Multiple vulnerabilities in the Control and Provisioning of Wireless Access Points (CAPWAP) protocol processing of Cisco IOS XE Software for Cisco Catalyst 9800 Series Wireless Controllers could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition of an affected device. These vulnerabilities are due to insufficient validation of CAPWAP packets. An attacker could exploit these vulnerabilities by sending a malformed CAPWAP packet to an affected device. A successful exploit could allow the attacker to cause the affected device to crash and reload, resulting in a DoS condition on the affected device.
A vulnerability in the Cisco Nexus 9000 Series Platform Leaf Switches for Application Centric Infrastructure (ACI) could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition on the affected device. This vulnerability affects Cisco Nexus 9000 Series Leaf Switches (TOR) - ACI Mode and Cisco Application Policy Infrastructure Controller (APIC). More Information: CSCuy93241. Known Affected Releases: 11.2(2x) 11.2(3x) 11.3(1x) 11.3(2x) 12.0(1x). Known Fixed Releases: 11.2(2i) 11.2(2j) 11.2(3f) 11.2(3g) 11.2(3h) 11.2(3l) 11.3(0.236) 11.3(1j) 11.3(2i) 11.3(2j) 12.0(1r).
The Aggregated MAC Protocol Data Unit (AMPDU) implementation on Cisco Aironet 1800, 2800, and 3800 devices with software before 8.2.121.0 and 8.3.x before 8.3.102.0 allows remote attackers to cause a denial of service (device reload) via a crafted AMPDU header, aka Bug ID CSCuz56288.
The Adaptive Wireless Intrusion Prevention System (wIPS) feature on Cisco Wireless LAN Controller (WLC) devices before 8.0.140.0, 8.1.x and 8.2.x before 8.2.121.0, and 8.3.x before 8.3.102.0 allows remote attackers to cause a denial of service (device restart) via a malformed wIPS packet, aka Bug ID CSCuz40263.
The DHCP Relay implementation in Cisco Adaptive Security Appliance (ASA) Software 8.4.7.29 and 9.1.7.4 allows remote attackers to cause a denial of service (interface wedge) via a crafted rate of DHCP packet transmission, aka Bug ID CSCuy66942.
The rate-limit feature in the 802.11 protocol implementation on Cisco Aironet 1800, 2800, and 3800 devices with software before 8.2.121.0 and 8.3.x before 8.3.102.0 allows remote attackers to cause a denial of service (device reload) via crafted 802.11 frames, aka Bug ID CSCva06192.
A vulnerability in Cisco IOS on Catalyst Switches and Nexus 9300 Series Switches could allow an unauthenticated, adjacent attacker to cause a Layer 2 network storm. More Information: CSCuu69332, CSCux07028. Known Affected Releases: 15.2(3)E. Known Fixed Releases: 12.2(50)SE4 12.2(50)SE5 12.2(50)SQ5 12.2(50)SQ6 12.2(50)SQ7 12.2(52)EY4 12.2(52)SE1 12.2(53)EX 12.2(53)SE 12.2(53)SE1 12.2(53)SE2 12.2(53)SG10 12.2(53)SG11 12.2(53)SG2 12.2(53)SG9 12.2(54)SG1 12.2(55)EX3 12.2(55)SE 12.2(55)SE1 12.2(55)SE10 12.2(55)SE2 12.2(55)SE3 12.2(55)SE4 12.2(55)SE5 12.2(55)SE6 12.2(55)SE7 12.2(55)SE8 12.2(55)SE9 12.2(58)EZ 12.2(58)SE1 12.2(58)SE2 12.2(60)EZ 12.2(60)EZ1 12.2(60)EZ2 12.2(60)EZ3 12.2(60)EZ4 12.2(60)EZ5 12.2(60)EZ6 12.2(60)EZ7 12.2(60)EZ8 15.0(1)EY2 15.0(1)SE 15.0(1)SE2 15.0(1)SE3 15.0(2)EA 15.0(2)EB 15.0(2)EC 15.0(2)ED 15.0(2)EH 15.0(2)EJ 15.0(2)EJ1 15.0(2)EK1 15.0(2)EX 15.0(2)EX1 15.0(2)EX3 15.0(2)EX4 15.0(2)EX5 15.0(2)EY 15.0(2)EY1 15.0(2)EY2 15.0(2)EZ 15.0(2)SE 15.0(2)SE1 15.0(2)SE2 15.0(2)SE3 15.0(2)SE4 15.0(2)SE5 15.0(2)SE6 15.0(2)SE7 15.0(2)SE9 15.0(2)SG10 15.0(2)SG3 15.0(2)SG6 15.0(2)SG7 15.0(2)SG8 15.0(2)SG9 15.0(2a)EX5 15.1(2)SG 15.1(2)SG1 15.1(2)SG2 15.1(2)SG3 15.1(2)SG4 15.1(2)SG5 15.1(2)SG6 15.2(1)E 15.2(1)E1 15.2(1)E2 15.2(1)E3 15.2(1)EY 15.2(2)E 15.2(2)E3 15.2(2b)E.
Multiple vulnerabilities in the Control and Provisioning of Wireless Access Points (CAPWAP) protocol processing of Cisco IOS XE Software for Cisco Catalyst 9800 Series Wireless Controllers could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition of an affected device. These vulnerabilities are due to insufficient validation of CAPWAP packets. An attacker could exploit these vulnerabilities by sending a malformed CAPWAP packet to an affected device. A successful exploit could allow the attacker to cause the affected device to crash and reload, resulting in a DoS condition on the affected device.
Multiple vulnerabilities in the Control and Provisioning of Wireless Access Points (CAPWAP) protocol processing of Cisco IOS XE Software for Cisco Catalyst 9800 Series Wireless Controllers could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition of an affected device. These vulnerabilities are due to insufficient validation of CAPWAP packets. An attacker could exploit these vulnerabilities by sending a malformed CAPWAP packet to an affected device. A successful exploit could allow the attacker to cause the affected device to crash and reload, resulting in a DoS condition on the affected device.
Multiple vulnerabilities in the Control and Provisioning of Wireless Access Points (CAPWAP) protocol processing of Cisco IOS XE Software for Cisco Catalyst 9800 Series Wireless Controllers could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition of an affected device. These vulnerabilities are due to insufficient validation of CAPWAP packets. An attacker could exploit these vulnerabilities by sending a malformed CAPWAP packet to an affected device. A successful exploit could allow the attacker to cause the affected device to crash and reload, resulting in a DoS condition on the affected device.
Multiple vulnerabilities in the Control and Provisioning of Wireless Access Points (CAPWAP) protocol processing of Cisco IOS XE Software for Cisco Catalyst 9800 Series Wireless Controllers could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition of an affected device. These vulnerabilities are due to insufficient validation of CAPWAP packets. An attacker could exploit these vulnerabilities by sending a malformed CAPWAP packet to an affected device. A successful exploit could allow the attacker to cause the affected device to crash and reload, resulting in a DoS condition on the affected device.
A vulnerability in the Cisco Discovery Protocol of Cisco Video Surveillance 8000 Series IP Cameras could allow an unauthenticated, adjacent attacker to cause a memory leak, which could lead to a denial of service (DoS) condition on an affected device. The vulnerability is due to incorrect processing of certain Cisco Discovery Protocol packets. An attacker could exploit this vulnerability by sending certain Cisco Discovery Protocol packets to an affected device. A successful exploit could allow the attacker to cause the affected device to continuously consume memory, which could cause the device to crash and reload, resulting in a DOS condition. Note: Cisco Discovery Protocol is a Layer 2 protocol. To exploit this vulnerability, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent).
Multiple vulnerabilities in the Control and Provisioning of Wireless Access Points (CAPWAP) protocol processing of Cisco IOS XE Software for Cisco Catalyst 9800 Series Wireless Controllers could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition of an affected device. These vulnerabilities are due to insufficient validation of CAPWAP packets. An attacker could exploit these vulnerabilities by sending a malformed CAPWAP packet to an affected device. A successful exploit could allow the attacker to cause the affected device to crash and reload, resulting in a DoS condition on the affected device.
Cisco IOS 15.2(1)T1.11 and 15.2(2)TST allows remote attackers to cause a denial of service (device crash) via a crafted LLDP packet, aka Bug ID CSCun63132.
Cisco Wireless LAN Controller (WLC) devices 7.4(121.0) and 8.0(0.30220.385) allow remote attackers to cause a denial of service via crafted wireless management frames, aka Bug ID CSCun92979.
Cisco IOS 15.0(2)SG5, 15.1(2)SG3, 15.2(1)E, 15.3(3)S, and 15.4(1.13)S allows remote attackers to cause a denial of service (device crash) via a crafted LLDP packet, aka Bug ID CSCun66735.
Cisco Videoscape Session Resource Manager (VSRM) allows remote attackers to cause a denial of service (device restart) by sending a traffic flood to upstream devices, aka Bug ID CSCva01813.
Cisco Nexus 1000v Application Virtual Switch (AVS) devices before 5.2(1)SV3(1.5i) allow remote attackers to cause a denial of service (ESXi hypervisor crash and purple screen) via a crafted Cisco Discovery Protocol packet that triggers an out-of-bounds memory access, aka Bug ID CSCuw57985.
A vulnerability in the integrated wireless access point (AP) packet processing of the Cisco 1000 Series Connected Grid Router (CGR1K) could allow an unauthenticated, adjacent attacker to cause a denial of service condition on an affected device. This vulnerability is due to insufficient input validation of received traffic. An attacker could exploit this vulnerability by sending crafted traffic to an affected device. A successful exploit could allow the attacker to cause the integrated AP to stop processing traffic, resulting in a DoS condition. It may be necessary to manually reload the CGR1K to restore AP operation.
A vulnerability in the 802.11r Fast Transition feature set of Cisco IOS Access Points (APs) Software could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to a corruption of certain timer mechanisms triggered by specific roaming events. This corruption will eventually cause a timer crash. An attacker could exploit this vulnerability by sending malicious reassociation events multiple times to the same AP in a short period of time, causing a DoS condition on the affected AP.
A vulnerability in the VLAN Trunking Protocol (VTP) subsystem of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, adjacent attacker to corrupt the internal VTP database on an affected device and cause a denial of service (DoS) condition. The vulnerability is due to a logic error in how the affected software handles a subset of VTP packets. An attacker could exploit this vulnerability by sending VTP packets in a sequence that triggers a timeout in the VTP message processing code of the affected software. A successful exploit could allow the attacker to impact the ability to create, modify, or delete VLANs and cause a DoS condition. There are workarounds that address this vulnerability. This vulnerability affects Cisco devices that are running a vulnerable release of Cisco IOS Software or Cisco IOS XE Software, are operating in VTP client mode or VTP server mode, and do not have a VTP domain name configured. The default configuration for Cisco devices that are running Cisco IOS Software or Cisco IOS XE Software and support VTP is to operate in VTP server mode with no domain name configured.
A vulnerability in the implementation of the cluster feature of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, adjacent attacker to trigger a denial of service (DoS) condition on an affected device. The vulnerability is due to improper input validation when handling Cluster Management Protocol (CMP) messages. An attacker could exploit this vulnerability by sending a malicious CMP message to an affected device. A successful exploit could allow the attacker to cause the switch to crash and reload or to hang, resulting in a DoS condition. If the switch hangs it will not reboot automatically, and it will need to be power cycled manually to recover.
The Neighbor Discovery (ND) protocol implementation in the IPv6 stack in Cisco IOS 15.3(3)S0.1 on ASR devices mishandles internal tables, which allows remote attackers to cause a denial of service (memory consumption or device crash) via a flood of crafted ND messages, aka Bug ID CSCup28217.
The ARP implementation in Cisco NX-OS on Nexus 1000V devices for VMware vSphere 5.2(1)SV3(1.4), Nexus 3000 devices 7.3(0)ZD(0.47), Nexus 4000 devices 4.1(2)E1, Nexus 9000 devices 7.3(0)ZD(0.61), and MDS 9000 devices 7.0(0)HSK(0.353) and SAN-OS NX-OS on MDS 9000 devices 7.0(0)HSK(0.353) allows remote attackers to cause a denial of service (ARP process restart) via crafted packet-header fields, aka Bug ID CSCut25292.
Cisco FirePOWER (formerly Sourcefire) 7000 and 8000 devices with software 5.4.0.1 allow remote attackers to cause a denial of service (inspection-engine outage) via crafted packets, aka Bug ID CSCuu10871.
Cisco IOS 15.2(3)E and earlier and IOS XE 3.6(2)E and earlier allow remote attackers to cause a denial of service (functionality loss) via crafted Cisco Discovery Protocol (CDP) packets, aka Bug ID CSCuu25770.
Cisco Wireless LAN Controller (WLC) devices with software 7.0(240.0), 7.3(101.0), and 7.4(1.19) allow remote attackers to cause a denial of service (device outage) by sending malformed 802.11i management data to a managed access point, aka Bug ID CSCub65236.
Cisco IOS XE 16.1.1 allows remote attackers to cause a denial of service (device reload) via a packet with the 00-00-00-00-00-00 source MAC address, aka Bug ID CSCux48405.
Buffer overflow in Cisco NX-OS on Nexus 1000V devices for VMware vSphere 7.3(0)ZN(0.9); Nexus 3000 devices 6.0(2)U5(1.41), 7.0(3)I2(0.373), and 7.3(0)ZN(0.83); Nexus 4000 devices 4.1(2)E1(1b); Nexus 7000 devices 6.2(14)S1; Nexus 9000 devices 7.3(0)ZN(0.9); and MDS 9000 devices 6.2 (13) and 7.1(0)ZN(91.99) and MDS SAN-OS 7.1(0)ZN(91.99) allows remote attackers to cause a denial of service (device outage) via a crafted ARP packet, related to incorrect MTU validation, aka Bug IDs CSCuv71933, CSCuv61341, CSCuv61321, CSCuu78074, CSCut37060, CSCuv61266, CSCuv61351, CSCuv61358, and CSCuv61366.
The PPPoE establishment implementation in Cisco IOS XE 3.5.0S on ASR 1000 devices allows remote attackers to cause a denial of service (device reload) by sending malformed PPPoE Active Discovery Request (PADR) packets on the local network, aka Bug ID CSCty94202.
Cisco Wireless LAN Controller (WLC) devices with software 7.5(102.0) and 7.6(1.62) allow remote attackers to cause a denial of service (device crash) by triggering an exception during attempted forwarding of unspecified IPv6 packets to a non-IPv6 device, aka Bug ID CSCuj01046.
Cisco NX-OS 5.2(5) on Nexus 7000 devices allows remote attackers to cause a denial of service (device crash) by sending a malformed LLDP packet on the local network, aka Bug ID CSCud89415.
The wireless web-authentication subsystem on Cisco Wireless LAN Controller (WLC) devices 7.5.x and 7.6.x before 7.6.120 allows remote attackers to cause a denial of service (process crash and device restart) via a crafted value, aka Bug ID CSCum03269.
The web-authentication functionality on Cisco Wireless LAN Controller (WLC) devices 7.3(103.8) and 7.4(110.0) allows remote attackers to cause a denial of service (device reload) via a malformed password, aka Bug ID CSCui57980.
The DHCP implementation in Cisco IOS on Aironet access points does not properly handle error conditions with short leases and unsuccessful lease-renewal attempts, which allows remote attackers to cause a denial of service (device restart) by triggering a transition into a recovery state that was intended to involve a network-interface restart but actually involves a full device restart, aka Bug ID CSCtn16281.
Cisco IOS XR 4.3(.2) and earlier on ASR 9000 devices does not properly perform NetFlow sampling of IP packets, which allows remote attackers to cause a denial of service (chip and card hangs) via malformed (1) IPv4 or (2) IPv6 packets, aka Bug ID CSCuo68417.
Cisco IOS XE on ASR1000 devices, when PPPoE termination is enabled, allows remote attackers to cause a denial of service (device reload) via a malformed PPPoE packet, aka Bug ID CSCuo55180.
Cisco IOS XR 5.1 and earlier on Network Convergence System 6000 devices allows remote attackers to cause a denial of service (NPU and card hang or reload) via a malformed MPLS packet, aka Bug ID CSCuq10466.
The LLDP implementation in Cisco IOS allows remote attackers to cause a denial of service (device reload) via a malformed packet, aka Bug ID CSCum96282.
Cisco Adaptive Security Appliance (ASA) Software, when DHCPv6 replay is configured, allows remote attackers to cause a denial of service (device reload) via a crafted DHCPv6 packet, aka Bug ID CSCun45520.
Cisco IOS XR does not properly throttle ICMPv6 redirect packets, which allows remote attackers to cause a denial of service (IPv4 and IPv6 transit outage) via crafted redirect messages, aka Bug ID CSCum14266.
The packet driver in Cisco IOS allows remote attackers to cause a denial of service (device reload) via a series of (1) Virtual Switching Systems (VSS) or (2) Bidirectional Forwarding Detection (BFD) packets, aka Bug IDs CSCug41049 and CSCue61890.
The IP Device Tracking (IPDT) feature in Cisco IOS and IOS XE allows remote attackers to cause a denial of service (IPDT AVL corruption and device reload) via a crafted sequence of ARP packets, aka Bug ID CSCuh38133.
The Ethernet frame-forwarding implementation in Cisco NX-OS on Nexus 7000 devices allows remote attackers to cause a denial of service (forwarding loop and service outage) via a crafted frame, aka Bug ID CSCug47098.
A vulnerability in the Cisco Discovery Protocol (CDP) module of Cisco IOS XE Software Releases 16.6.1 and 16.6.2 could allow an unauthenticated, adjacent attacker to cause a memory leak that may lead to a denial of service (DoS) condition. The vulnerability is due to incorrect processing of certain CDP packets. An attacker could exploit this vulnerability by sending certain CDP packets to an affected device. A successful exploit could cause an affected device to continuously consume memory and eventually result in a memory allocation failure that leads to a crash, triggering a reload of the affected device.
A vulnerability in the 802.11 frame validation functionality of the Cisco Wireless LAN Controller (WLC) could allow an unauthenticated, adjacent attacker to cause an affected device to reload unexpectedly, resulting in a denial of service (DoS) condition. The vulnerability is due to incomplete input validation of certain 802.11 management information element frames that an affected device receives from wireless clients. An attacker could exploit this vulnerability by sending a malformed 802.11 management frame to an affected device. A successful exploit could allow the attacker to cause the affected device to reload unexpectedly, resulting in a DoS condition. This vulnerability affects only Cisco Wireless LAN Controllers that are running Cisco Mobility Express Release 8.5.103.0. Cisco Bug IDs: CSCvg07024.
A vulnerability in the Cisco Discovery Protocol of Cisco Video Surveillance 8000 Series IP Cameras could allow an unauthenticated, adjacent attacker to cause a memory leak, which could lead to a denial of service (DoS) condition on an affected device. The vulnerability is due to incorrect processing of certain Cisco Discovery Protocol packets. An attacker could exploit this vulnerability by sending certain Cisco Discovery Protocol packets to an affected device. A successful exploit could allow the attacker to cause the affected device to continuously consume memory, which could cause the device to crash and reload, resulting in a DOS condition. Note: Cisco Discovery Protocol is a Layer 2 protocol. To exploit this vulnerability, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent).
A vulnerability in the Autonomic Networking feature of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, adjacent attacker to cause autonomic nodes of an affected system to reload, resulting in a denial of service (DoS) condition. More Information: CSCvd88936. Known Affected Releases: Denali-16.2.1 Denali-16.3.1.
A vulnerability in the IP Address Resolution Protocol (ARP) feature of Cisco IOS XE Software for Cisco ASR 1000 Series Aggregation Services Routers with a 20-Gbps Embedded Services Processor (ESP) installed could allow an unauthenticated, adjacent attacker to cause an affected device to reload, resulting in a denial of service condition. The vulnerability is due to insufficient error handling when an affected device has reached platform limitations. An attacker could exploit this vulnerability by sending a malicious series of IP ARP messages to an affected device. A successful exploit could allow the attacker to exhaust system resources, which would eventually cause the affected device to reload.
The Network Processing Unit (NPU) in the Cisco Wireless LAN Controller (WLC) before 3.2.193.5, 4.0.x before 4.0.206.0, and 4.1.x allows remote attackers on a local wireless network to cause a denial of service (loss of packet forwarding) via (1) crafted SNAP packets, (2) malformed 802.11 traffic, or (3) packets with certain header length values, aka Bug ID CSCsg36361.