In ytnef 1.9.2, the TNEFFillMapi function in lib/ytnef.c allows remote attackers to cause a denial of service (memory consumption) via a crafted file.
In ytnef 1.9.2, the SwapDWord function in lib/ytnef.c allows remote attackers to cause a denial of service (heap-based buffer over-read and application crash) via a crafted file.
In ytnef 1.9.2, the SwapWord function in lib/ytnef.c allows remote attackers to cause a denial of service (heap-based buffer over-read and application crash) via a crafted file.
In ytnef 1.9.2, the MAPIPrint function in lib/ytnef.c allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) via a crafted file.
An issue was discovered in ytnef before 1.9.1. This is related to a patch described as "2 of 9. Infinite Loop / DoS in the TNEFFillMapi function in lib/ytnef.c."
In ytnef 1.9.2, the DecompressRTF function in lib/ytnef.c allows remote attackers to cause a denial of service (heap-based buffer over-read and application crash) via a crafted file.
In ytnef 1.9.2, a heap-based buffer overflow vulnerability was found in the function TNEFFillMapi in ytnef.c, which allows attackers to cause a denial of service via a crafted file.
In ytnef 1.9.2, an invalid memory read vulnerability was found in the function SwapDWord in ytnef.c, which allows attackers to cause a denial of service via a crafted file.
OctoRPKI tries to load the entire contents of a repository in memory, and in the case of a GZIP bomb, unzip it in memory, making it possible to create a repository that makes OctoRPKI run out of memory (and thus crash).
In ZZIPlib 0.13.68, there is an uncontrolled memory allocation and a crash in the __zzip_parse_root_directory function of zzip/zip.c. Remote attackers could leverage this vulnerability to cause a denial of service via a crafted zip file.
By design, BIND is intended to limit the number of TCP clients that can be connected at any given time. The number of allowed connections is a tunable parameter which, if unset, defaults to a conservative value for most servers. Unfortunately, the code which was intended to limit the number of simultaneous connections contained an error which could be exploited to grow the number of simultaneous connections beyond this limit. Versions affected: BIND 9.9.0 -> 9.10.8-P1, 9.11.0 -> 9.11.6, 9.12.0 -> 9.12.4, 9.14.0. BIND 9 Supported Preview Edition versions 9.9.3-S1 -> 9.11.5-S3, and 9.11.5-S5. Versions 9.13.0 -> 9.13.7 of the 9.13 development branch are also affected. Versions prior to BIND 9.9.0 have not been evaluated for vulnerability to CVE-2018-5743.
In PoDoFo 0.9.5, there is an uncontrolled memory allocation in the PdfParser::ReadXRefSubsection function (base/PdfParser.cpp). Remote attackers could leverage this vulnerability to cause a denial-of-service via a crafted pdf file.
In PoDoFo 0.9.5, there is an uncontrolled memory allocation in the PoDoFo::PdfVecObjects::Reserve function (base/PdfVecObjects.h). Remote attackers could leverage this vulnerability to cause a denial of service via a crafted pdf file.
Opera, possibly 9.64 and earlier, allows remote attackers to cause a denial of service (memory consumption) via a large integer value for the length property of a Select object, a related issue to CVE-2009-1692.
The ReadTIFFImage function in coders/tiff.c in ImageMagick 7.0.7-23 Q16 does not properly validate the amount of image data in a file, which allows remote attackers to cause a denial of service (memory allocation failure in the AcquireMagickMemory function in MagickCore/memory.c).
protobufjs is vulnerable to ReDoS when parsing crafted invalid .proto files.
The Exiv2::Jp2Image::readMetadata function in jp2image.cpp in Exiv2 0.26 allows remote attackers to cause a denial of service (excessive memory allocation) via a crafted file.
In libming 0.4.8, the parseSWF_DEFINELOSSLESS2 function in util/parser.c lacks a boundary check that would lead to denial-of-service attacks via a crafted SWF file.
An attempted excessive memory allocation was discovered in the function tinyexr::AllocateImage in tinyexr.h in tinyexr v0.9.5. Remote attackers could leverage this vulnerability to cause a denial-of-service via crafted input, which leads to an out-of-memory exception.
There's a flaw in OpenEXR's scanline input file functionality in versions before 3.0.0-beta. An attacker able to submit a crafted file to be processed by OpenEXR could consume excessive system memory. The greatest impact of this flaw is to system availability.
There's a flaw in OpenEXR's Scanline API functionality in versions before 3.0.0-beta. An attacker who is able to submit a crafted file to be processed by OpenEXR could trigger excessive consumption of memory, resulting in an impact to system availability.
An issue was discovered in EnsureCapacity in Core/Ap4Array.h in Bento4 1.5.1-627. Crafted MP4 input triggers an attempt at excessive memory allocation, as demonstrated by mp42hls.
There is an excessive memory allocation issue in the functions ReadBMPImage of coders/bmp.c and ReadDIBImage of coders/dib.c in ImageMagick 7.0.8-11, which allows remote attackers to cause a denial of service via a crafted image file.
An issue was discovered in Bento4 1.5.1-627. The AP4_StcoAtom class in Core/Ap4StcoAtom.cpp has an attempted excessive memory allocation when called from AP4_AtomFactory::CreateAtomFromStream in Core/Ap4AtomFactory.cpp, as demonstrated by mp42hls.
On MX Series platforms with MS-MPC/MS-MIC, an Allocation of Resources Without Limits or Throttling vulnerability in Juniper Networks Junos OS allows an unauthenticated network attacker to cause a partial Denial of Service (DoS) with a high rate of specific traffic. If a Class of Service (CoS) rule is attached to the service-set and a high rate of specific traffic is processed by this service-set, for some of the other traffic which has services applied and is being processed by this MS-MPC/MS-MIC drops will be observed. Continued receipted of this high rate of specific traffic will create a sustained Denial of Service (DoS) condition. This issue affects: Juniper Networks Junos OS on MX Series with MS-MPC/MS-MIC: All versions prior to 17.4R3-S5; 18.3 versions prior to 18.3R3-S5; 18.4 versions prior to 18.4R3-S9; 19.1 versions prior to 19.1R3-S6; 19.2 versions prior to 19.2R1-S7, 19.2R3-S3; 19.3 versions prior to 19.3R2-S7, 19.3R3-S3; 19.4 versions prior to 19.4R3-S5; 20.1 versions prior to 20.1R2-S2, 20.1R3-S1; 20.2 versions prior to 20.2R3-S2; 20.3 versions prior to 20.3R3; 20.4 versions prior to 20.4R2-S1, 20.4R3; 21.1 versions prior to 21.1R1-S1, 21.1R2.
In Apache PDFBox, a carefully crafted PDF file can trigger an OutOfMemory-Exception while loading the file. This issue affects Apache PDFBox version 2.0.23 and prior 2.0.x versions.
The Binary File Descriptor (BFD) library (aka libbfd), as distributed in GNU Binutils 2.30, allows remote attackers to cause a denial of service (excessive memory allocation and application crash) via a crafted ELF file, as demonstrated by _bfd_elf_parse_attributes in elf-attrs.c and bfd_malloc in libbfd.c. This can occur during execution of nm.
A shortcoming in the HMEF package of poi-scratchpad (Apache POI) allows an attacker to cause an Out of Memory exception. This package is used to read TNEF files (Microsoft Outlook and Microsoft Exchange Server). If an application uses poi-scratchpad to parse TNEF files and the application allows untrusted users to supply them, then a carefully crafted file can cause an Out of Memory exception. This issue affects poi-scratchpad version 5.2.0 and prior versions. Users are recommended to upgrade to poi-scratchpad 5.2.1.
When reading a specially crafted JPEG file, metadata-extractor up to 2.16.0 can be made to allocate large amounts of memory that finally leads to an out-of-memory error even for very small inputs. This could be used to mount a denial of service attack against services that use metadata-extractor library.
An issue was discovered in Free Lossless Image Format (FLIF) 0.3. The Plane function in image/image.hpp allows remote attackers to cause a denial of service (attempted excessive memory allocation) via a crafted file.
Unbounded memory allocation in Google Guava 11.0 through 24.x before 24.1.1 allows remote attackers to conduct denial of service attacks against servers that depend on this library and deserialize attacker-provided data, because the AtomicDoubleArray class (when serialized with Java serialization) and the CompoundOrdering class (when serialized with GWT serialization) perform eager allocation without appropriate checks on what a client has sent and whether the data size is reasonable.
On version 15.1.x before 15.1.3, 14.1.x before 14.1.3.1, and 13.1.x before 13.1.3.6, when the brute force protection feature of BIG-IP Advanced WAF or BIG-IP ASM is enabled on a virtual server and the virtual server is under brute force attack, the MySQL database may run out of disk space due to lack of row limit on undisclosed tables in the MYSQL database. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated.
GNU Debugger (GDB) 8.0 and earlier fails to detect a negative length field in a DWARF section. A malformed section in an ELF binary or a core file can cause GDB to repeatedly allocate memory until a process limit is reached. This can, for example, impede efforts to analyze malware with GDB.
A malicious server can serve excessive amounts of `Set-Cookie:` headers in a HTTP response to curl and curl < 7.84.0 stores all of them. A sufficiently large amount of (big) cookies make subsequent HTTP requests to this, or other servers to which the cookies match, create requests that become larger than the threshold that curl uses internally to avoid sending crazy large requests (1048576 bytes) and instead returns an error.This denial state might remain for as long as the same cookies are kept, match and haven't expired. Due to cookie matching rules, a server on `foo.example.com` can set cookies that also would match for `bar.example.com`, making it it possible for a "sister server" to effectively cause a denial of service for a sibling site on the same second level domain using this method.
Synapse is a Matrix reference homeserver written in python (pypi package matrix-synapse). Matrix is an ecosystem for open federated Instant Messaging and VoIP. In Synapse before version 1.25.0, a malicious homeserver could redirect requests to their .well-known file to a large file. This can lead to a denial of service attack where homeservers will consume significantly more resources when requesting the .well-known file of a malicious homeserver. This affects any server which accepts federation requests from untrusted servers. Issue is resolved in version 1.25.0. As a workaround the `federation_domain_whitelist` setting can be used to restrict the homeservers communicated with over federation.
GNU Binutils 2.28 allows remote attackers to cause a denial of service (memory consumption) via a crafted ELF file with many program headers, related to the get_program_headers function in readelf.c.
xpdf 4.04 allocates excessive memory when presented with crafted input. This can be triggered by (for example) sending a crafted PDF document to the pdftoppm binary. It is most easily reproduced with the DCMAKE_CXX_COMPILER=afl-clang-fast++ option.
An issue was discovered in Bento4 v1.2. There is an allocation size request error in /Ap4RtpAtom.cpp.
An issue was discovered in Bento4 1.2. The allocator is out of memory in /Source/C++/Core/Ap4Array.h.
An issue was discovered in signotec signoPAD-API/Web (formerly Websocket Pad Server) before 3.1.1 on Windows. It is possible to perform a Denial of Service attack because the application doesn't limit the number of opened WebSocket sockets. If a victim visits an attacker-controlled website, this vulnerability can be exploited.
curl < 7.84.0 supports "chained" HTTP compression algorithms, meaning that a serverresponse can be compressed multiple times and potentially with different algorithms. The number of acceptable "links" in this "decompression chain" was unbounded, allowing a malicious server to insert a virtually unlimited number of compression steps.The use of such a decompression chain could result in a "malloc bomb", makingcurl end up spending enormous amounts of allocated heap memory, or trying toand returning out of memory errors.
A memory allocation vulnerability was found in netpbm before 10.61. A maliciously crafted SVG file could cause the application to crash.
Nextcloud server is an open source, self hosted cloud style services platform. In affected versions an attacker can cause a denial of service by uploading specially crafted files which will cause the server to allocate too much memory / CPU. It is recommended that the Nextcloud Server is upgraded to 21.0.8 , 22.2.4 or 23.0.1. Users unable to upgrade should disable preview generation with the `'enable_previews'` config flag.
The BPG parser in versions of Apache Tika before 1.28.2 and 2.4.0 may allocate an unreasonable amount of memory on carefully crafted files.
In TextView of TextView.java, there is a possible app hang due to improper input validation. This could lead to remote denial of service with no additional execution privileges needed. User interaction is needed for exploitation.Product: AndroidVersions: Android-11Android ID: A-140218875
iText v7.1.17, up to (exluding)": 7.1.18 and 7.2.2 was discovered to contain an out-of-memory error via the component readStreamBytesRaw, which allows attackers to cause a Denial of Service (DoS) via a crafted PDF file.
In libjpeg-turbo 2.0.2, a large amount of memory can be used during processing of an invalid progressive JPEG image containing incorrect width and height values in the image header. NOTE: the vendor's expectation, for use cases in which this memory usage would be a denial of service, is that the application should interpret libjpeg warnings as fatal errors (aborting decompression) and/or set limits on resource consumption or image sizes
An uncontrolled memory allocation in DataBufdata(subBox.length-sizeof(box)) function of Exiv2 0.27 allows attackers to cause a denial of service (DOS) via a crafted input.
A vulnerability in the connection handling function in Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to improper traffic handling when platform limits are reached. An attacker could exploit this vulnerability by sending a high rate of UDP traffic through an affected device. A successful exploit could allow the attacker to cause all new, incoming connections to be dropped, resulting in a DoS condition.
In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger a denial of service by causing an out of memory allocation in the implementation of segment sum. Since code uses the last element of the tensor holding them to determine the dimensionality of output tensor, attackers can use a very large value to trigger a large allocation. The issue is patched in commit 204945b19e44b57906c9344c0d00120eeeae178a and is released in TensorFlow versions 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to limit the maximum value in the segment ids tensor. This only handles the case when the segment ids are stored statically in the model, but a similar validation could be done if the segment ids are generated at runtime, between inference steps. However, if the segment ids are generated as outputs of a tensor during inference steps, then there are no possible workaround and users are advised to upgrade to patched code.