In Wireshark 2.4.0 to 2.4.1, the RTSP dissector could crash. This was addressed in epan/dissectors/packet-rtsp.c by correcting the scope of a variable.
The DCP ETSI dissector in Wireshark (formerly Ethereal) 0.99.6 allows remote attackers to cause a denial of service (long loop and resource consumption) via unknown vectors.
The MEGACO dissector in Wireshark (formerly Ethereal) 0.9.14 to 0.99.6 allows remote attackers to cause a denial of service (long loop and resource consumption) via unknown vectors.
In Wireshark 2.4.0, 2.2.0 to 2.2.8, and 2.0.0 to 2.0.14, the IrCOMM dissector has a buffer over-read and application crash. This was addressed in plugins/irda/packet-ircomm.c by adding length validation.
In Wireshark 2.0.0 to 2.0.13, the GPRS LLC dissector could go into a large loop. This was addressed in epan/dissectors/packet-gprs-llc.c by using a different integer data type.
In Wireshark 2.6.0 to 2.6.2, 2.4.0 to 2.4.8, and 2.2.0 to 2.2.16, the Bluetooth AVDTP dissector could crash. This was addressed in epan/dissectors/packet-btavdtp.c by properly initializing a data structure.
In Wireshark 2.4.0 to 2.4.12 and 2.6.0 to 2.6.6, the TCAP dissector could crash. This was addressed in epan/dissectors/asn1/tcap/tcap.cnf by avoiding NULL pointer dereferences.
In Wireshark 2.6.0 to 2.6.1 and 2.4.0 to 2.4.7, the IEEE 802.11 protocol dissector could crash. This was addressed in epan/crypt/airpdcap.c via bounds checking that prevents a buffer over-read.
In Wireshark 2.4.0 to 2.4.12 and 2.6.0 to 2.6.6, the RPCAP dissector could crash. This was addressed in epan/dissectors/packet-rpcap.c by avoiding an attempted dereference of a NULL conversation.
The parseFields function in epan/dissectors/packet-dis-pdus.c in the DIS dissector in Wireshark 1.8.x before 1.8.9 and 1.10.x before 1.10.1 does not terminate packet-data processing after finding zero remaining bytes, which allows remote attackers to cause a denial of service (loop) via a crafted packet.
epan/dissectors/packet-reload.c in the REsource LOcation And Discovery (aka RELOAD) dissector in Wireshark 1.8.x before 1.8.6 uses incorrect integer data types, which allows remote attackers to cause a denial of service (infinite loop) via crafted integer values in a packet, related to the (1) dissect_icecandidates, (2) dissect_kinddata, (3) dissect_nodeid_list, (4) dissect_storeans, (5) dissect_storereq, (6) dissect_storeddataspecifier, (7) dissect_fetchreq, (8) dissect_findans, (9) dissect_diagnosticinfo, (10) dissect_diagnosticresponse, (11) dissect_reload_messagecontents, and (12) dissect_reload_message functions, a different vulnerability than CVE-2013-2486.
epan/dissectors/packet-dcerpc-spoolss.c in the SPOOLS component in Wireshark 1.12.x before 1.12.12 and 2.x before 2.0.4 mishandles unexpected offsets, which allows remote attackers to cause a denial of service (infinite loop) via a crafted packet.
In Wireshark 2.2.0 to 2.2.5 and 2.0.0 to 2.0.11, the IMAP dissector could crash, triggered by packet injection or a malformed capture file. This was addressed in epan/dissectors/packet-imap.c by calculating a line's end correctly.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, epan/dissectors/packet-h223.c has a memory leak.
In Wireshark 2.4.0 to 2.4.1 and 2.2.0 to 2.2.9, the BT ATT dissector could crash. This was addressed in epan/dissectors/packet-btatt.c by considering a case where not all of the BTATT packets have the same encapsulation level.
In Wireshark 3.0.0, the TSDNS dissector could crash. This was addressed in epan/dissectors/packet-tsdns.c by splitting strings safely.
In Wireshark 2.4.0 to 2.4.4 and 2.2.0 to 2.2.12, epan/dissectors/packet-wccp.c had a large loop that was addressed by ensuring that a calculated length was monotonically increasing.
In Wireshark before 2.2.12, the MRDISC dissector misuses a NULL pointer and crashes. This was addressed in epan/dissectors/packet-mrdisc.c by validating an IPv4 address. This vulnerability is similar to CVE-2017-9343.
Unspecified vulnerability in the OpcUa (OPC UA) dissector in Wireshark 0.99.6 through 1.0.8 and 1.2.0 through 1.2.1 allows remote attackers to cause a denial of service (memory and CPU consumption) via malformed OPCUA Service CallRequest packets.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, ui/failure_message.c has a memory leak.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, epan/dissectors/packet-giop.c has a memory leak.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, the NBAP dissector could crash with a large loop that ends with a heap-based buffer overflow. This was addressed in epan/dissectors/packet-nbap.c by prohibiting the self-linking of DCH-IDs.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, the ADB dissector could crash with a heap-based buffer overflow. This was addressed in epan/dissectors/packet-adb.c by checking for a length inconsistency.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, epan/dissectors/packet-tn3270.c has a memory leak.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, epan/dissectors/packet-smb2.c has a memory leak.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, the Kerberos dissector could crash. This was addressed in epan/dissectors/packet-kerberos.c by ensuring a nonzero key length.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, epan/dissectors/packet-pcp.c has a memory leak.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, epan/dissectors/packet-isup.c has a memory leak.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, epan/oids.c has a memory leak.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, epan/dissectors/packet-lapd.c has a memory leak.
In Wireshark 2.4.0 to 2.4.4 and 2.2.0 to 2.2.12, epan/dissectors/packet-thrift.c had a large loop that was addressed by not proceeding with dissection after encountering an unexpected type.
In Wireshark 2.2.0 to 2.2.12 and 2.4.0 to 2.4.4, the SIGCOMP dissector could crash. This was addressed in epan/dissectors/packet-sigcomp.c by correcting the extraction of the length value.
In Wireshark 2.2.0 to 2.2.12 and 2.4.0 to 2.4.4, the NBAP dissector could crash. This was addressed in epan/dissectors/asn1/nbap/nbap.cnf by ensuring DCH ID initialization.
In Wireshark 2.4.0 to 2.4.4 and 2.2.0 to 2.2.12, the SIGCOMP protocol dissector could crash. This was addressed in epan/dissectors/packet-sigcomp.c by validating operand offsets.
In Wireshark 2.4.0 to 2.4.4 and 2.2.0 to 2.2.12, the IEEE 802.11 dissector could crash. This was addressed in epan/crypt/airpdcap.c by rejecting lengths that are too small.
In Wireshark 2.2.0 to 2.2.12 and 2.4.0 to 2.4.4, the pcapng file parser could crash. This was addressed in wiretap/pcapng.c by adding a block-size check for sysdig event blocks.
In Wireshark 2.4.0 to 2.4.4 and 2.2.0 to 2.2.12, the UMTS MAC dissector could crash. This was addressed in epan/dissectors/packet-umts_mac.c by rejecting a certain reserved value.
In Wireshark 2.2.0 to 2.2.12 and 2.4.0 to 2.4.4, the IPMI dissector could crash. This was addressed in epan/dissectors/packet-ipmi-picmg.c by adding support for crafted packets that lack an IPMI header.
In Wireshark 2.4.0 to 2.4.4, the DOCSIS protocol dissector could crash. This was addressed in plugins/docsis/packet-docsis.c by removing the recursive algorithm that had been used for concatenated PDUs.
In Wireshark 2.4.0 to 2.4.4 and 2.2.0 to 2.2.12, the FCP protocol dissector could crash. This was addressed in epan/dissectors/packet-fcp.c by checking for a NULL pointer.
In Wireshark 2.4.0 to 2.4.3 and 2.2.0 to 2.2.11, the JSON, XML, NTP, XMPP, and GDB dissectors could crash. This was addressed in epan/tvbparse.c by limiting the recursion depth.
The dissect_lbmr_pser function in epan/dissectors/packet-lbmr.c in the LBMR dissector in Wireshark 1.12.x before 1.12.5 does not reject a zero length, which allows remote attackers to cause a denial of service (infinite loop) via a crafted packet.
epan/dissectors/packet-websocket.c in the WebSocket dissector in Wireshark 1.12.x before 1.12.5 uses a recursive algorithm, which allows remote attackers to cause a denial of service (CPU consumption) via a crafted packet.
In Wireshark 2.4.0 to 2.4.1, the DOCSIS dissector could go into an infinite loop. This was addressed in plugins/docsis/packet-docsis.c by adding decrements.
In Wireshark 2.4.0, the Modbus dissector could crash with a NULL pointer dereference. This was addressed in epan/dissectors/packet-mbtcp.c by adding length validation.
Crash in DNP dissector in Wireshark 3.4.0 to 3.4.6 and 3.2.0 to 3.2.14 allows denial of service via packet injection or crafted capture file
The dissect_nwp function in epan/dissectors/packet-nwp.c in the NWP dissector in Wireshark 2.0.x before 2.0.1 mishandles the packet type, which allows remote attackers to cause a denial of service (application crash) via a crafted packet.
The ascend_seek function in wiretap/ascendtext.c in the Ascend file parser in Wireshark 1.12.x before 1.12.9 and 2.0.x before 2.0.1 does not ensure the presence of a '\0' character at the end of a date string, which allows remote attackers to cause a denial of service (out-of-bounds read and application crash) via a crafted file.
epan/dissectors/packet-umts_fp.c in the UMTS FP dissector in Wireshark 1.12.x before 1.12.9 does not properly reserve memory for channel ID mappings, which allows remote attackers to cause a denial of service (out-of-bounds memory access and application crash) via a crafted packet.
The DOCSIS dissector in Wireshark 0.9.6 through 1.0.12 and 1.2.0 through 1.2.7 allows user-assisted remote attackers to cause a denial of service (application crash) via a malformed packet trace file.