In Wireshark 2.2.0 to 2.2.5 and 2.0.0 to 2.0.11, the WBXML dissector could go into an infinite loop, triggered by packet injection or a malformed capture file. This was addressed in epan/dissectors/packet-wbxml.c by adding length validation.
In Wireshark 2.2.0 to 2.2.5 and 2.0.0 to 2.0.11, the SLSK dissector could go into an infinite loop, triggered by packet injection or a malformed capture file. This was addressed in epan/dissectors/packet-slsk.c by adding checks for the remaining length.
The (1) dissect_tfs_request and (2) dissect_tfs_response functions in epan/dissectors/packet-ieee80211.c in the IEEE 802.11 dissector in Wireshark 1.10.x before 1.10.14 and 1.12.x before 1.12.5 interpret a zero value as a length rather than an error condition, which allows remote attackers to cause a denial of service (infinite loop) via a crafted packet.
In Wireshark 2.2.0 to 2.2.5 and 2.0.0 to 2.0.11, the RPC over RDMA dissector could go into an infinite loop, triggered by packet injection or a malformed capture file. This was addressed in epan/dissectors/packet-rpcrdma.c by correctly checking for going beyond the maximum offset.
In Wireshark 2.2.0 to 2.2.5 and 2.0.0 to 2.0.11, the BGP dissector could go into an infinite loop, triggered by packet injection or a malformed capture file. This was addressed in epan/dissectors/packet-bgp.c by using a different integer data type.
In Wireshark 2.2.0 to 2.2.5, the DOF dissector could go into an infinite loop, triggered by packet injection or a malformed capture file. This was addressed in epan/dissectors/packet-dof.c by using a different integer data type and adjusting a return value.
In Wireshark 2.2.0 to 2.2.5 and 2.0.0 to 2.0.11, the SIGCOMP dissector could go into an infinite loop, triggered by packet injection or a malformed capture file. This was addressed in epan/dissectors/packet-sigcomp.c by correcting a memory-size check.
In Wireshark 2.2.0 to 2.2.5 and 2.0.0 to 2.0.11, the WSP dissector could go into an infinite loop, triggered by packet injection or a malformed capture file. This was addressed in epan/dissectors/packet-wsp.c by adding a length check.
In Wireshark 2.2.0 to 2.2.5 and 2.0.0 to 2.0.11, the PacketBB dissector could crash, triggered by packet injection or a malformed capture file. This was addressed in epan/dissectors/packet-packetbb.c by restricting additions to the protocol tree.
Integer overflow in the dissect_tnef function in epan/dissectors/packet-tnef.c in the TNEF dissector in Wireshark 1.10.x before 1.10.13 and 1.12.x before 1.12.4 allows remote attackers to cause a denial of service (infinite loop) via a crafted length field in a packet.
epan/proto.c in Wireshark 1.12.x before 1.12.4 does not properly handle integer data types greater than 32 bits in size, which allows remote attackers to cause a denial of service (assertion failure and application exit) via a crafted packet that is improperly handled by the LLDP dissector.
epan/dissectors/packet-wcp.c in the WCP dissector in Wireshark 1.10.x before 1.10.13 and 1.12.x before 1.12.4 does not properly initialize a data structure, which allows remote attackers to cause a denial of service (out-of-bounds read and application crash) via a crafted packet that is improperly handled during decompression.
Off-by-one error in the pcapng_read function in wiretap/pcapng.c in the pcapng file parser in Wireshark 1.10.x before 1.10.13 and 1.12.x before 1.12.4 allows remote attackers to cause a denial of service (out-of-bounds read and application crash) via an invalid Interface Statistics Block (ISB) interface ID in a crafted packet.
The dissect_atn_cpdlc_heur function in asn1/atn-cpdlc/packet-atn-cpdlc-template.c in the ATN-CPDLC dissector in Wireshark 1.12.x before 1.12.4 does not properly follow the TRY/ENDTRY code requirements, which allows remote attackers to cause a denial of service (stack memory corruption and application crash) via a crafted packet.
In Wireshark 2.6.0, the IEEE 1905.1a dissector could crash. This was addressed in epan/dissectors/packet-ieee1905.c by making a certain correction to string handling.
Infinite loop in the RTMPT dissector in Wireshark 3.6.0 and 3.4.0 to 3.4.10 allows denial of service via packet injection or crafted capture file
Integer overflow in the dissect_osd2_cdb_continuation function in epan/dissectors/packet-scsi-osd.c in the SCSI OSD dissector in Wireshark 1.12.x before 1.12.4 allows remote attackers to cause a denial of service (infinite loop) via a crafted length field in a packet.
The dissect_wccp2r1_address_table_info function in epan/dissectors/packet-wccp.c in the WCCP dissector in Wireshark 1.10.x before 1.10.12 and 1.12.x before 1.12.3 does not initialize certain data structures, which allows remote attackers to cause a denial of service (application crash) via a crafted packet.
asn1/lpp/lpp.cnf in the LPP dissector in Wireshark 1.10.x before 1.10.12 and 1.12.x before 1.12.3 does not validate a certain index value, which allows remote attackers to cause a denial of service (out-of-bounds memory access and application crash) via a crafted packet.
Multiple use-after-free vulnerabilities in epan/dissectors/packet-dec-dnart.c in the DEC DNA Routing Protocol dissector in Wireshark 1.10.x before 1.10.12 and 1.12.x before 1.12.3 allow remote attackers to cause a denial of service (application crash) via a crafted packet, related to the use of packet-scope memory instead of pinfo-scope memory.
epan/dissectors/packet-smtp.c in the SMTP dissector in Wireshark 1.10.x before 1.10.12 and 1.12.x before 1.12.3 uses an incorrect length value for certain string-append operations, which allows remote attackers to cause a denial of service (application crash) via a crafted packet.
Multiple use-after-free vulnerabilities in epan/dissectors/packet-wccp.c in the WCCP dissector in Wireshark 1.10.x before 1.10.12 and 1.12.x before 1.12.3 allow remote attackers to cause a denial of service (application crash) via a crafted packet, related to the use of packet-scope memory instead of pinfo-scope memory.
Unspecified vulnerability in the LDAP dissector in Wireshark (formerly Ethereal) 0.99.3 allows remote attackers to cause a denial of service (crash) via a crafted LDAP packet.
In Wireshark 2.2.0 to 2.2.6, the IPv6 dissector could crash. This was addressed in epan/dissectors/packet-ipv6.c by validating an IPv6 address.
In Wireshark 2.2.0 to 2.2.6 and 2.0.0 to 2.0.12, the SoulSeek dissector could go into an infinite loop. This was addressed in epan/dissectors/packet-slsk.c by making loop bounds more explicit.
Unspecified vulnerability in the WBXML dissector in Wireshark (formerly Ethereal) 0.10.11 through 0.99.3 allows remote attackers to cause a denial of service (crash) via certain vectors that trigger a null dereference.
epan/dissectors/packet-xot.c in the XOT dissector (dissect_xot_pdu) in Wireshark (formerly Ethereal) 0.9.8 through 0.99.3 allows remote attackers to cause a denial of service (memory consumption and crash) via an encoded XOT packet that produces a zero length value when it is decoded.
The dissect_write_structured_field function in epan/dissectors/packet-tn5250.c in the TN5250 dissector in Wireshark 1.10.x before 1.10.11 and 1.12.x before 1.12.2 allows remote attackers to cause a denial of service (infinite loop) via a crafted packet.
Off-by-one error in the MIME Multipart dissector in Wireshark (formerly Ethereal) 0.10.1 through 0.99.3 allows remote attackers to cause a denial of service (crash) via certain vectors that trigger an assertion error related to unexpected length values.
The build_expert_data function in epan/dissectors/packet-ncp2222.inc in the NCP dissector in Wireshark 1.10.x before 1.10.11 and 1.12.x before 1.12.2 does not properly initialize a data structure, which allows remote attackers to cause a denial of service (application crash) via a crafted packet.
Unspecified vulnerability in the GSM BSSMAP dissector in Wireshark (aka Ethereal) 0.10.11 to 0.99.0 allows remote attackers to cause a denial of service (crash) via unspecified vectors.
Unspecified vulnerability in the DHCP dissector in Wireshark (formerly Ethereal) 0.10.13 through 0.99.2, when run on Windows, allows remote attackers to cause a denial of service (crash) via unspecified vectors that trigger a bug in Glib.
The SnifferDecompress function in wiretap/ngsniffer.c in the DOS Sniffer file parser in Wireshark 1.10.x before 1.10.10 and 1.12.x before 1.12.1 does not validate bitmask data, which allows remote attackers to cause a denial of service (application crash) via a crafted file.
The SnifferDecompress function in wiretap/ngsniffer.c in the DOS Sniffer file parser in Wireshark 1.10.x before 1.10.10 and 1.12.x before 1.12.1 does not prevent data overwrites during copy operations, which allows remote attackers to cause a denial of service (application crash) via a crafted file.
The SnifferDecompress function in wiretap/ngsniffer.c in the DOS Sniffer file parser in Wireshark 1.10.x before 1.10.10 and 1.12.x before 1.12.1 does not properly handle empty input data, which allows remote attackers to cause a denial of service (application crash) via a crafted file.
In Wireshark 2.2.0 to 2.2.4 and 2.0.0 to 2.0.10, there is a NetScaler file parser infinite loop, triggered by a malformed capture file. This was addressed in wiretap/netscaler.c by validating record sizes.
Unspecified vulnerability in the SSH dissector in Wireshark (aka Ethereal) 0.9.10 to 0.99.0 allows remote attackers to cause a denial of service (infinite loop) via unknown attack vectors.
In Wireshark 2.2.0 to 2.2.3 and 2.0.0 to 2.0.9, the ASTERIX dissector could go into an infinite loop, triggered by packet injection or a malformed capture file. This was addressed in epan/dissectors/packet-asterix.c by changing a data type to avoid an integer overflow.
The dissect_hip_tlv function in epan/dissectors/packet-hip.c in the HIP dissector in Wireshark 1.12.x before 1.12.1 does not properly handle a NULL tree, which allows remote attackers to cause a denial of service (infinite loop) via a crafted packet.
The tvb_raw_text_add function in epan/dissectors/packet-megaco.c in the MEGACO dissector in Wireshark 1.10.x before 1.10.10 and 1.12.x before 1.12.1 allows remote attackers to cause a denial of service (infinite loop) via an empty line.
In Wireshark 2.2.0 to 2.2.5 and 2.0.0 to 2.0.11, the IMAP dissector could crash, triggered by packet injection or a malformed capture file. This was addressed in epan/dissectors/packet-imap.c by calculating a line's end correctly.
In Wireshark 2.2.0 to 2.2.4 and 2.0.0 to 2.0.10, there is an RTMPT dissector infinite loop, triggered by packet injection or a malformed capture file. This was addressed in epan/dissectors/packet-rtmpt.c by properly incrementing a certain sequence value.
In Wireshark 2.2.0 to 2.2.4 and 2.0.0 to 2.0.10, there is an IAX2 infinite loop, triggered by packet injection or a malformed capture file. This was addressed in epan/dissectors/packet-iax2.c by constraining packet lateness.
Use-after-free vulnerability in the SDP dissector in Wireshark 1.10.x before 1.10.10 allows remote attackers to cause a denial of service (application crash) via a crafted packet that leverages split memory ownership between the SDP and RTP dissectors.
In Wireshark 2.2.0 to 2.2.4 and 2.0.0 to 2.0.10, there is a NetScaler file parser crash, triggered by a malformed capture file. This was addressed in wiretap/netscaler.c by validating the relationship between pages and records.
In Wireshark 2.2.0 to 2.2.4 and 2.0.0 to 2.0.10, there is an LDSS dissector crash, triggered by packet injection or a malformed capture file. This was addressed in epan/dissectors/packet-ldss.c by ensuring that memory is allocated for a certain data structure.
In Wireshark 2.2.0 to 2.2.3 and 2.0.0 to 2.0.9, the DHCPv6 dissector could go into a large loop, triggered by packet injection or a malformed capture file. This was addressed in epan/dissectors/packet-dhcpv6.c by changing a data type to avoid an integer overflow.
In Wireshark 2.2.0 to 2.2.4 and 2.0.0 to 2.0.10, there is a WSP infinite loop, triggered by packet injection or a malformed capture file. This was addressed in epan/dissectors/packet-wsp.c by validating the capability length.
In Wireshark 2.2.0 to 2.2.4 and 2.0.0 to 2.0.10, there is a Netscaler file parser infinite loop, triggered by a malformed capture file. This was addressed in wiretap/netscaler.c by changing the restrictions on file size.
In Wireshark 2.2.0 to 2.2.4 and 2.0.0 to 2.0.10, there is a K12 file parser crash, triggered by a malformed capture file. This was addressed in wiretap/k12.c by validating the relationships between lengths and offsets.