All versions < V4.37), EN100 Ethernet module IEC104 variant (All versions), EN100 Ethernet module Modbus TCP variant (All versions), EN100 Ethernet module PROFINET IO variant (All versions). A vulnerability in the integrated web server of the affected devices could allow unauthorized attackers to obtain sensitive information about the device, including logs and configurations. At the time of advisory publication no public exploitation of this security vulnerability was known.
A vulnerability has been identified in Totally Integrated Automation Portal (TIA Portal) V15 (All versions), Totally Integrated Automation Portal (TIA Portal) V16 (All versions < V16 Update 7), Totally Integrated Automation Portal (TIA Portal) V17 (All versions < V17 Update 6), Totally Integrated Automation Portal (TIA Portal) V18 (All versions < V18 Update 1). Affected products contain a path traversal vulnerability that could allow the creation or overwrite of arbitrary files in the engineering system. If the user is tricked to open a malicious PC system configuration file, an attacker could exploit this vulnerability to achieve arbitrary code execution.
A vulnerability has been identified in SINEC INS (All versions < V1.0 SP2 Update 1). An authenticated remote attacker with access to the Web Based Management (443/tcp) of the affected product as well as with access to the SFTP server of the affected product (22/tcp), could potentially read and write arbitrary files from and to the device's file system. An attacker might leverage this to trigger remote code execution on the affected component.
A vulnerability has been identified in SINEC INS (All versions < V1.0 SP2 Update 1). An authenticated remote attacker with access to the Web Based Management (443/tcp) of the affected product, could potentially read and write arbitrary files from and to the device's file system. An attacker might leverage this to trigger remote code execution on the affected component.
A vulnerability has been identified in syngo Dynamics (All versions < VA40G HF01). syngo Dynamics application server hosts a web service using an operation with improper write access control that could allow directory listing in any folder accessible to the account assigned to the website’s application pool.
A vulnerability has been identified in Automation License Manager V5 (All versions), Automation License Manager V6 (All versions < V6.0 SP9 Upd4), TeleControl Server Basic V3 (All versions < V3.1.2). The affected component does not correctly validate the root path on folder related operations, allowing to modify files and folders outside the intended root directory. This could allow an unauthenticated remote attacker to execute file operations of files outside of the specified root folder. Chained with CVE-2022-43513 this could allow Remote Code Execution.
A vulnerability has been identified in SCALANCE LPE9403 (6GK5998-3GS00-2AC2) (All versions < V4.0 HF0). Affected devices are vulnerable to path traversal attacks. This could allow a privileged local attacker to restore backups that are outside the backup folder.
A vulnerability has been identified in SINEC NMS (All versions < V4.0). The affected application does not properly validate file paths when extracting uploaded ZIP files. This could allow an attacker to write arbitrary files to restricted locations and potentially execute code with elevated privileges (ZDI-CAN-26571).
A vulnerability has been identified in Automation License Manager 5 (All versions < 5.3.4.4), Automation License Manager 6 (All versions < 6.0.1). A directory traversal vulnerability could allow a remote attacker to move arbitrary files, which can result in code execution, compromising confidentiality, integrity and availability of the system. Successful exploitation requires a network connection to the affected device. The attacker does not need privileges or special conditions of the system, but user interaction is required.
A vulnerability has been identified in SINEC NMS (All versions < V4.0). The affected application does not properly validate file paths when extracting uploaded ZIP files. This could allow an attacker to write arbitrary files to restricted locations and potentially execute code with elevated privileges (ZDI-CAN-26572).
Directory traversal vulnerability in Siemens SIMATIC WinCC OA before 3.12 P002 January allows remote attackers to read arbitrary files via crafted packets to TCP port 4999.
A vulnerability has been identified in SCALANCE M875 (All versions). An authenticated remote attacker with access to the web interface (443/tcp), could potentially read and download arbitrary files from the device's file system. Successful exploitation requires that the attacker has network access to the web interface. The attacker must be authenticated as administrative user to exploit the security vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known.