The sctp_sf_do_5_1D_ce function in net/sctp/sm_statefuns.c in the Linux kernel through 3.13.6 does not validate certain auth_enable and auth_capable fields before making an sctp_sf_authenticate call, which allows remote attackers to cause a denial of service (NULL pointer dereference and system crash) via an SCTP handshake with a modified INIT chunk and a crafted AUTH chunk before a COOKIE_ECHO chunk.
net/ceph/auth_none.c in the Linux kernel through 3.10 allows remote attackers to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact via an auth_reply message that triggers an attempted build_request operation.
The acc_ctx_cont function in the SPNEGO acceptor in lib/gssapi/spnego/spnego_mech.c in MIT Kerberos 5 (aka krb5) 1.5.x through 1.12.x before 1.12.2 allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) via an empty continuation token at a certain point during a SPNEGO negotiation.
ClamAV AntiVirus software versions 0.99.2 and prior contain a vulnerability that could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to improper input validation checking mechanisms in mbox.c during certain mail parsing functions of the ClamAV software. An unauthenticated, remote attacker could exploit this vulnerability by sending a crafted email to the affected device. An exploit could trigger a NULL pointer dereference condition when ClamAV scans the malicious email, which may result in a DoS condition.
drivers/net/wireless/ath/ath10k/usb.c in the Linux kernel through 5.2.8 has a NULL pointer dereference via an incomplete address in an endpoint descriptor.
An issue was discovered in the Linux kernel before 5.0.7. A NULL pointer dereference can occur when megasas_create_frame_pool() fails in megasas_alloc_cmds() in drivers/scsi/megaraid/megaraid_sas_base.c. This causes a Denial of Service, related to a use-after-free.
The server in ISC DHCP 3.x and 4.x before 4.2.2, 3.1-ESV before 3.1-ESV-R3, and 4.1-ESV before 4.1-ESV-R3 allows remote attackers to cause a denial of service (daemon exit) via a crafted DHCP packet.
The server in ISC DHCP 3.x and 4.x before 4.2.2, 3.1-ESV before 3.1-ESV-R3, and 4.1-ESV before 4.1-ESV-R3 allows remote attackers to cause a denial of service (daemon exit) via a crafted BOOTP packet.
Integer underflow in the dccp_parse_options function (net/dccp/options.c) in the Linux kernel before 2.6.33.14 allows remote attackers to cause a denial of service via a Datagram Congestion Control Protocol (DCCP) packet with an invalid feature options length, which triggers a buffer over-read.
The nfs_wait_on_request function in fs/nfs/pagelist.c in Linux kernel 2.6.x through 2.6.33-rc5 allows attackers to cause a denial of service (Oops) via unknown vectors related to truncating a file and an operation that is not interruptible.
drivers/net/e1000/e1000_main.c in the e1000 driver in the Linux kernel 2.6.32.3 and earlier handles Ethernet frames that exceed the MTU by processing certain trailing payload data as if it were a complete frame, which allows remote attackers to bypass packet filters via a large packet with a crafted payload. NOTE: this vulnerability exists because of an incorrect fix for CVE-2009-1385.
A flaw was found in ImageMagick in versions before 7.0.11 and before 6.9.12, where a division by zero in WaveImage() of MagickCore/visual-effects.c may trigger undefined behavior via a crafted image file submitted to an application using ImageMagick. The highest threat from this vulnerability is to system availability.
drivers/net/r8169.c in the r8169 driver in the Linux kernel 2.6.32.3 and earlier does not properly check the size of an Ethernet frame that exceeds the MTU, which allows remote attackers to (1) cause a denial of service (temporary network outage) via a packet with a crafted size, in conjunction with certain packets containing A characters and certain packets containing E characters; or (2) cause a denial of service (system crash) via a packet with a crafted size, in conjunction with certain packets containing '\0' characters, related to the value of the status register and erroneous behavior associated with the RxMaxSize register. NOTE: this vulnerability exists because of an incorrect fix for CVE-2009-1389.
Buffer overflow in the bd daemon in F5 Networks BIG-IP Application Security Manager (ASM) 9.4.4 through 9.4.7 and 10.0.0 through 10.0.1, and Protocol Security Manager (PSM) 9.4.5 through 9.4.7 and 10.0.0 through 10.0.1, allows remote attackers to cause a denial of service (crash) via unknown vectors. NOTE: some of these details are obtained from third party information.
CServer::SendMsg in engine/server/server.cpp in Teeworlds 0.7.x before 0.7.5 allows remote attackers to shut down the server.
Multiple integer underflows in the x25_parse_facilities function in net/x25/x25_facilities.c in the Linux kernel before 2.6.36.2 allow remote attackers to cause a denial of service (system crash) via malformed X.25 (1) X25_FAC_CLASS_A, (2) X25_FAC_CLASS_B, (3) X25_FAC_CLASS_C, or (4) X25_FAC_CLASS_D facility data, a different vulnerability than CVE-2010-3873.
On F5 BIG-IP 13.1.0-13.1.0.5, when Large Receive Offload (LRO) and SYN cookies are enabled (default settings), undisclosed traffic patterns may cause TMM to restart.
On BIG-IP 13.1.0-13.1.0.7, a remote attacker using undisclosed methods against virtual servers configured with a Client SSL or Server SSL profile that has the SSL Forward Proxy feature enabled can force the Traffic Management Microkernel (tmm) to leak memory. As a result, system memory usage increases over time, which may eventually cause a decrease in performance or a system reboot due to memory exhaustion.
The Linux kernel, versions 3.9+, is vulnerable to a denial of service attack with low rates of specially modified packets targeting IP fragment re-assembly. An attacker may cause a denial of service condition by sending specially crafted IP fragments. Various vulnerabilities in IP fragmentation have been discovered and fixed over the years. The current vulnerability (CVE-2018-5391) became exploitable in the Linux kernel with the increase of the IP fragment reassembly queue size.
The racoon daemon in IPsec-Tools 0.8.2 contains a remotely exploitable computational-complexity attack when parsing and storing ISAKMP fragments. The implementation permits a remote attacker to exhaust computational resources on the remote endpoint by repeatedly sending ISAKMP fragment packets in a particular order such that the worst-case computational complexity is realized in the algorithm utilized to determine if reassembly of the fragments can take place.
When F5 BIG-IP ASM 13.0.0-13.1.0.1, 12.1.0-12.1.3.5, 11.6.0-11.6.3.1, or 11.5.1-11.5.6 is processing HTTP requests, an unusually large number of parameters can cause excessive CPU usage in the BIG-IP ASM bd process.
On F5 BIG-IP versions 13.0.0 or 12.1.0 - 12.1.3.1, when a specifically configured virtual server receives traffic of an undisclosed nature, TMM will crash and take the configured failover action, potentially causing a denial of service. The configuration which exposes this issue is not common and in general does not work when enabled in previous versions of BIG-IP. Starting in 12.1.0, BIG-IP will crash if the configuration which exposes this issue is enabled and the virtual server receives non TCP traffic. With the fix of this issue, additional configuration validation logic has been added to prevent this configuration from being applied to a virtual server. There is only data plane exposure to this issue with a non-standard configuration. There is no control plane exposure.
Linux kernel versions 4.9+ can be forced to make very expensive calls to tcp_collapse_ofo_queue() and tcp_prune_ofo_queue() for every incoming packet which can lead to a denial of service.
An error within the "parse_sinar_ia()" function (internal/dcraw_common.cpp) within LibRaw versions prior to 0.19.1 can be exploited to exhaust available CPU resources.
The ULE decapsulation functionality in drivers/media/dvb/dvb-core/dvb_net.c in dvb-core in Linux kernel 2.6.33 and earlier allows attackers to cause a denial of service (infinite loop) via a crafted MPEG2-TS frame, related to an invalid Payload Pointer ULE.
slapd/connection.c in 389 Directory Server (formerly Fedora Directory Server) 1.3.4.x before 1.3.4.7 allows remote attackers to cause a denial of service (infinite loop and connection blocking) by leveraging an abnormally closed connection.
The DNS::GetResult function in dns.cpp in InspIRCd before 2.0.19 allows remote DNS servers to cause a denial of service (netsplit) via an invalid character in a PTR response, as demonstrated by a "\032" (whitespace) character in a hostname.
libclamav/untar.c in ClamAV before 0.95 allows remote attackers to cause a denial of service (infinite loop) via a crafted TAR file that causes (1) clamd and (2) clamscan to hang.
The sctp_packet_config function in net/sctp/output.c in the Linux kernel before 2.6.35.6 performs extraneous initializations of packet data structures, which allows remote attackers to cause a denial of service (panic) via a certain sequence of SCTP traffic.
The marked package before 0.3.4 for Node.js allows attackers to cause a denial of service (CPU consumption) via unspecified vectors that trigger a "catastrophic backtracking issue for the em inline rule," aka a "regular expression denial of service (ReDoS)."
In libexpat in Expat before 2.2.7, XML input including XML names that contain a large number of colons could make the XML parser consume a high amount of RAM and CPU resources while processing (enough to be usable for denial-of-service attacks).
The BER decoder in Botan 1.10.x before 1.10.10 and 1.11.x before 1.11.19 allows remote attackers to cause a denial of service (memory consumption) via unspecified vectors, related to a length field.
LibVNC before commit c3115350eb8bb635d0fdb4dbbb0d0541f38ed19c contains a CWE-835: Infinite loop vulnerability in VNC client code. Vulnerability allows attacker to consume excessive amount of resources like CPU and RAM
Memory leak in the last hop kernel module in F5 BIG-IP LTM, GTM, and Link Controller 10.1.x, 10.2.x before 10.2.4 HF13, 11.x before 11.2.1 HF15, 11.3.x, 11.4.x, 11.5.x before 11.5.3 HF2, and 11.6.x before HF6, BIG-IP AAM 11.4.x, 11.5.x before 11.5.3 HF2 and 11.6.0 before HF6, BIG-IP AFM and PEM 11.3.x, 11.4.x, 11.5.x before 11.5.3 HF2, and 11.6.0 before HF6, BIG-IP Analytics 11.x before 11.2.1 HF15, 11.3.x, 11.4.x, 11.5.x before 11.5.3 HF2, and 11.6.0 before HF6, BIG-IP APM and ASM 10.1.0 through 10.2.4, 11.x before 11.2.1 HF15, 11.3.x, 11.4.x, 11.5.x before 11.5.3 HF2, and 11.6.0 before HF6, BIG-IP Edge Gateway, WebAccelerator, and WOM 10.1.x, 10.2.x before 10.2.4 HF13, 11.x before 11.2.1 HF15, and 11.3.0, BIG-IP PSM 10.1.x, 10.2.x before 10.2.4 HF13, 11.x before 11.2.1 HF15, 11.3.x, and 11.4.x before 11.4.1 HF, Enterprise Manager 3.0.0 through 3.1.1, BIG-IQ Cloud and Security 4.0.0 through 4.5.0, BIG-IQ Device 4.2.0 through 4.5.0, and BIG-IQ ADC 4.5.0 might allow remote attackers to cause a denial of service (memory consumption) via a large number of crafted UDP packets.
epan/dissectors/packet-reload.c in the REsource LOcation And Discovery (aka RELOAD) dissector in Wireshark 1.8.x before 1.8.6 uses incorrect integer data types, which allows remote attackers to cause a denial of service (infinite loop) via crafted integer values in a packet, related to the (1) dissect_icecandidates, (2) dissect_kinddata, (3) dissect_nodeid_list, (4) dissect_storeans, (5) dissect_storereq, (6) dissect_storeddataspecifier, (7) dissect_fetchreq, (8) dissect_findans, (9) dissect_diagnosticinfo, (10) dissect_diagnosticresponse, (11) dissect_reload_messagecontents, and (12) dissect_reload_message functions, a different vulnerability than CVE-2013-2486.
nginx before versions 1.15.6 and 1.14.1 has a vulnerability in the implementation of HTTP/2 that can allow for excessive memory consumption. This issue affects nginx compiled with the ngx_http_v2_module (not compiled by default) if the 'http2' option of the 'listen' directive is used in a configuration file.
The label decompression functionality in PowerDNS Recursor 3.5.x, 3.6.x before 3.6.3, and 3.7.x before 3.7.2 and Authoritative (Auth) Server 3.2.x, 3.3.x before 3.3.2, and 3.4.x before 3.4.4 allows remote attackers to cause a denial of service (CPU consumption or crash) via a request with a name that refers to itself.
On BIG-IP 14.0.0-14.0.0.2, 13.0.0-13.1.1.1, or 12.1.0-12.1.3.6, malicious requests made to virtual servers with an HTTP profile can cause the TMM to restart. The issue is exposed with the non-default "normalize URI" configuration options used in iRules and/or BIG-IP LTM policies.
On BIG-IP 14.0.0-14.0.0.2, 13.0.0-13.1.1.1, or 12.1.0-12.1.3.7, when a virtual server using the inflate functionality to process a gzip bomb as a payload, the BIG-IP system will experience a fatal error and may cause the Traffic Management Microkernel (TMM) to produce a core file.
The VNC websocket frame decoder in QEMU allows remote attackers to cause a denial of service (memory and CPU consumption) via a large (1) websocket payload or (2) HTTP headers section.
In Wireshark 2.6.0 to 2.6.1, 2.4.0 to 2.4.7, and 2.2.0 to 2.2.15, the BGP protocol dissector could go into a large loop. This was addressed in epan/dissectors/packet-bgp.c by validating Path Attribute lengths.
In Wireshark 2.6.0 to 2.6.1, 2.4.0 to 2.4.7, and 2.2.0 to 2.2.15, the Bazaar protocol dissector could go into an infinite loop. This was addressed in epan/dissectors/packet-bzr.c by properly handling items that are too long.
In Wireshark 2.6.0 to 2.6.1, 2.4.0 to 2.4.7, and 2.2.0 to 2.2.15, the DICOM dissector could go into a large or infinite loop. This was addressed in epan/dissectors/packet-dcm.c by preventing an offset overflow.
The IPv4 implementation in the Linux kernel before 3.18.8 does not properly consider the length of the Read-Copy Update (RCU) grace period for redirecting lookups in the absence of caching, which allows remote attackers to cause a denial of service (memory consumption or system crash) via a flood of packets.
A flaw was found in 389 Directory Server. A specially crafted search query could lead to excessive CPU consumption in the do_search() function. An unauthenticated attacker could use this flaw to provoke a denial of service.
nbd-server.c in Network Block Device (nbd-server) before 3.11 does not properly handle signals, which allows remote attackers to cause a denial of service (deadlock) via unspecified vectors.
The hfsplus_block_allocate function in fs/hfsplus/bitmap.c in the Linux kernel before 2.6.28-rc1 does not check a certain return value from the read_mapping_page function before calling kmap, which allows attackers to cause a denial of service (system crash) via a crafted hfsplus filesystem image.
In Wireshark 2.6.0 to 2.6.3, the Steam IHS Discovery dissector could consume system memory. This was addressed in epan/dissectors/packet-steam-ihs-discovery.c by changing the memory-management approach.
The nss_dns implementation of getnetbyname in GNU C Library (aka glibc) before 2.21, when the DNS backend in the Name Service Switch configuration is enabled, allows remote attackers to cause a denial of service (infinite loop) by sending a positive answer while a network name is being process.
nginx before versions 1.15.6 and 1.14.1 has a vulnerability in the implementation of HTTP/2 that can allow for excessive CPU usage. This issue affects nginx compiled with the ngx_http_v2_module (not compiled by default) if the 'http2' option of the 'listen' directive is used in a configuration file.