An unauthenticated command injection vulnerability exists in the parameters of operation 48 in the controller_server service on Gryphon Tower routers. An unauthenticated remote attacker on the same network can execute commands as root on the device by sending a specially crafted malicious packet to the controller_server service on port 9999.
An unauthenticated command injection vulnerability exists in the parameters of operation 10 in the controller_server service on Gryphon Tower routers. An unauthenticated remote attacker on the same network can execute commands as root on the device by sending a specially crafted malicious packet to the controller_server service on port 9999.
An unauthenticated command injection vulnerability exists in the parameters of operation 49 in the controller_server service on Gryphon Tower routers. An unauthenticated remote attacker on the same network can execute commands as root on the device by sending a specially crafted malicious packet to the controller_server service on port 9999.
Certain NETGEAR devices are affected by command injection by an unauthenticated attacker. This affects WAC505 before 5.0.0.17 and WAC510 before 5.0.0.17.
D-Link DAP-1325 HNAP SetWLanRadioSettings Channel Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of a request parameter provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18822.
D-Link DIR-878 has inadequate filtering for special characters in the webpage input field. An unauthenticated LAN attacker can perform command injection attack to execute arbitrary system commands to control the system or disrupt service.
The management console on the Symantec Web Gateway (SWG) appliance before 5.1.1 allows remote attackers to execute arbitrary commands by injecting a command into an application script.
D-Link DAP-1325 HNAP SetHostIPv6StaticSettings StaticAddress Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of a request parameter provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18816.
D-Link DAP-1325 HNAP SetAPLanSettings Mode Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of a request parameter provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18811.
D-Link DAP-1325 HNAP SetAPLanSettings Gateway Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of a request parameter provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18809.
Kenwood DMX958XR ReadMVGImage Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of Kenwood DMX958XR devices. Authentication is not required to exploit this vulnerability. The specific flaw exists within the ReadMVGImage function. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-26313.
D-Link DAP-1325 HNAP SetHostIPv6StaticSettings StaticDNS2 Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of a request parameter provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18819.
D-Link DAP-1325 HNAP SetAPLanSettings PrimaryDNS Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of a request parameter provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18812.
D-Link DAP-1325 HNAP SetSetupWizardStatus Enabled Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of a request parameter provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18821.
D-Link DAP-1325 HNAP SetAPLanSettings IPAddr Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of a request parameter provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18810.
D-Link DAP-1325 HNAP SetHostIPv6Settings IPv6Mode Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of a request parameter provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18815.
D-Link DAP-1325 HNAP SetHostIPv6StaticSettings StaticDefaultGateway Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of a request parameter provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18817.
D-Link DAP-1325 HNAP SetAPLanSettings SecondaryDNS Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of a request parameter provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18813.
D-Link DAP-1325 HNAP SetHostIPv6StaticSettings StaticPrefixLength Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of a request parameter provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18820.
D-Link DAP-1325 HNAP SetHostIPv6StaticSettings StaticDNS1 Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of a request parameter provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18818.
OpenBlocks IoT VX2 prior to Ver.4.0.0 (Ver.3 Series) allows an attacker on the same network segment to execute arbitrary OS commands with root privileges via unspecified vectors.
Aterm series (Aterm WF1200C firmware Ver1.2.1 and earlier, Aterm WG1200CR firmware Ver1.2.1 and earlier, Aterm WG2600HS firmware Ver1.3.2 and earlier) allows an attacker on the same network segment to execute arbitrary OS commands with root privileges via UPnP function.
D-Link DAP-1325 HNAP SetAPLanSettings SubnetMask Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of a request parameter provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18814.
NETGEAR RAX30 UPnP Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of NETGEAR RAX30 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the UPnP service. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-19704.
D-Link DAP-1325 HNAP SetAPLanSettings DeviceName Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of a request parameter provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18808.
NETGEAR CAX30S SSO Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of NETGEAR CAX30S routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of the token parameter provided to the sso.php endpoint. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18227.
A vulnerability in the implementation of the inter-VM channel of Cisco IOS Software for Cisco 809 and 829 Industrial Integrated Services Routers (Industrial ISRs) and Cisco 1000 Series Connected Grid Routers (CGR1000) could allow an unauthenticated, adjacent attacker to execute arbitrary shell commands on the Virtual Device Server (VDS) of an affected device. The vulnerability is due to insufficient validation of signaling packets that are destined to VDS. An attacker could exploit this vulnerability by sending malicious packets to an affected device. A successful exploit could allow the attacker to execute arbitrary commands in the context of the Linux shell of VDS with the privileges of the root user. Because the device is designed on a hypervisor architecture, exploitation of a vulnerability that affects the inter-VM channel may lead to a complete system compromise. For more information about this vulnerability, see the Details section of this advisory.
This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DIR-825 1.0.9/EE routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the IVI plugin for the xupnpd service, which listens on TCP port 4044. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of the admin user. Was ZDI-CAN-19462.
This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DIR-825 1.0.9/EE routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the YouTube plugin for the xupnpd service, which listens on TCP port 4044. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of the admin user. Was ZDI-CAN-19222.
This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of NETGEAR Orbi 2.5.1.16 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the UA_Parser utility. A crafted Host Name option in a DHCP request can trigger execution of a system call composed from a user-supplied string. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-11076.
NETGEAR RAX30 DHCP Server Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of NETGEAR RAX30 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the DHCP server. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-19705.
An unspecified API on Cisco TelePresence Immersive Endpoint Devices before 1.9.1 allows remote attackers to execute arbitrary commands by leveraging certain adjacency and sending a malformed request on TCP port 61460, aka Bug ID CSCtz38382.
eCharge Hardy Barth cPH2 index.php Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of eCharge Hardy Barth cPH2 charging stations. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of GET parameters provided to the index.php endpoint. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of the www-data user. Was ZDI-CAN-23115.
eCharge Hardy Barth cPH2 nwcheckexec.php dest Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of eCharge Hardy Barth cPH2 charging stations. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of the dest parameter provided to the nwcheckexec.php endpoint. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of the www-data user. Was ZDI-CAN-23114.
Dr Trust USA iCheck Connect BP Monitor BP Testing 118 1.2.1 is vulnerable to Plain text command over BLE.
eCharge Hardy Barth cPH2 check_req.php ntp Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of eCharge Hardy Barth cPH2 charging stations. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of the ntp parameter provided to the check_req.php endpoint. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of the www-data user. Was ZDI-CAN-23113.
A lack of input validation and access controls in Lua CGIs on D-Link DSR VPN routers may result in arbitrary input being passed to system command APIs, resulting in arbitrary command execution with root privileges. This affects DSR-150, DSR-250, DSR-500, and DSR-1000AC with firmware 3.14 and 3.17.
DBA-1510P firmware 1.70b009 and earlier allows an attacker to execute arbitrary OS commands via Web User Interface.
Blink XT2 Sync Module firmware prior to 2.13.11 allows remote attackers to execute arbitrary commands on the device due to improperly sanitized input when configuring the devices wifi configuration via the ssid parameter.
Blink XT2 Sync Module firmware prior to 2.13.11 allows remote attackers to execute arbitrary commands on the device due to improperly sanitized input when configuring the devices wifi configuration via the key parameter.
Blink XT2 Sync Module firmware prior to 2.13.11 allows remote attackers to execute arbitrary commands on the device due to improperly sanitized input when configuring the devices wifi configuration via the bssid parameter.
Blink XT2 Sync Module firmware prior to 2.13.11 allows remote attackers to execute arbitrary commands on the device due to improperly sanitized input when configuring the devices wifi configuration via the encryption parameter.
A vulnerability in the Cisco Discovery Protocol (CDP) implementation for the Cisco TelePresence Codec (TC) and Collaboration Endpoint (CE) Software could allow an unauthenticated, adjacent attacker to inject arbitrary shell commands that are executed by the device. The vulnerability is due to insufficient input validation of received CDP packets. An attacker could exploit this vulnerability by sending crafted CDP packets to an affected device. A successful exploit could allow the attacker to execute arbitrary shell commands or scripts on the targeted device.
NETGEAR RAX30 UPnP Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of NETGEAR RAX30 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of UPnP port mapping requests. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-20429.
D-Link DIR-X3260 prog.cgi SOAPAction Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DIR-X3260 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of the SOAPAction request header provided to the prog.cgi endpoint. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-20983.
D-Link DIR-2150 GetDeviceSettings Target Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DIR-2150 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the SOAP API interface, which listens on TCP port 80 by default. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-21235.
In Vecna VGo Robot versions prior to 3.0.3.52164, an attacker on an adjacent network could perform command injection.
Certain NETGEAR devices are affected by command injection by an unauthenticated attacker. This affects D6400 before 1.0.0.78, EX6200 before 1.0.3.86, EX7000 before 1.0.0.64, R6250 before 1.0.4.8, R6300v2 before 1.0.4.6, R6400 before 1.0.1.12, R6700 before 1.0.1.16, R7000 before 1.0.7.10, R7100LG before 1.0.0.42, R7300DST before 1.0.0.44, R7900 before 1.0.1.12, R8000 before 1.0.3.36, R8300 before 1.0.2.74, R8500 before 1.0.2.74, WNDR3400v3 before 1.0.1.14, and WNR3500Lv2 before 1.2.0.48.
Certain NETGEAR devices are affected by command injection by an unauthenticated attacker. This affects WAC505 before 5.0.0.17 and WAC510 before 5.0.0.17.
A malicious user on the same LAN could use DNS spoofing followed by a command injection attack to trick a NAS device into loading through an unsecured HTTP call. Addressed this vulnerability by disabling checks for internet connectivity using HTTP.