Guest can force Linux netback driver to hog large amounts of kernel memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Incoming data packets for a guest in the Linux kernel's netback driver are buffered until the guest is ready to process them. There are some measures taken for avoiding to pile up too much data, but those can be bypassed by the guest: There is a timeout how long the client side of an interface can stop consuming new packets before it is assumed to have stalled, but this timeout is rather long (60 seconds by default). Using a UDP connection on a fast interface can easily accumulate gigabytes of data in that time. (CVE-2021-28715) The timeout could even never trigger if the guest manages to have only one free slot in its RX queue ring page and the next package would require more than one free slot, which may be the case when using GSO, XDP, or software hashing. (CVE-2021-28714)
Guest can force Linux netback driver to hog large amounts of kernel memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Incoming data packets for a guest in the Linux kernel's netback driver are buffered until the guest is ready to process them. There are some measures taken for avoiding to pile up too much data, but those can be bypassed by the guest: There is a timeout how long the client side of an interface can stop consuming new packets before it is assumed to have stalled, but this timeout is rather long (60 seconds by default). Using a UDP connection on a fast interface can easily accumulate gigabytes of data in that time. (CVE-2021-28715) The timeout could even never trigger if the guest manages to have only one free slot in its RX queue ring page and the next package would require more than one free slot, which may be the case when using GSO, XDP, or software hashing. (CVE-2021-28714)
An issue was discovered in the Linux kernel 3.2 through 5.10.16, as used by Xen. Grant mapping operations often occur in batch hypercalls, where a number of operations are done in a single hypercall, the success or failure of each one is reported to the backend driver, and the backend driver then loops over the results, performing follow-up actions based on the success or failure of each operation. Unfortunately, when running in PV mode, the Linux backend drivers mishandle this: Some errors are ignored, effectively implying their success from the success of related batch elements. In other cases, errors resulting from one batch element lead to further batch elements not being inspected, and hence successful ones to not be possible to properly unmap upon error recovery. Only systems with Linux backends running in PV mode are vulnerable. Linux backends run in HVM / PVH modes are not vulnerable. This affects arch/*/xen/p2m.c and drivers/xen/gntdev.c.
Guests can trigger NIC interface reset/abort/crash via netback It is possible for a guest to trigger a NIC interface reset/abort/crash in a Linux based network backend by sending certain kinds of packets. It appears to be an (unwritten?) assumption in the rest of the Linux network stack that packet protocol headers are all contained within the linear section of the SKB and some NICs behave badly if this is not the case. This has been reported to occur with Cisco (enic) and Broadcom NetXtrem II BCM5780 (bnx2x) though it may be an issue with other NICs/drivers as well. In case the frontend is sending requests with split headers, netback will forward those violating above mentioned assumption to the networking core, resulting in said misbehavior.
Rogue backends can cause DoS of guests via high frequency events T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Xen offers the ability to run PV backends in regular unprivileged guests, typically referred to as "driver domains". Running PV backends in driver domains has one primary security advantage: if a driver domain gets compromised, it doesn't have the privileges to take over the system. However, a malicious driver domain could try to attack other guests via sending events at a high frequency leading to a Denial of Service in the guest due to trying to service interrupts for elongated amounts of time. There are three affected backends: * blkfront patch 1, CVE-2021-28711 * netfront patch 2, CVE-2021-28712 * hvc_xen (console) patch 3, CVE-2021-28713
An issue was discovered in the Linux kernel 2.6.39 through 5.10.16, as used in Xen. Block, net, and SCSI backends consider certain errors a plain bug, deliberately causing a kernel crash. For errors potentially being at least under the influence of guests (such as out of memory conditions), it isn't correct to assume a plain bug. Memory allocations potentially causing such crashes occur only when Linux is running in PV mode, though. This affects drivers/block/xen-blkback/blkback.c and drivers/xen/xen-scsiback.c.
An issue was discovered in the Linux kernel through 5.11.3, as used with Xen PV. A certain part of the netback driver lacks necessary treatment of errors such as failed memory allocations (as a result of changes to the handling of grant mapping errors). A host OS denial of service may occur during misbehavior of a networking frontend driver. NOTE: this issue exists because of an incomplete fix for CVE-2021-26931.
A NULL pointer dereference flaw was found in the floppy disk emulator of QEMU. This issue occurs while processing read/write ioport commands if the selected floppy drive is not initialized with a block device. This flaw allows a privileged guest user to crash the QEMU process on the host, resulting in a denial of service. The highest threat from this vulnerability is to system availability.
Memory leak in hw/9pfs/9p.c in QEMU (aka Quick Emulator) allows local privileged guest OS users to cause a denial of service (host memory consumption and possibly QEMU process crash) by leveraging a missing cleanup operation in FileOperations.
KVM in the Linux kernel on Power8 processors has a conflicting use of HSTATE_HOST_R1 to store r1 state in kvmppc_hv_entry plus in kvmppc_{save,restore}_tm, leading to a stack corruption. Because of this, an attacker with the ability run code in kernel space of a guest VM can cause the host kernel to panic. There were two commits that, according to the reporter, introduced the vulnerability: f024ee098476 ("KVM: PPC: Book3S HV: Pull out TM state save/restore into separate procedures") 87a11bb6a7f7 ("KVM: PPC: Book3S HV: Work around XER[SO] bug in fake suspend mode") The former landed in 4.8, the latter in 4.17. This was fixed without realizing the impact in 4.18 with the following three commits, though it's believed the first is the only strictly necessary commit: 6f597c6b63b6 ("KVM: PPC: Book3S PR: Add guest MSR parameter for kvmppc_save_tm()/kvmppc_restore_tm()") 7b0e827c6970 ("KVM: PPC: Book3S HV: Factor fake-suspend handling out of kvmppc_save/restore_tm") 009c872a8bc4 ("KVM: PPC: Book3S PR: Move kvmppc_save_tm/kvmppc_restore_tm to separate file")
An issue was discovered in Xen through 4.14.x. Xenstored and guests communicate via a shared memory page using a specific protocol. When a guest violates this protocol, xenstored will drop the connection to that guest. Unfortunately, this is done by just removing the guest from xenstored's internal management, resulting in the same actions as if the guest had been destroyed, including sending an @releaseDomain event. @releaseDomain events do not say that the guest has been removed. All watchers of this event must look at the states of all guests to find the guest that has been removed. When an @releaseDomain is generated due to a domain xenstored protocol violation, because the guest is still running, the watchers will not react. Later, when the guest is actually destroyed, xenstored will no longer have it stored in its internal data base, so no further @releaseDomain event will be sent. This can lead to a zombie domain; memory mappings of that guest's memory will not be removed, due to the missing event. This zombie domain will be cleaned up only after another domain is destroyed, as that will trigger another @releaseDomain event. If the device model of the guest that violated the Xenstore protocol is running in a stub-domain, a use-after-free case could happen in xenstored, after having removed the guest from its internal data base, possibly resulting in a crash of xenstored. A malicious guest can block resources of the host for a period after its own death. Guests with a stub domain device model can eventually crash xenstored, resulting in a more serious denial of service (the prevention of any further domain management operations). Only the C variant of Xenstore is affected; the Ocaml variant is not affected. Only HVM guests with a stubdom device model can cause a serious DoS.
Quick Emulator (Qemu) built with the USB EHCI Emulation support is vulnerable to a memory leakage issue. It could occur while processing packet data in 'ehci_init_transfer'. A guest user/process could use this issue to leak host memory, resulting in DoS for a host.
Quick Emulator (Qemu) built with the USB redirector usb-guest support is vulnerable to a memory leakage flaw. It could occur while destroying the USB redirector in 'usbredir_handle_destroy'. A guest user/process could use this issue to leak host memory, resulting in DoS for a host.
Memory leak in QEMU, when built with a VMWARE VMXNET3 paravirtual NIC emulator support, allows local guest users to cause a denial of service (host memory consumption) by trying to activate the vmxnet3 device repeatedly.
The GENERATE_SEED macro in PHP 4.x before 4.4.8 and 5.x before 5.2.5, when running on 64-bit systems, performs a multiplication that generates a portion of zero bits during conversion due to insufficient precision, which produces 24 bits of entropy and simplifies brute force attacks against protection mechanisms that use the rand and mt_rand functions.
The DNS protocol, as implemented in (1) BIND 8 and 9 before 9.5.0-P1, 9.4.2-P1, and 9.3.5-P1; (2) Microsoft DNS in Windows 2000 SP4, XP SP2 and SP3, and Server 2003 SP1 and SP2; and other implementations allow remote attackers to spoof DNS traffic via a birthday attack that uses in-bailiwick referrals to conduct cache poisoning against recursive resolvers, related to insufficient randomness of DNS transaction IDs and source ports, aka "DNS Insufficient Socket Entropy Vulnerability" or "the Kaminsky bug."
ntp-keygen in ntp 4.2.8px before 4.2.8p2-RC2 and 4.3.x before 4.3.12 does not generate MD5 keys with sufficient entropy on big endian machines when the lowest order byte of the temp variable is between 0x20 and 0x7f and not #, which might allow remote attackers to obtain the value of generated MD5 keys via a brute force attack with the 93 possible keys.
hostapd before 2.6, in EAP mode, makes calls to the rand() and random() standard library functions without any preceding srand() or srandom() call, which results in inappropriate use of deterministic values. This was fixed in conjunction with CVE-2016-10743.