Heap-based buffer overflow in the unhtmlify function in foomatic-rip in foomatic-filters before 4.0.6 allows remote attackers to cause a denial of service (memory corruption and crash) or possibly execute arbitrary code via a long job title.
The AppleTalk parser in tcpdump before 4.9.0 has a buffer overflow in print-atalk.c, multiple functions.
A flaw was found in mbsync versions prior to 1.4.4. Due to inadequate handling of extremely large (>=2GiB) IMAP literals, malicious or compromised IMAP servers, and hypothetically even external email senders, could cause several different buffer overflows, which could conceivably be exploited for remote code execution.
Heap-based buffer overflow in novell-tftp.exe in Novell ZENworks Configuration Manager (ZCM) 10.3.1, 10.3.2, and 11.0, and earlier versions, allows remote attackers to execute arbitrary code via a long TFTP request.
Microsoft Internet Explorer 5.01, 5.5, and 6 allows remote attackers to cause a denial of service (application crash) and possibly execute arbitrary code via a web page with embedded CLSIDs that reference certain COM objects that are not intended for use within Internet Explorer, as originally demonstrated using the (1) DDS Library Shape Control (Msdds.dll) COM object, and other objects including (2) Blnmgrps.dll, (3) Ciodm.dll, (4) Comsvcs.dll, (5) Danim.dll, (6) Htmlmarq.ocx, (7) Mdt2dd.dll (as demonstrated using a heap corruption attack with uninitialized memory), (8) Mdt2qd.dll, (9) Mpg4ds32.ax, (10) Msadds32.ax, (11) Msb1esen.dll, (12) Msb1fren.dll, (13) Msb1geen.dll, (14) Msdtctm.dll, (15) Mshtml.dll, (16) Msoeacct.dll, (17) Msosvfbr.dll, (18) Mswcrun.dll, (19) Netshell.dll, (20) Ole2disp.dll, (21) Outllib.dll, (22) Psisdecd.dll, (23) Qdvd.dll, (24) Repodbc.dll, (25) Shdocvw.dll, (26) Shell32.dll, (27) Soa.dll, (28) Srchui.dll, (29) Stobject.dll, (30) Vdt70.dll, (31) Vmhelper.dll, and (32) Wbemads.dll, aka a variant of the "COM Object Instantiation Memory Corruption vulnerability."
Multiple stack-based buffer overflows in opt/novell/iprint/bin/ipsmd in Novell iPrint for Linux Open Enterprise Server 2 SP2 and SP3 allow remote attackers to execute arbitrary code via unspecified LPR opcodes.
Buffer overflow in mng_core_com.dll in CA XOsoft Replication r12.0 SP1 and r12.5 SP2 rollup, CA XOsoft High Availability r12.0 SP1 and r12.5 SP2 rollup, CA XOsoft Content Distribution r12.0 SP1 and r12.5 SP2 rollup, and CA ARCserve Replication and High Availability (RHA) r15.0 SP1 allows remote attackers to execute arbitrary code via a crafted create_session_bab operation in a SOAP request to xosoapapi.asmx.
In PHP 7.x before 7.0.21 and 7.1.x before 7.1.7, ext/intl/msgformat/msgformat_parse.c does not restrict the locale length, which allows remote attackers to cause a denial of service (stack-based buffer overflow and application crash) or possibly have unspecified other impact within International Components for Unicode (ICU) for C/C++ via a long first argument to the msgfmt_parse_message function.
Multiple heap-based buffer overflows in (1) isaNVWRequest.dll and (2) relay.dll in Trend Micro ServerProtect Management Console 5.58 and earlier, as used in Control Manager 2.5 and 3.0 and Damage Cleanup Server 1.1, allow remote attackers to execute arbitrary code via "wrapped" length values in Chunked transfer requests. NOTE: the original report suggests that the relay.dll issue is related to a problem in which a Microsoft Foundation Classes (MFC) static library returns invalid values under heavy load. As such, this might not be a vulnerability in Trend Micro's product.
Buffer overflow in the smiGetNode function in lib/smi.c in libsmi 0.4.8 allows context-dependent attackers to execute arbitrary code via an Object Identifier (aka OID) represented as a numerical string containing many components separated by . (dot) characters.
Buffer overflow in the message-protocol implementation in the Server in IBM Tivoli Storage Manager (TSM) FastBack 5.x.x before 5.5.7, and 6.1.0.0, allows remote attackers to read and modify data, and possibly have other impact, via an unspecified command.
There is a Memory out-of-bounds access vulnerability in Huawei Smartphone.Successful exploitation of this vulnerability may cause malicious code to be executed.
The uloc_acceptLanguageFromHTTP function in common/uloc.cpp in International Components for Unicode (ICU) through 57.1 for C/C++ does not ensure that there is a '\0' character at the end of a certain temporary array, which allows remote attackers to cause a denial of service (out-of-bounds read) or possibly have unspecified other impact via a call with a long httpAcceptLanguage argument.
Buffer overflow in tm-console-bin in the DevonIT thin-client management tool might allow remote attackers to execute arbitrary code via unspecified vectors.
Buffer overflow in the log2vis_utf8 function in pyfribidi.c in GNU FriBidi 0.19.1, 0.19.2, and possibly other versions, as used in PyFriBidi 0.10.1, allows remote attackers to cause a denial of service (crash) and possibly execute arbitrary code via a crafted Arabic UTF-8 string that causes original 2-byte UTF-8 sequences to be transformed into 3-byte sequences.
Double free vulnerability in the ICEP dissector in Ethereal before 0.10.11 may allow remote attackers to execute arbitrary code.
RIOT 2020.04 has a buffer overflow in the base64 decoder. The decoding function base64_decode() uses an output buffer estimation function to compute the required buffer capacity and validate against the provided buffer size. The base64_estimate_decode_size() function calculates the expected decoded size with an arithmetic round-off error and does not take into account possible padding bytes. Due to this underestimation, it may be possible to craft base64 input that causes a buffer overflow.
Buffer overflow in the SMB1 packet chaining implementation in the chain_reply function in process.c in smbd in Samba 3.0.x before 3.3.13 allows remote attackers to cause a denial of service (memory corruption and daemon crash) or possibly execute arbitrary code via a crafted field in a packet.
Multiple buffer overflows in Winny 2.0b7.1 and earlier might allow remote attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2006-2007.
libxslt in Apple iOS before 9.3.3, OS X before 10.11.6, iTunes before 12.4.2 on Windows, iCloud before 5.2.1 on Windows, tvOS before 9.2.2, and watchOS before 2.2.2 allows remote attackers to cause a denial of service (memory corruption) or possibly have unspecified other impact via unknown vectors, a different vulnerability than CVE-2016-4607, CVE-2016-4609, CVE-2016-4610, and CVE-2016-4612.
Stack-based buffer overflow in the password-validation functionality in Directory Services in Apple Mac OS X 10.5.8 and 10.6.x before 10.6.5 allows remote attackers to execute arbitrary code or cause a denial of service (application crash) via unspecified vectors.
Multiple buffer overflows in Gyach Enhanced (Gyach-E) before 1.0.3 allow remote attackers to cause a denial of service (crash) and possibly execute arbitrary code via vectors related to (1) sending certain typing statuses or (2) setting the chat room status bar to the current chat room name.
Buffer overflow in the web server for EvoLogical EvoCam 3.6.6 and 3.6.7 allows remote attackers to execute arbitrary code via a long GET request.
libxml2 in Apple iOS before 9.3.3, OS X before 10.11.6, iTunes before 12.4.2 on Windows, iCloud before 5.2.1 on Windows, tvOS before 9.2.2, and watchOS before 2.2.2 allows remote attackers to cause a denial of service (memory corruption) or possibly have unspecified other impact via unknown vectors, a different vulnerability than CVE-2016-4614, CVE-2016-4615, and CVE-2016-4619.
Adobe Reader and Acrobat before 11.0.18, Acrobat and Acrobat Reader DC Classic before 15.006.30243, and Acrobat and Acrobat Reader DC Continuous before 15.020.20039 on Windows and OS X allow attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors.
Crossbeam is a set of tools for concurrent programming. In crossbeam-channel before version 0.4.4, the bounded channel incorrectly assumes that `Vec::from_iter` has allocated capacity that same as the number of iterator elements. `Vec::from_iter` does not actually guarantee that and may allocate extra memory. The destructor of the `bounded` channel reconstructs `Vec` from the raw pointer based on the incorrect assumes described above. This is unsound and causing deallocation with the incorrect capacity when `Vec::from_iter` has allocated different sizes with the number of iterator elements. This has been fixed in crossbeam-channel 0.4.4.
In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the `data_splits` argument of `tf.raw_ops.StringNGrams` lacks validation. This allows a user to pass values that can cause heap overflow errors and even leak contents of memory In the linked code snippet, all the binary strings after `ee ff` are contents from the memory stack. Since these can contain return addresses, this data leak can be used to defeat ASLR. The issue is patched in commit 0462de5b544ed4731aa2fb23946ac22c01856b80, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
The asm.js implementation in Mozilla Firefox before 38.0 does not properly determine heap lengths during identification of cases in which bounds checking may be safely skipped, which allows remote attackers to trigger out-of-bounds write operations and possibly execute arbitrary code, or trigger out-of-bounds read operations and possibly obtain sensitive information from process memory, via crafted JavaScript.
Heap-based buffer overflow in VideoLAN VLC media player before 1.0.6 allows remote attackers to cause a denial of service (application crash) or possibly execute arbitrary code via a crafted byte stream in an RTMP session.
Multiple heap-based buffer overflows in VideoLAN VLC media player before 1.0.6 allow remote attackers to cause a denial of service (application crash) or possibly execute arbitrary code via a crafted byte stream to the (1) A/52, (2) DTS, or (3) MPEG Audio decoder.
The ZIP archive decompressor in VideoLAN VLC media player before 1.0.6 allows remote attackers to cause a denial of service (invalid memory access and application crash) or possibly execute arbitrary code via a crafted archive.
An issue was discovered in the jsrsasign package before 8.0.18 for Node.js. Its RSA PKCS1 v1.5 decryption implementation does not detect ciphertext modification by prepending '\0' bytes to ciphertexts (it decrypts modified ciphertexts without error). An attacker might prepend these bytes with the goal of triggering memory corruption issues.
Heap-based buffer overflow in the NTLM authentication functionality in RealNetworks Helix Server and Helix Mobile Server 11.x, 12.x, and 13.x allows remote attackers to have an unspecified impact via invalid base64-encoded data.
Buffer overflow in BarnOwl before 1.5.1 allows remote attackers to cause a denial of service (crash) and possibly execute arbitrary code via a crafted CC: header.
Multiple buffer overflow vulnerabilities in REST API in Brocade Fabric OS versions v8.2.1 through v8.2.1d, and 8.2.2 versions before v8.2.2c could allow remote unauthenticated attackers to perform various attacks.
Multiple buffer overflows in mediaserver in Android 4.x before 4.4.4, 5.0.x before 5.0.2, 5.1.x before 5.1.1, and 6.x before 2016-07-01 allow attackers to gain privileges via a crafted application that provides an AudioEffect reply, as demonstrated by obtaining Signature or SignatureOrSystem access, aka internal bug 28173666.
Google Chrome before 4.1.249.1064 does not properly handle fonts, which allows remote attackers to cause a denial of service (memory corruption) and possibly have unspecified other impact via unknown vectors.
The glob function in glob.c in the GNU C Library (aka glibc or libc6) before 2.27 contains a buffer overflow during unescaping of user names with the ~ operator.
The gnutls_x509_crt_get_serial function in the GnuTLS library before 1.2.1, when running on big-endian, 64-bit platforms, calls the asn1_read_value with a pointer to the wrong data type and the wrong length value, which allows remote attackers to bypass the certificate revocation list (CRL) check and cause a stack-based buffer overflow via a crafted X.509 certificate, related to extraction of a serial number.
A buffer overflow has been found in the Zephyr Project's getaddrinfo() implementation in 1.9.0 and 1.10.0.
In libIEC61850 before version 1.4.3, when a message with COTP message length field with value < 4 is received an integer underflow will happen leading to heap buffer overflow. This can cause an application crash or on some platforms even the execution of remote code. If your application is used in open networks or there are untrusted nodes in the network it is highly recommend to apply the patch. This was patched with commit 033ab5b. Users of version 1.4.x should upgrade to version 1.4.3 when available. As a workaround changes of commit 033ab5b can be applied to older versions.
Multiple stack-based buffer overflows in Embarcadero Technologies InterBase SMP 2009 9.0.3.437 allow remote attackers to execute arbitrary code via unknown vectors involving crafted packets. NOTE: the provenance of this information is unknown; the details are obtained solely from third party information.
Ruby through 2.2.7, 2.3.x through 2.3.4, and 2.4.x through 2.4.1 can expose arbitrary memory during a JSON.generate call. The issues lies in using strdup in ext/json/ext/generator/generator.c, which will stop after encountering a '\0' byte, returning a pointer to a string of length zero, which is not the length stored in space_len.
Multiple stack-based buffer overflows in iChat Server in Apple Mac OS X Server before 10.6.3 allow remote attackers to execute arbitrary code or cause a denial of service (application crash) via unspecified vectors.
Buffer overflow in the Unescape function in common/util/hxurl.cpp and player/hxclientkit/src/CHXClientSink.cpp in Helix Player 1.0.6 and RealPlayer allows remote attackers to cause a denial of service (application crash) or possibly execute arbitrary code via a URL argument containing a % (percent) character that is not followed by two hex digits.
The doapr_outch function in crypto/bio/b_print.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g does not verify that a certain memory allocation succeeds, which allows remote attackers to cause a denial of service (out-of-bounds write or memory consumption) or possibly have unspecified other impact via a long string, as demonstrated by a large amount of ASN.1 data, a different vulnerability than CVE-2016-0799.
In ACCEL-PPP (an implementation of PPTP/PPPoE/L2TP/SSTP), there is a buffer overflow when receiving an l2tp control packet ith an AVP which type is a string and no hidden flags, length set to less than 6. If your application is used in open networks or there are untrusted nodes in the network it is highly recommended to apply the patch. The problem was patched with commit 2324bcd5ba12cf28f47357a8f03cd41b7c04c52b As a workaround changes of commit 2324bcd5ba12cf28f47357a8f03cd41b7c04c52b can be applied to older versions.
Multiple heap-based buffer overflows in (1) webservd and (2) the admin server in Sun Java System Web Server 7.0 Update 7 allow remote attackers to cause a denial of service (daemon crash) and possibly have unspecified other impact via a long string in an "Authorization: Digest" HTTP header.
Buffer overflow in the GMIME_UUENCODE_LEN macro in gmime/gmime-encodings.h in GMime before 2.4.15 allows context-dependent attackers to cause a denial of service (application crash) or possibly execute arbitrary code via input data for a uuencode operation.
Multiple buffer overflows in the LWRES dissector in Wireshark 0.9.15 through 1.0.10 and 1.2.0 through 1.2.5 allow remote attackers to cause a denial of service (crash) via a malformed packet, as demonstrated using a stack-based buffer overflow to the dissect_getaddrsbyname_request function.