The default configuration of the Wi-Fi component on the Huawei D100 does not use encryption, which makes it easier for remote attackers to obtain sensitive information by sniffing the network.
IBM Storage Defender - Resiliency Service 2.0.0 through 2.0.12 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information.
IBM Semeru Runtime 8.0.302.0 through 8.0.392.0, 11.0.12.0 through 11.0.21.0, 17.0.1.0 - 17.0.9.0, and 21.0.1.0 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 281222.
IBM DevOps Velocity 5.0.0 and IBM UrbanCode Velocity 4.0.0 through 4.0. 25 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information.
IBM Security Verify 10.0.0, 10.0.1.0, and 10.0.2.0 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 210067.
In JetBrains TeamCity before 2021.1, an insecure key generation mechanism for encrypted properties was used.
A vulnerability has been identified in NPort 6000 Series, making the authentication mechanism vulnerable. This vulnerability arises from the incorrect implementation of sensitive information protection, potentially allowing malicious users to gain unauthorized access to the web service.
Ylianst MeshCentral 1.1.16 suffers from Use of a Broken or Risky Cryptographic Algorithm.
HCL DRYiCE MyXalytics is impacted by the use of a broken cryptographic algorithm for encryption, potentially giving an attacker ability to decrypt sensitive information.
IBM PowerSC 1.3, 2.0, and 2.1 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 275129.
An issue was discovered in blinksocks version 3.3.8, allows remote attackers to obtain sensitive information via weak encryption algorithms in the component /presets/ssr-auth-chain.js.
IBM Sterling B2B Integrator Standard Edition 5.2.0.1, 5.2.6.3_6, 6.0.0.0, and 6.0.0.1 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 147294.
IBM PowerSC 1.3, 2.0, and 2.1 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 275117.
The use of a broken or risky cryptographic algorithm in Philips Vue PACS versions 12.2.x.x and prior is an unnecessary risk that may result in the exposure of sensitive information.
The authentication cookies are generated using an algorithm based on the username, hardcoded secret and the up-time, and can be guessed in a reasonable time.
An Information Exposure vulnerability in Juniper Networks SRC Series devices configured for NETCONF over SSH permits the negotiation of weak ciphers, which could allow a remote attacker to obtain sensitive information. A remote attacker with read and write access to network data could exploit this vulnerability to display plaintext bits from a block of ciphertext and obtain sensitive information. This issue affects all Juniper Networks SRC Series versions prior to 4.13.0-R6.
IBM Sterling Secure Proxy 6.0.1, 6.0.2, 2.4.3.2, and 3.4.3.2 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-ForceID: 201100.
IBM Tivoli Netcool/Impact 7.1.0.20 and 7.1.0.21 uses an insecure SSH server configuration which enables weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 203556.
IBM Aspera Console 3.4.0 through 3.4.4 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information.
IBM Security SOAR uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information.
IBM Spectrum Scale 5.1.5.0 through 5.1.5.1 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 239080.
IBM Sterling Secure Proxy 6.0.1, 6.0.2, 2.4.3.2, and 3.4.3.2 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 201095.
Broadcom RAID Controller web interface is vulnerable has an insecure default TLS configuration that support obsolete and vulnerable TLS protocols
"TLS-RSA cipher suites are not disabled in BigFix Compliance up to v2.0.5. If TLS 2.0 and secure ciphers are not enabled then an attacker can passively record traffic and later decrypt it."
An Observable Timing Discrepancy, Covert Timing Channel vulnerability in Silabs GSDK on ARM potentially allows Padding Oracle Crypto Attack on CBC PKCS7.This issue affects GSDK: through 4.4.0.
In JetBrains Ktor before 1.4.2, weak cipher suites were enabled by default.
IBM Storage Copy Data Management 2.2.0.0 through 2.2.19.0 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 262268.
The File Away plugin for WordPress is vulnerable to unauthorized access of data due to a missing capability check on the ajax() function in all versions up to, and including, 3.9.9.0.1. This makes it possible for unauthenticated attackers, leveraging the use of a reversible weak algorithm, to read the contents of arbitrary files on the server, which can contain sensitive information.
A use of a broken or risky cryptographic algorithm [CWE-327] in Fortinet FortiSIEM before 6.7.1 allows a remote unauthenticated attacker to perform brute force attacks on GUI endpoints via taking advantage of outdated hashing methods.
Bouncy Castle BC 1.54 - 1.59, BC-FJA 1.0.0, BC-FJA 1.0.1 and earlier have a flaw in the Low-level interface to RSA key pair generator, specifically RSA Key Pairs generated in low-level API with added certainty may have less M-R tests than expected. This appears to be fixed in versions BC 1.60 beta 4 and later, BC-FJA 1.0.2 and later.
A vulnerability has been identified in SIRIUS 3RK3 Modular Safety System (MSS) (All versions), SIRIUS Safety Relays 3SK2 (All versions). Affected devices only provide weak password obfuscation. An attacker with network access could retrieve and de-obfuscate the safety password used for protection against inadvertent operating errors.
An issue was discovered in SMA Solar Technology products. The inverters make use of a weak hashing algorithm to encrypt the password for REGISTER requests. This hashing algorithm can be cracked relatively easily. An attacker will likely be able to crack the password using offline crackers. This cracked password can then be used to register at the SMA servers. NOTE: the vendor's position is that "we consider the probability of the success of such manipulation to be extremely low." Also, only Sunny Boy TLST-21 and TL-21 and Sunny Tripower TL-10 and TL-30 could potentially be affected
IBM WebSphere Application Server 8.5 and 9.0 traditional container uses weaker than expected cryptographic keys that could allow an attacker to decrypt sensitive information. This affects only the containerized version of WebSphere Application Server traditional. IBM X-Force ID: 241045.
IBM Cloud Pak System 2.3.0 through 2.3.3.3 Interim Fix 1 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 197498.
IBM Security Verify Access Docker 10.0.0 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 197969
IBM Security Guardium 11.2 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 196280.
IBM QRadar SIEM 7.3.0 to 7.3.3 Patch 8 and 7.4.0 to 7.4.3 GA uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 194448.
IBM Guardium Data Encryption (GDE) 3.0.0.3 and 4.0.0.4 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 195711.
libxcrypt in SUSE openSUSE 11.0 uses the DES algorithm when the configuration specifies the MD5 algorithm, which makes it easier for attackers to conduct brute-force attacks against hashed passwords.
IBM CICS TX 11.1 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 229464.
Firmware developed by Shenzhen Hichip Vision Technology (V6 through V20), as used by many different vendors in millions of Internet of Things devices, suffers from cryptographic issues that allow remote attackers to access user session data, as demonstrated by eavesdropping on user video/audio streams, capturing credentials, and compromising devices. This affects products marketed under the following brand names: Accfly, Alptop, Anlink, Besdersec, BOAVISION, COOAU, CPVAN, Ctronics, D3D Security, Dericam, Elex System, Elite Security, ENSTER, ePGes, Escam, FLOUREON, GENBOLT, Hongjingtian (HJT), ICAMI, Iegeek, Jecurity, Jennov, KKMoon, LEFTEK, Loosafe, Luowice, Nesuniq, Nettoly, ProElite, QZT, Royallite, SDETER, SV3C, SY2L, Tenvis, ThinkValue, TOMLOV, TPTEK, WGCC, and ZILINK.
IBM Cognos Controller 10.4.1, 10.4.2, and 11.0.0 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 264939.
EnroCrypt is a Python module for encryption and hashing. Prior to version 1.1.4, EnroCrypt used the MD5 hashing algorithm in the hashing file. Beginners who are unfamiliar with hashes can face problems as MD5 is considered an insecure hashing algorithm. The vulnerability is patched in v1.1.4 of the product. As a workaround, users can remove the `MD5` hashing function from the file `hashing.py`.
IceHrm before 23.0.1.OS has a risky usage of a hashed password in a request.
HireVue Hiring Platform V1.0 suffers from Use of a Broken or Risky Cryptographic Algorithm. NOTE: this is disputed by the vendor for multiple reasons, e.g., it is inconsistent with CVE ID assignment rules for cloud services, and no product with version V1.0 exists. Furthermore, the rail-fence cipher has been removed, and TLS 1.2 is now used for encryption.
In Apache NiFi 1.2.0 to 1.11.4, the NiFi UI and API were protected by mandating TLS v1.2, as well as listening connections established by processors like ListenHTTP, HandleHttpRequest, etc. However intracluster communication such as cluster request replication, Site-to-Site, and load balanced queues continued to support TLS v1.0 or v1.1.
A Cryptographic Issue vulnerability has been found on IBERMATICA RPS, affecting version 2019. By firstly downloading the log file, an attacker could retrieve the SQL query sent to the application in plaint text. This log file contains the password hashes coded with AES-CBC-128 bits algorithm, which can be decrypted with a .NET function, obtaining the username's password in plain text.
The Blink1Control2 application <= 2.2.7 uses weak password encryption and an insecure method of storage.
IBM Sterling Secure Proxy 6.0.3 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 230522.
beego is an open-source web framework for the Go programming language. Versions of beego prior to 2.3.4 use MD5 as a hashing algorithm. MD5 is no longer considered secure against well-funded opponents due to its vulnerability to collision attacks. Version 2.3.4 replaces MD5 with SHA256.