Insufficient access control in subsystem for Intel (R) processor graphics in 6th, 7th, 8th and 9th Generation Intel(R) Core(TM) Processor Families; Intel(R) Pentium(R) Processor J, N, Silver and Gold Series; Intel(R) Celeron(R) Processor J, N, G3900 and G4900 Series; Intel(R) Atom(R) Processor A and E3900 Series; Intel(R) Xeon(R) Processor E3-1500 v5 and v6 and E-2100 Processor Families may allow an authenticated user to potentially enable denial of service via local access.
Insufficient input validation in the Intel(R) SGX driver for Linux may allow an authenticated user to potentially enable a denial of service via local access.
Improper flow control in crypto routines for Intel(R) Data Center Manager SDK before version 5.0.2 may allow a privileged user to potentially enable a denial of service via local access.
Insufficient input validation in i40e driver for Intel(R) Ethernet 700 Series Controllers versions before 2.8.43 may allow an authenticated user to potentially enable a denial of service via local access.
Resource leak in i40e driver for Intel(R) Ethernet 700 Series Controllers versions before 7.0 may allow an authenticated user to potentially enable a denial of service via local access.
Insufficient bounds checking in Intel(R) Graphics Drivers before version 10.18.14.5067 (aka 15.36.x.5067) and 10.18.10.5069 (aka 15.33.x.5069) may allow an authenticated user to potentially enable a denial of service via local access.
Improper directory permissions in the installer for the Intel(R) System Defense Utility (all versions) may allow authenticated users to potentially enable a denial of service via local access.
Buffer overflow in Intel system Configuration utilities selview.exe and syscfg.exe before version 14 build 11 allows a local user to crash these services potentially resulting in a denial of service.
Improper memory handling in Intel QuickAssist Technology for Linux (all versions) may allow an authenticated user to potentially enable a denial of service via local access.
Use after free in Kernel Mode Driver in Intel(R) Graphics Driver for Windows* before versions 10.18.x.5059 (aka 15.33.x.5059), 10.18.x.5057 (aka 15.36.x.5057), 20.19.x.5063 (aka 15.40.x.5063) 21.20.x.5064 (aka 15.45.x.5064) and 24.20.100.6373 may allow an unprivileged user to potentially enable a denial of service via local access.
Out of bounds read in igdkm64.sys in Intel(R) Graphics Driver for Windows* before versions 10.18.x.5059 (aka 15.33.x.5059), 10.18.x.5057 (aka 15.36.x.5057), 20.19.x.5063 (aka 15.40.x.5063) 21.20.x.5064 (aka 15.45.x.5064) and 24.20.100.6373 may allow an authenticated user to potentially enable denial of service via local access.
Access of uninitialized pointer in the Intel(R) Trace Analyzer and Collector before version 2021.5 may allow an authenticated user to potentially enable denial of service via local access.
Out-of-bounds read in the Intel(R) Trace Analyzer and Collector before version 2021.5 may allow an authenticated user to potentially enable denial of service via local access.
Potential memory corruption in Kernel Mode Driver in Intel(R) Graphics Driver for Windows* before versions 10.18.x.5059 (aka 15.33.x.5059), 10.18.x.5057 (aka 15.36.x.5057), 20.19.x.5063 (aka 15.40.x.5063) 21.20.x.5064 (aka 15.45.x.5064) and 24.20.100.6373 potentially enables an unprivileged user to cause a denial of service via local access.
Insufficient input validation in Intel(R) Server Platform Services HECI subsystem before version SPS_E5_04.00.04.393.0 may allow privileged user to potentially cause a denial of service via local access.
Insufficient write protection in firmware for Intel(R) Optane(TM) SSD DC P4800X before version E2010435 may allow a privileged user to potentially enable a denial of service via local access.
Insufficient input validation in Kernel Mode Driver in Intel(R) Graphics Driver for Windows* before versions 10.18.x.5059 (aka 15.33.x.5059), 10.18.x.5057 (aka 15.36.x.5057), 20.19.x.5063 (aka 15.40.x.5063) 21.20.x.5064 (aka 15.45.x.5064) and 24.20.100.6373 potentially enables a privileged user to cause a denial of service via local access.
Buffer overflow in User Mode Driver in Intel(R) Graphics Driver for Windows* before versions 10.18.x.5059 (aka 15.33.x.5059), 10.18.x.5057 (aka 15.36.x.5057), 20.19.x.5063 (aka 15.40.x.5063) 21.20.x.5064 (aka 15.45.x.5064) and 24.20.100.6373 potentially enables an unprivileged user to cause a denial of service via local access.
Buffer overflow in installer for Intel Extreme Tuning Utility before 6.4.1.21 may allow an authenticated user to potentially cause a buffer overflow potentially leading to a denial of service via local access.
Firmware update routine in bootloader for Intel(R) Optane(TM) SSD DC P4800X before version E2010435 may allow a privileged user to potentially enable a denial of service via local access.
Improper configuration of hardware access in Intel QuickAssist Technology for Linux (all versions) may allow an authenticated user to potentially enable a denial of service via local access.
Buffer overflow in input handling in Intel Extreme Tuning Utility before 6.4.1.21 may allow an authenticated user to potentially deny service to the application via local access.
Insufficient input validation in User Mode Driver in Intel(R) Graphics Driver for Windows* before versions 10.18.x.5059 (aka 15.33.x.5059), 10.18.x.5057 (aka 15.36.x.5057), 20.19.x.5063 (aka 15.40.x.5063) 21.20.x.5064 (aka 15.45.x.5064) and 24.20.100.6373 potentially enables an unprivileged user to cause a denial of service via local access.
Out-of-bounds read condition in older versions of some Intel Graphics Driver for Windows code branches allows local users to perform a denial of service attack.
Input validation error in Intel MinnowBoard 3 Firmware versions prior to 0.65 allow local attacker to cause denial of service via UEFI APIs.
Data corruption vulnerability in firmware in Intel Solid-State Drive Consumer, Professional, Embedded, Data Center affected firmware versions LSBG200, LSF031C, LSF036C, LBF010C, LSBG100, LSF031C, LSF036C, LBF010C, LSF031P, LSF036P, LBF010P, LSF031P, LSF036P, LBF010P, LSMG200, LSF031E, LSF036E, LSMG100, LSF031E, LSF036E, LSDG200, LSF031D, LSF036D allows local users to cause a denial of service via unspecified vectors.
Uncontrolled resource consumption in the Linux kernel drivers for Intel(R) SGX may allow an authenticated user to potentially enable denial of service via local access.
Uncontrolled resource consumption in the Intel(R) Distribution of OpenVINOâ„¢ Toolkit before version 2021.4 may allow an unauthenticated user to potentially enable denial of service via local access.
Improper isolation of shared resources in network on chip for the Intel(R) 82599 Ethernet Controllers and Adapters may allow an authenticated user to potentially enable denial of service via local access.
Improper access control in some Intel(R) Thunderbolt(TM) Windows DCH Drivers before version 1.41.1054.0 may allow unauthenticated user to potentially enable denial of service via local access.
Improper input validation in the firmware for the Intel(R) Ethernet Network Controller E810 before version 1.6.0.6 may allow a privileged user to potentially enable a denial of service via local access.
Protection mechanism failure in the firmware for the Intel(R) Ethernet Network Controller E810 before version 1.5.5.6 may allow a privileged user to enable a denial of service via local access.
Uncaught exception in firmware for Intel(R) Ethernet Adapters 800 Series Controllers and associated adapters before version 1.5.1.0 may allow a privileged attacker to potentially enable denial of service via local access.
Improper input validation in some Intel(R) Optane(TM) PMem versions before versions 1.2.0.5446 or 2.2.0.1547 may allow a privileged user to potentially enable denial of service via local access.
Invalid pointer for some Intel(R) Server Boards, Server Systems and Compute Modules before version 1.59 may allow an unauthenticated user to potentially enable denial of service via local access.
Buffer overflow in a subsystem for some Intel(R) Server Boards, Server Systems and Compute Modules before version 1.59 may allow a privileged user to potentially enable denial of service via local access.
An issue was discovered in the DNS proxy in Connman through 1.40. The TCP server reply implementation has an infinite loop if no data is received.
Infinite Loop in zziplib v0.13.69 allows remote attackers to cause a denial of service via the return value "zzip_file_read" in the function "unzzip_cat_file".
An Ubuntu-specific modification to AccountsService in versions before 0.6.55-0ubuntu13.2, among other earlier versions, would perform unbounded read operations on user-controlled ~/.pam_environment files, allowing an infinite loop if /dev/zero is symlinked to this location.
Bad reference counting in the context of accept_ice_connection() in gsm-xsmp-server.c in old versions of gnome-session up until version 2.29.92 allows a local attacker to establish ICE connections to gnome-session with invalid authentication data (an invalid magic cookie). Each failed authentication attempt will leak a file descriptor in gnome-session. When the maximum number of file descriptors is exhausted in the gnome-session process, it will enter an infinite loop trying to communicate without success, consuming 100% of the CPU. The graphical session associated with the gnome-session process will stop working correctly, because communication with gnome-session is no longer possible.
QEMU (aka Quick Emulator) built with the ColdFire Fast Ethernet Controller emulator support is vulnerable to an infinite loop issue. It could occur while receiving packets in 'mcf_fec_receive'. A privileged user/process inside guest could use this issue to crash the QEMU process on the host leading to DoS.
The mcf_fec_do_tx function in hw/net/mcf_fec.c in QEMU (aka Quick Emulator) does not properly limit the buffer descriptor count when transmitting packets, which allows local guest OS administrators to cause a denial of service (infinite loop and QEMU process crash) via vectors involving a buffer descriptor with a length of 0 and crafted values in bd.flags.
QEMU (aka Quick Emulator) built with the e1000 NIC emulation support is vulnerable to an infinite loop issue. It could occur while processing data via transmit or receive descriptors, provided the initial receive/transmit descriptor head (TDH/RDH) is set outside the allocated descriptor buffer. A privileged user inside guest could use this flaw to crash the QEMU instance resulting in DoS.
A lack of CPU resource in the Linux kernel tracing module functionality in versions prior to 5.14-rc3 was found in the way user uses trace ring buffer in a specific way. Only privileged local users (with CAP_SYS_ADMIN capability) could use this flaw to starve the resources causing denial of service.
A potential stack overflow via infinite loop issue was found in various NIC emulators of QEMU in versions up to and including 5.2.0. The issue occurs in loopback mode of a NIC wherein reentrant DMA checks get bypassed. A guest user/process may use this flaw to consume CPU cycles or crash the QEMU process on the host resulting in DoS scenario.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the strided slice implementation in TFLite has a logic bug which can allow an attacker to trigger an infinite loop. This arises from newly introduced support for [ellipsis in axis definition](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/strided_slice.cc#L103-L122). An attacker can craft a model such that `ellipsis_end_idx` is smaller than `i` (e.g., always negative). In this case, the inner loop does not increase `i` and the `continue` statement causes execution to skip over the preincrement at the end of the outer loop. We have patched the issue in GitHub commit dfa22b348b70bb89d6d6ec0ff53973bacb4f4695. TensorFlow 2.6.0 is the only affected version.
Remote Denial of Service in LwM2M do_write_op_tlv. Zephyr versions >= 1.14.2, >= 2.2.0 contain Improper Input Validation (CWE-20), Loop with Unreachable Exit Condition ('Infinite Loop') (CWE-835). For more information, see https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-g9mg-fj58-6fqh
An issue was discovered in xfs_agf_verify in fs/xfs/libxfs/xfs_alloc.c in the Linux kernel through 5.6.10. Attackers may trigger a sync of excessive duration via an XFS v5 image with crafted metadata, aka CID-d0c7feaf8767.
In QEMU 1:4.1-1, 1:2.1+dfsg-12+deb8u6, 1:2.8+dfsg-6+deb9u8, 1:3.1+dfsg-8~deb10u1, 1:3.1+dfsg-8+deb10u2, and 1:2.1+dfsg-12+deb8u12 (fixed), when executing script in lsi_execute_script(), the LSI scsi adapter emulator advances 's->dsp' index to read next opcode. This can lead to an infinite loop if the next opcode is empty. Move the existing loop exit after 10k iterations so that it covers no-op opcodes as well.
Modem will enter into busy mode in an infinite loop while parsing histogram dimension due to improper validation of input received in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Mobile