The OJPEGReadBufferFill function in tif_ojpeg.c in LibTIFF before 3.9.3 allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) via an OJPEG image with undefined strip offsets, related to the TIFFVGetField function.
Integer overflow in tif_packbits.c in bmp2tif in libtiff 4.0.3 allows remote attackers to cause a denial of service (crash) via crafted BMP image, related to dimensions, which triggers an out-of-bounds read.
The TIFFFetchShortPair function in tif_dirread.c in libtiff 3.8.0 allows remote attackers to cause a denial of service (application crash) via a crafted TIFF image that triggers a NULL pointer dereference, possibly due to changes in type declarations and/or the TIFFVSetField function.
libtiff up to 3.7.0 allows remote attackers to cause a denial of service (application crash) via a TIFF image header with a zero "YCbCr subsampling" value, which causes a divide-by-zero error in (1) tif_strip.c and (2) tif_tile.c, a different vulnerability than CVE-2004-0804.
Multiple integer overflows in libtiff 3.6.1 and earlier allow remote attackers to cause a denial of service (crash or memory corruption) via TIFF images that lead to incorrect malloc calls.
LibTIFF 4.0.8 has multiple memory leak vulnerabilities, which allow attackers to cause a denial of service (memory consumption), as demonstrated by tif_open.c, tif_lzw.c, and tif_aux.c. NOTE: Third parties were unable to reproduce the issue
The TIFFFetchNormalTag function in LibTiff 4.0.6 allows remote attackers to cause a denial of service (NULL pointer dereference and crash) by setting the tags TIFF_SETGET_C16ASCII or TIFF_SETGET_C32_ASCII to values that access 0-byte arrays. NOTE: this vulnerability exists because of an incomplete fix for CVE-2016-9297.
The TIFFFetchNormalTag function in LibTiff 4.0.6 allows remote attackers to cause a denial of service (out-of-bounds read) via crafted TIFF_SETGET_C16ASCII or TIFF_SETGET_C32_ASCII tag values.
The _TIFFFax3fillruns function in libtiff before 4.0.6 allows remote attackers to cause a denial of service (divide-by-zero error and application crash) via a crafted Tiff image.
The setrow function in the thumbnail tool in LibTIFF 4.0.6 and earlier allows remote attackers to cause a denial of service (out-of-bounds read) via vectors related to the src variable.
The ZIPEncode function in tif_zip.c in the bmp2tiff tool in LibTIFF 4.0.6 and earlier, when the "-c zip" option is used, allows remote attackers to cause a denial of service (buffer over-read) via a crafted BMP image.
The cvtClump function in the rgb2ycbcr tool in LibTIFF 4.0.6 and earlier allows remote attackers to cause a denial of service (out-of-bounds write) by setting the "-v" option to -1.
The TIFFWriteDirectoryTagLongLong8Array function in tif_dirwrite.c in the tiffset tool in LibTIFF 4.0.6 and earlier allows remote attackers to cause a denial of service (out-of-bounds read) via vectors involving the ma variable.
Buffer overflow in the readextension function in gif2tiff.c in LibTIFF 4.0.6 allows remote attackers to cause a denial of service (application crash) via a crafted GIF file.
The rgb2ycbcr tool in LibTIFF 4.0.6 and earlier allows remote attackers to cause a denial of service (divide-by-zero) by setting the (1) v or (2) h parameter to 0.
The tagCompare function in tif_dirinfo.c in the thumbnail tool in LibTIFF 4.0.6 and earlier allows remote attackers to cause a denial of service (out-of-bounds read) via vectors related to field_tag matching.
The (1) cpStrips and (2) cpTiles functions in the thumbnail tool in LibTIFF 4.0.6 and earlier allow remote attackers to cause a denial of service (out-of-bounds read) via vectors related to the bytecounts[] array variable.
In LibTIFF 4.0.8, there is a assertion abort in the TIFFWriteDirectoryTagCheckedLong8Array function in tif_dirwrite.c. A crafted input will lead to a remote denial of service attack.
An SRX Series Service Gateway configured for Unified Threat Management (UTM) may experience a system crash with the error message "mbuf exceed" -- an indication of memory buffer exhaustion -- due to the receipt of crafted HTTP traffic. Each crafted HTTP packet inspected by UTM consumes mbufs which can be identified through the following log messages: all_logs.0:Jun 8 03:25:03 srx1 node0.fpc4 : SPU3 jmpi mbuf stall 50%. all_logs.0:Jun 8 03:25:13 srx1 node0.fpc4 : SPU3 jmpi mbuf stall 51%. all_logs.0:Jun 8 03:25:24 srx1 node0.fpc4 : SPU3 jmpi mbuf stall 52%. ... Eventually the system runs out of mbufs and the system crashes (fails over) with the error "mbuf exceed". This issue only occurs when HTTP AV inspection is configured. Devices configured for Web Filtering alone are unaffected by this issue. Affected releases are Junos OS on SRX Series: 12.1X46 versions prior to 12.1X46-D81; 12.3X48 versions prior to 12.3X48-D77; 15.1X49 versions prior to 15.1X49-D101, 15.1X49-D110.
A regular expression denial of service (ReDoS) vulnerability exits in cbioportal 3.6.21 and older via a POST request to /ProteinArraySignificanceTest.json.
sha256crypt and sha512crypt through 0.6 allow attackers to cause a denial of service (CPU consumption) because the algorithm's runtime is proportional to the square of the length of the password.
Specific IPv6 DHCP packets received by the jdhcpd daemon will cause a memory resource consumption issue to occur on a Junos OS device using the jdhcpd daemon configured to respond to IPv6 requests. Once started, memory consumption will eventually impact any IPv4 or IPv6 request serviced by the jdhcpd daemon, thus creating a Denial of Service (DoS) condition to clients requesting and not receiving IP addresses. Additionally, some clients which were previously holding IPv6 addresses will not have their IPv6 Identity Association (IA) address and network tables agreed upon by the jdhcpd daemon after the failover event occurs, which leads to more than one interface, and multiple IP addresses, being denied on the client. Affected releases are Juniper Networks Junos OS: 17.4 versions prior to 17.4R2; 18.1 versions prior to 18.1R2.
An Environment (CWE-2) vulnerability exists in SoMachine Basic, all versions, and Modicon M221(all references, all versions prior to firmware V1.10.0.0) which could cause cycle time impact when flooding the M221 ethernet interface while the Ethernet/IP adapter is activated.
WebLog Expert Web Server Enterprise 9.4 allows Remote Denial Of Service (daemon crash) via a long HTTP Accept Header to TCP port 9991.
By design, BIND is intended to limit the number of TCP clients that can be connected at any given time. The number of allowed connections is a tunable parameter which, if unset, defaults to a conservative value for most servers. Unfortunately, the code which was intended to limit the number of simultaneous connections contained an error which could be exploited to grow the number of simultaneous connections beyond this limit. Versions affected: BIND 9.9.0 -> 9.10.8-P1, 9.11.0 -> 9.11.6, 9.12.0 -> 9.12.4, 9.14.0. BIND 9 Supported Preview Edition versions 9.9.3-S1 -> 9.11.5-S3, and 9.11.5-S5. Versions 9.13.0 -> 9.13.7 of the 9.13 development branch are also affected. Versions prior to BIND 9.9.0 have not been evaluated for vulnerability to CVE-2018-5743.
Fastify node module before 0.38.0 is vulnerable to a denial-of-service attack by sending a request with "Content-Type: application/json" and a very large payload.
sshpk is vulnerable to ReDoS when parsing crafted invalid public keys.
There is a Memory leakage vulnerability in Smartphone.Successful exploitation of this vulnerability may cause memory exhaustion.
In version 0.3.32 of open-webui/open-webui, the absence of authentication mechanisms allows any unauthenticated attacker to access the `api/v1/utils/code/format` endpoint. If a malicious actor sends a POST request with an excessively high volume of content, the server could become completely unresponsive. This could lead to severe performance issues, causing the server to become unresponsive or experience significant degradation, ultimately resulting in service interruptions for legitimate users.
A Denial-of-Service (DoS) vulnerability was discovered in Team Server in HelpSystems Cobalt Strike 4.2 and 4.3. It allows remote attackers to crash the C2 server thread and block beacons' communication with it.
A vulnerability, which was classified as problematic, has been found in Tongda OA 2017 up to 11.7. This issue affects some unknown processing of the file /inc/package_static_resources.php. The manipulation leads to resource consumption. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used.
A memory allocation with excessive size value vulnerability in the license verification function of FortiPortal before 6.0.6 may allow an attacker to perform a denial of service attack via specially crafted license blobs.
A flaw was found in keycloak-model-infinispan in keycloak versions before 14.0.0 where authenticationSessions map in RootAuthenticationSessionEntity grows boundlessly which could lead to a DoS attack.
When reading a specially crafted TAR archive, Compress can be made to allocate large amounts of memory that finally leads to an out of memory error even for very small inputs. This could be used to mount a denial of service attack against services that use Compress' tar package.
This affects the package com.fasterxml.jackson.dataformat:jackson-dataformat-cbor from 0 and before 2.11.4, from 2.12.0-rc1 and before 2.12.1. Unchecked allocation of byte buffer can cause a java.lang.OutOfMemoryError exception.
In Qt through 5.14.1, the WebSocket implementation accepts up to 2GB for frames and 2GB for messages. Smaller limits cannot be configured. This makes it easier for attackers to cause a denial of service (memory consumption).
Affected devices contain a vulnerability that allows an unauthenticated attacker to trigger a denial of service condition. The vulnerability can be triggered if a large amount of DCP reset packets are sent to the device.
Go Ethereum (aka geth) 1.8.19 allows attackers to cause a denial of service (memory consumption) by rewriting the length of a dynamic array in memory, and then writing data to a single memory location with a large index number, as demonstrated by use of "assembly { mstore }" followed by a "c[0xC800000] = 0xFF" assignment.
A denial-of-service risk was identified in the draft files area, due to it not respecting user file upload limits. Moodle versions 3.10 to 3.10.3, 3.9 to 3.9.6, 3.8 to 3.8.8, 3.5 to 3.5.17 and earlier unsupported versions are affected.
IBM QRadar Incident Forensics 7.2 and 7.3 does not properly restrict the size or amount of resources requested which could allow an unauthenticated user to cause a denial of service. IBM X-Force ID: 144650.
A vulnerability in the TCP ingress handler for the data interfaces that are configured with management access to Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause an increase in CPU and memory usage, resulting in a denial of service (DoS) condition. The vulnerability is due to insufficient ingress TCP rate limiting for TCP ports 22 (SSH) and 443 (HTTPS). An attacker could exploit this vulnerability by sending a crafted, steady stream of TCP traffic to port 22 or 443 on the data interfaces that are configured with management access to the affected device.
Redis is an open source, in-memory database that persists on disk. When parsing an incoming Redis Standard Protocol (RESP) request, Redis allocates memory according to user-specified values which determine the number of elements (in the multi-bulk header) and size of each element (in the bulk header). An attacker delivering specially crafted requests over multiple connections can cause the server to allocate significant amount of memory. Because the same parsing mechanism is used to handle authentication requests, this vulnerability can also be exploited by unauthenticated users. The problem is fixed in Redis versions 6.2.6, 6.0.16 and 5.0.14. An additional workaround to mitigate this problem without patching the redis-server executable is to block access to prevent unauthenticated users from connecting to Redis. This can be done in different ways: Using network access control tools like firewalls, iptables, security groups, etc. or Enabling TLS and requiring users to authenticate using client side certificates.
A vulnerability in the Shell Access Filter feature of Cisco Firepower Management Center (FMC), when used in conjunction with remote authentication, could allow an unauthenticated, remote attacker to cause high disk utilization, resulting in a denial of service (DoS) condition. The vulnerability occurs because the configuration of the Shell Access Filter, when used with a specific type of remote authentication, can cause a system file to have unbounded writes. An attacker could exploit this vulnerability by sending a steady stream of remote authentication requests to the appliance when the specific configuration is applied. Successful exploitation could allow the attacker to increase the size of a system log file so that it consumes most of the disk space. The lack of available disk space could lead to a DoS condition in which the device functions could operate abnormally, making the device unstable.
EMQ X Broker versions prior to 4.2.8 are vulnerable to a denial of service attack as a result of excessive memory consumption due to the handling of untrusted inputs. These inputs cause the message broker to consume large amounts of memory, resulting in the application being terminated by the operating system.
An issue was discovered in glFTPd 2.11a that allows remote attackers to cause a denial of service via exceeding the connection limit.
An issue was discovered in the parse_duration crate through 2021-03-18 for Rust. It allows attackers to cause a denial of service (CPU and memory consumption) via a duration string with a large exponent.
Microsoft Communicator, and Communicator in Microsoft Office 2010 beta, allows remote attackers to cause a denial of service (memory consumption) via a large number of SIP INVITE requests, which trigger the creation of many sessions.
IBM Secure External Authentication Server 2.4.3.2, 6.0.1, 6.0.2 and IBM Secure Proxy 3.4.3.2, 6.0.1, 6.0.2 could allow a remote user to consume resources causing a denial of service due to a resource leak.
In Eclipse Jetty version 9.3.x and 9.4.x, the server is vulnerable to Denial of Service conditions if a remote client sends either large SETTINGs frames container containing many settings, or many small SETTINGs frames. The vulnerability is due to the additional CPU and memory allocations required to handle changed settings.
IBM API Connect 2018.1 through 2018.3.7 could allow an unauthenticated attacker to cause a denial of service due to not setting limits on JSON payload size. IBM X-Force ID: 148802.