Multiple stack-based buffer overflows in the pr_netio_telnet_gets function in netio.c in ProFTPD before 1.3.3c allow remote attackers to execute arbitrary code via vectors involving a TELNET IAC escape character to a (1) FTP or (2) FTPS server.
Unspecified vulnerability in the Java Runtime Environment component in Oracle Java SE JDK and JRE 7 and 6 Update 27 and earlier allows remote untrusted Java Web Start applications and untrusted Java applets to affect confidentiality, integrity, and availability via unknown vectors related to Scripting.
eClass platform < ip.2.5.10.2.1 allows an attacker to use GETS method to request /admin page to bypass the password validation and access management page.
The web application portal of the Cobham EXPLORER 710, firmware version 1.07, allows unauthenticated access to port 5454. This could allow an unauthenticated, remote attacker to connect to this port via Telnet and execute 86 Attention (AT) commands, including some that provide unauthenticated, shell-like access to the device.
F5 BIG-IP LTM systems 11.x before 11.2.1 HF16, 11.3.x, 11.4.x before 11.4.1 HF11, 11.5.0, 11.5.1 before HF11, 11.5.2, 11.5.3, 11.5.4 before HF2, 11.6.0 before HF8, 11.6.1 before HF1, 12.0.0 before HF4, and 12.1.0 before HF2 allow remote attackers to modify or extract system configuration files via vectors involving NAT64.
A remote code execution vulnerability in the Qualcomm crypto driver in Android before 2016-11-05 could enable a remote attacker to execute arbitrary code within the context of the kernel. This issue is rated as Critical due to the possibility of remote code execution in the context of the kernel. Android ID: A-30515053. References: Qualcomm QC-CR#1050970.
Unspecified vulnerability in the Java Runtime Environment (JRE) component in Oracle Java SE 7 update 4 and earlier, 6 update 32 and earlier, 5 update 35 and earlier, and 1.4.2_37 and earlier allows remote attackers to affect confidentiality, integrity, and availability via unknown vectors related to Hotspot.
An improper access control vulnerability has been reported to affect certain legacy versions of HBS 3. If exploited, this vulnerability allows attackers to compromise the security of the operating system.QNAP have already fixed this vulnerability in the following versions of HBS 3: QTS 4.3.6: HBS 3 v3.0.210507 and later QTS 4.3.4: HBS 3 v3.0.210506 and later QTS 4.3.3: HBS 3 v3.0.210506 and later
IBM UrbanCode Deploy could allow a user to execute code using a specially crafted file upload that would replace code on the server. This code could be executed on the UCD agent machines that host customer's production applications.
A remote code execution vulnerability in the Qualcomm crypto driver could enable a remote attacker to execute arbitrary code within the context of the kernel. This issue is rated as Critical due to the possibility of remote code execution in the context of the kernel. Product: Android. Versions: N/A. Android ID: A-32652894. References: QC-CR#1077457.
Adobe Reader and Acrobat before 11.0.18, Acrobat and Acrobat Reader DC Classic before 15.006.30243, and Acrobat and Acrobat Reader DC Continuous before 15.020.20039 on Windows and OS X allow attackers to bypass intended access restrictions via unspecified vectors.
BMC Track-It! 11.4 before Hotfix 3 exposes an unauthenticated .NET remoting file storage service (FileStorageService) on port 9010. This service contains a method that allows uploading a file to an arbitrary path on the machine that is running Track-It!. This can be used to upload a file to the web root and achieve code execution as NETWORK SERVICE or SYSTEM.
An Improper Access Control vulnerability was discovered in the Controlled Admin Access WordPress plugin before 1.5.2. Uncontrolled access to the website customization functionality and global CMS settings, like /wp-admin/customization.php and /wp-admin/options.php, can lead to a complete compromise of the target resource.
Adobe Reader and Acrobat before 11.0.17, Acrobat and Acrobat Reader DC Classic before 15.006.30198, and Acrobat and Acrobat Reader DC Continuous before 15.017.20050 on Windows and OS X allow attackers to bypass JavaScript API execution restrictions via unspecified vectors.
The HTTP server in Trend Micro Password Manager allows remote web servers to execute arbitrary commands via the url parameter to (1) api/openUrlInDefaultBrowser or (2) api/showSB.
Unspecified vulnerability in Oracle Java SE 6u113, 7u99, and 8u77; Java SE Embedded 8u77; and JRockit R28.3.9 allows remote attackers to affect confidentiality, integrity, and availability via vectors related to JMX.
The server in HP Release Control 9.13, 9.20, and 9.21 allows remote attackers to execute arbitrary commands via a crafted serialized Java object, related to the Apache Commons Collections library.
The web interface on Advantech/B+B SmartWorx VESP211-EU devices with firmware 1.7.2 and VESP211-232 devices with firmware 1.5.1 and 1.7.2 relies on the client to implement access control, which allows remote attackers to perform administrative actions via modified JavaScript code.
Adobe Reader and Acrobat before 11.0.16, Acrobat and Acrobat Reader DC Classic before 15.006.30172, and Acrobat and Acrobat Reader DC Continuous before 15.016.20039 on Windows and OS X allow attackers to bypass JavaScript API execution restrictions via unspecified vectors, a different vulnerability than CVE-2016-1038, CVE-2016-1039, CVE-2016-1040, CVE-2016-1041, CVE-2016-1042, CVE-2016-1044, and CVE-2016-1062.
In all Qualcomm products with Android releases from CAF using the Linux kernel, access control to the I2C bus is not sufficient.
Adobe Reader and Acrobat before 11.0.16, Acrobat and Acrobat Reader DC Classic before 15.006.30172, and Acrobat and Acrobat Reader DC Continuous before 15.016.20039 on Windows and OS X allow attackers to bypass JavaScript API execution restrictions via unspecified vectors, a different vulnerability than CVE-2016-1038, CVE-2016-1039, CVE-2016-1040, CVE-2016-1041, CVE-2016-1042, CVE-2016-1062, and CVE-2016-1117.
Adobe Reader and Acrobat before 11.0.16, Acrobat and Acrobat Reader DC Classic before 15.006.30172, and Acrobat and Acrobat Reader DC Continuous before 15.016.20039 on Windows and OS X allow attackers to bypass JavaScript API execution restrictions via unspecified vectors, a different vulnerability than CVE-2016-1038, CVE-2016-1040, CVE-2016-1041, CVE-2016-1042, CVE-2016-1044, CVE-2016-1062, and CVE-2016-1117.
In Android before 2018-04-05 or earlier security patch level on Qualcomm Snapdragon Mobile and Snapdragon Wear MDM9206, MDM9607, MDM9650, MSM8909W, SD 210/SD 212/SD 205, SD 400, SD 410/12, SD 425, SD 430, SD 450, SD 600, SD 615/16/SD 415, SD 617, SD 625, SD 650/52, SD 800, SD 808, SD 810, SD 820, SD 835, and SDX20, address and size passed to SCM command 'TZ_INFO_GET_SECURE_STATE_LEGACY_ID' from HLOS Kernel were not being checked, so access outside DDR would occur.
In Android before 2018-04-05 or earlier security patch level on Qualcomm Snapdragon Mobile MDM9640, SDM630, MSM8976, MSM8937, SDM845, MSM8976, and MSM8952, when running module or kernel code with improper access control allowing writing to arbitrary regions of memory, the user may utilize this vector to alter module executable code.
Adobe Reader and Acrobat before 11.0.16, Acrobat and Acrobat Reader DC Classic before 15.006.30172, and Acrobat and Acrobat Reader DC Continuous before 15.016.20039 on Windows and OS X allow attackers to bypass JavaScript API execution restrictions via unspecified vectors, a different vulnerability than CVE-2016-1038, CVE-2016-1039, CVE-2016-1040, CVE-2016-1042, CVE-2016-1044, CVE-2016-1062, and CVE-2016-1117.
In Android before 2018-04-05 or earlier security patch level on Qualcomm Snapdragon Automobile and Snapdragon Mobile SD 410/12, SD 425, SD 427, SD 430, SD 435, SD 450, SD 615/16/SD 415, SD 625, SD 650/52, SD 808, SD 810, SD 820, SD 820A, SD 835, SDM630, SDM636, SDM660, and Snapdragon_High_Med_2016, the Access Control policy for HLOS allows access to Slimbus, GPU, GIC resources.
In Android before 2018-04-05 or earlier security patch level on Qualcomm Snapdragon Automobile, Snapdragon Mobile, and Snapdragon Wear MDM9206, SD 210/SD 212/SD 205, SD 425, SD 430, SD 450, SD 625, SD 820, SD 820A, and SD 835, SMMU Access Control Policy was updated to block HLOS from accessing BLSP and BAM resources.
In Android before 2018-04-05 or earlier security patch level on Qualcomm Snapdragon Mobile SD 425, SD 430, SD 450, SD 625, and SD 650/52, there is improper access control to a bus.
Adobe Reader and Acrobat before 11.0.16, Acrobat and Acrobat Reader DC Classic before 15.006.30172, and Acrobat and Acrobat Reader DC Continuous before 15.016.20039 on Windows and OS X allow attackers to bypass JavaScript API execution restrictions via unspecified vectors, a different vulnerability than CVE-2016-1038, CVE-2016-1039, CVE-2016-1040, CVE-2016-1041, CVE-2016-1042, CVE-2016-1044, and CVE-2016-1117.
Adobe Reader and Acrobat before 11.0.16, Acrobat and Acrobat Reader DC Classic before 15.006.30172, and Acrobat and Acrobat Reader DC Continuous before 15.016.20039 on Windows and OS X allow attackers to bypass JavaScript API execution restrictions via unspecified vectors, a different vulnerability than CVE-2016-1038, CVE-2016-1039, CVE-2016-1040, CVE-2016-1041, CVE-2016-1044, CVE-2016-1062, and CVE-2016-1117.
Improper Access Control in Citrix ShareFile storage zones controller before 5.11.20 may allow an unauthenticated attacker to remotely compromise the storage zones controller.
In Android before 2018-04-05 or earlier security patch level on Qualcomm Snapdragon Mobile and Snapdragon Wear MDM9206, MDM9607, MDM9615, MDM9625, MDM9635M, MDM9640, MDM9645, MDM9650, MDM9655, MSM8909W, SD 210/SD 212/SD 205, SD 400, SD 410/12, SD 425, SD 430, SD 450, SD 600, SD 615/16/SD 415, SD 617, SD 625, SD 650/52, SD 800, SD 808, SD 810, SD 820, SD 835, SD 845, SD 850, and SDX20, there is improper access control in a file storage API.
In all Qualcomm products with Android releases from CAF using the Linux kernel, the UE can send IMEI or IMEISV to the network on a network request before NAS security has been activated.
In all Qualcomm products with Android releases from CAF using the Linux kernel, a vulnerability exists in GNSS when performing a scan after bootup.
In all Qualcomm products with Android releases from CAF using the Linux kernel, a vulnerability exists in a GERAN API.
In Android before 2018-04-05 or earlier security patch level on Qualcomm Snapdragon Automobile and Snapdragon Mobile IPQ4019, SD 210/SD 212/SD 205, SD 400, SD 410/12, SD 425, SD 427, SD 430, SD 435, SD 450, SD 615/16/SD 415, SD 625, SD 800, SD 810, SD 820, SD 820A, SD 835, and Snapdragon_High_Med_2016, modem owned regions are accessible from secure side.
The management-services protocol implementation in Veritas NetBackup 7.x through 7.5.0.7, 7.6.0.x through 7.6.0.4, 7.6.1.x through 7.6.1.2, and 7.7.x before 7.7.2 and NetBackup Appliance through 2.5.4, 2.6.0.x through 2.6.0.4, 2.6.1.x through 2.6.1.2, and 2.7.x before 2.7.2 allows remote attackers to make arbitrary RPC calls via unspecified vectors.
A vulnerability was found in EFM iptime A6004MX 14.18.2. Affected is the function commit_vpncli_file_upload of the file /cgi/timepro.cgi. The manipulation results in unrestricted upload. The attack may be performed from remote. The exploit has been made public and could be used. The vendor was contacted early about this disclosure but did not respond in any way.
The host memory mapping path feature in the NVIDIA GPU graphics driver R346 before 346.87 and R352 before 352.41 for Linux and R352 before 352.46 for GRID vGPU and vSGA does not properly restrict access to third-party device IO memory, which allows attackers to gain privileges, cause a denial of service (resource consumption), or possibly have unspecified other impact via unknown vectors related to the follow_pfn kernel-mode API call.
Adobe Reader and Acrobat before 11.0.16, Acrobat and Acrobat Reader DC Classic before 15.006.30172, and Acrobat and Acrobat Reader DC Continuous before 15.016.20039 on Windows and OS X allow attackers to bypass JavaScript API execution restrictions via unspecified vectors, a different vulnerability than CVE-2016-1038, CVE-2016-1039, CVE-2016-1041, CVE-2016-1042, CVE-2016-1044, CVE-2016-1062, and CVE-2016-1117.
Adobe Reader and Acrobat before 11.0.16, Acrobat and Acrobat Reader DC Classic before 15.006.30172, and Acrobat and Acrobat Reader DC Continuous before 15.016.20039 on Windows and OS X allow attackers to bypass JavaScript API execution restrictions via unspecified vectors, a different vulnerability than CVE-2016-1039, CVE-2016-1040, CVE-2016-1041, CVE-2016-1042, CVE-2016-1044, CVE-2016-1062, and CVE-2016-1117.
bpcd in Veritas NetBackup 7.x through 7.5.0.7, 7.6.0.x through 7.6.0.4, 7.6.1.x through 7.6.1.2, and 7.7.x before 7.7.2 and NetBackup Appliance through 2.5.4, 2.6.0.x through 2.6.0.4, 2.6.1.x through 2.6.1.2, and 2.7.x before 2.7.2 allows remote attackers to execute arbitrary commands via crafted input.
Adobe Reader and Acrobat 10.x before 10.1.14 and 11.x before 11.0.11 on Windows and OS X allow attackers to bypass intended restrictions on JavaScript API execution via unspecified vectors, a different vulnerability than CVE-2015-3060, CVE-2015-3061, CVE-2015-3063, CVE-2015-3064, CVE-2015-3065, CVE-2015-3066, CVE-2015-3067, CVE-2015-3068, CVE-2015-3069, CVE-2015-3071, CVE-2015-3072, CVE-2015-3073, and CVE-2015-3074.
Adobe Reader and Acrobat 10.x before 10.1.14 and 11.x before 11.0.11 on Windows and OS X allow attackers to bypass intended restrictions on JavaScript API execution via unspecified vectors, a different vulnerability than CVE-2015-3060, CVE-2015-3061, CVE-2015-3062, CVE-2015-3064, CVE-2015-3065, CVE-2015-3066, CVE-2015-3067, CVE-2015-3068, CVE-2015-3069, CVE-2015-3071, CVE-2015-3072, CVE-2015-3073, and CVE-2015-3074.
Adobe Reader and Acrobat 10.x before 10.1.14 and 11.x before 11.0.11 on Windows and OS X allow attackers to bypass intended restrictions on JavaScript API execution via unspecified vectors, a different vulnerability than CVE-2015-3060, CVE-2015-3061, CVE-2015-3062, CVE-2015-3063, CVE-2015-3064, CVE-2015-3065, CVE-2015-3066, CVE-2015-3067, CVE-2015-3068, CVE-2015-3071, CVE-2015-3072, CVE-2015-3073, and CVE-2015-3074.
Adobe Reader and Acrobat 10.x before 10.1.14 and 11.x before 11.0.11 on Windows and OS X allow attackers to bypass intended restrictions on JavaScript API execution via unspecified vectors, a different vulnerability than CVE-2015-3061, CVE-2015-3062, CVE-2015-3063, CVE-2015-3064, CVE-2015-3065, CVE-2015-3066, CVE-2015-3067, CVE-2015-3068, CVE-2015-3069, CVE-2015-3071, CVE-2015-3072, CVE-2015-3073, and CVE-2015-3074.
Adobe Reader and Acrobat 10.x before 10.1.14 and 11.x before 11.0.11 on Windows and OS X allow attackers to bypass intended restrictions on JavaScript API execution via unspecified vectors, a different vulnerability than CVE-2015-3060, CVE-2015-3061, CVE-2015-3062, CVE-2015-3063, CVE-2015-3064, CVE-2015-3065, CVE-2015-3066, CVE-2015-3068, CVE-2015-3069, CVE-2015-3071, CVE-2015-3072, CVE-2015-3073, and CVE-2015-3074.
Adobe Reader and Acrobat 10.x before 10.1.14 and 11.x before 11.0.11 on Windows and OS X allow attackers to bypass intended restrictions on JavaScript API execution via unspecified vectors, a different vulnerability than CVE-2015-3060, CVE-2015-3061, CVE-2015-3062, CVE-2015-3063, CVE-2015-3065, CVE-2015-3066, CVE-2015-3067, CVE-2015-3068, CVE-2015-3069, CVE-2015-3071, CVE-2015-3072, CVE-2015-3073, and CVE-2015-3074.
Adobe Reader and Acrobat 10.x before 10.1.14 and 11.x before 11.0.11 on Windows and OS X allow attackers to bypass intended restrictions on JavaScript API execution via unspecified vectors, a different vulnerability than CVE-2015-3060, CVE-2015-3061, CVE-2015-3062, CVE-2015-3063, CVE-2015-3064, CVE-2015-3065, CVE-2015-3066, CVE-2015-3067, CVE-2015-3068, CVE-2015-3069, CVE-2015-3072, CVE-2015-3073, and CVE-2015-3074.
Adobe Reader and Acrobat 10.x before 10.1.14 and 11.x before 11.0.11 on Windows and OS X allow attackers to bypass intended restrictions on JavaScript API execution via unspecified vectors, a different vulnerability than CVE-2015-3060, CVE-2015-3061, CVE-2015-3062, CVE-2015-3063, CVE-2015-3064, CVE-2015-3065, CVE-2015-3066, CVE-2015-3067, CVE-2015-3068, CVE-2015-3069, CVE-2015-3071, CVE-2015-3072, and CVE-2015-3074.