An issue was discovered in the HDF HDF5 1.8.20 library. There is a stack-based buffer over-read in the function H5F_addr_decode_len in H5Fint.c.
An issue was discovered in the HDF HDF5 1.8.20 library. There is a heap-based buffer over-read in the function H5O_link_decode in H5Olink.c.
An issue was discovered in the HDF HDF5 1.8.20 library. There is an out of bounds read in the function H5F__accum_read in H5Faccum.c.
An issue was discovered in the HDF HDF5 1.8.20 library. There is a buffer over-read in H5O_chunk_deserialize in H5Ocache.c.
An issue was discovered in the HDF HDF5 1.8.20 library. There is a heap-based buffer overflow in the function H5FL_blk_malloc in H5FL.c.
An issue was discovered in the HDF HDF5 1.8.20 library. There is a memcpy parameter overlap in the function H5O_link_decode in H5Olink.c.
An issue was discovered in the HDF HDF5 1.8.20 library. There is a stack-based buffer overflow in the function H5FD_sec2_read in H5FDsec2.c, related to HDmemset.
An issue was discovered in the HDF HDF5 1.8.20 library. There is a heap-based buffer overflow in the function H5G_ent_decode in H5Gent.c.
An issue was discovered in the HDF HDF5 1.8.20 library. There is a stack-based buffer overflow in the function H5FD_sec2_read in H5FDsec2.c, related to HDread.
An out-of-bounds read vulnerability exists in the gif2h5 functionality of HDF5 Group libhdf5 1.10.4. A specially-crafted GIF file can lead to code execution. An attacker can provide a malicious file to trigger this vulnerability.
In HDF5 1.10.1, there is an out of bounds read vulnerability in the function H5Opline_pline_decode in H5Opline.c in libhdf5.a. For example, h5dump would crash when someone opens a crafted hdf5 file.
A heap-based buffer over-read in H5O_attr_decode() in H5Oattr.c in the HDF HDF5 through 1.10.3 library allows attackers to cause a denial of service via a crafted HDF5 file. This issue was triggered while converting an HDF file to GIF file.
An issue was discovered in the HDF HDF5 1.8.20 library. There is a heap-based buffer over-read in the function H5T_copy in H5T.c.
An issue was discovered in the HDF HDF5 1.8.20 library. There is an out-of-bounds read in the function H5VM_memcpyvv in H5VM.c.
An issue was discovered in the HDF HDF5 1.8.20 library. There is a heap-based buffer over-read in the function H5O_layout_decode in H5Olayout.c, related to HDmemcpy.
An issue was discovered in the HDF HDF5 1.8.20 library. There is a heap-based buffer over-read in the function H5VM_memcpyvv in H5VM.c.
A out of bounds read was discovered in H5VM_memcpyvv in H5VM.c in the HDF HDF5 1.10.2 library. It could allow a remote denial of service or information disclosure attack.
An out of bounds read was discovered in H5O_fill_new_decode and H5O_fill_old_decode in H5Ofill.c in the HDF HDF5 1.10.2 library. It could allow a remote denial of service or information disclosure attack.
An issue was discovered in HDF5 through 1.12.0. A heap-based buffer over-read exists in the function H5O__layout_decode() located in H5Olayout.c. It allows an attacker to cause Denial of Service.
An issue was discovered in the HDF HDF5 1.10.4 library. There is an out of bounds read in the function H5MM_xstrdup in H5MM.c when called from H5O_dtype_decode_helper in H5Odtype.c.
An issue was discovered in the HDF HDF5 1.10.4 library. There is an out of bounds read in the function H5VM_memcpyvv in H5VM.c when called from H5D__compact_readvv in H5Dcompact.c.
An issue was discovered in the HDF HDF5 1.10.4 library. There is an out of bounds read in the function H5T_close_real in H5T.c.
An issue was discovered in the HDF HDF5 1.10.4 library. There is an out of bounds read in the function H5T_get_size in H5T.c.
HDF5 Library through 1.14.3 has a SEGV in H5VM_memcpyvv in H5VM.c.
HDF5 Library through 1.14.3 has a SEGV in H5A__close in H5Aint.c, resulting in the corruption of the instruction pointer.
An issue was discovered in the HDF HDF5 1.8.20 library. There is a heap-based buffer over-read in the function H5O_sdspace_decode in H5Osdspace.c.
An issue was discovered in the HDF HDF5 1.8.20 library. There is an out of bounds read in the function H5O_pline_reset in H5Opline.c.
In HDF5 1.10.1, there is an out of bounds read vulnerability in the function H5T_conv_struct_opt in H5Tconv.c in libhdf5.a. For example, h5dump would crash when someone opens a crafted hdf5 file.
An issue was discovered in the HDF HDF5 1.8.20 library. There is an out of bounds read in H5L_extern_query at H5Lexternal.c.
HDF5 Library through 1.14.3 contains a out-of-bounds read operation in H5FL_arr_malloc in H5FL.c (called from H5S_set_extent_simple in H5S.c).
In p2p_process_prov_disc_req of p2p_pd.c, there is a possible out of bounds read and write due to a use after free. This could lead to remote escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-11 Android-8.1 Android-9 Android-10Android ID: A-181660448
An out-of-bounds read was addressed with improved bounds checking. This issue is fixed in iOS 13.5 and iPadOS 13.5. A remote attacker may be able to cause arbitrary code execution.
The tt_face_load_kern function in sfnt/ttkern.c in FreeType before 2.5.4 enforces an incorrect minimum table length, which allows remote attackers to cause a denial of service (out-of-bounds read) or possibly have unspecified other impact via a crafted TrueType font.
While padding or shrinking a nested wmi packet in all Android releases from CAF using the Linux kernel (Android for MSM, Firefox OS for MSM, QRD Android) before security patch level 2018-07-05, a buffer over-read can potentially occur.
While parsing a Flac file with a corrupted comment block, a buffer over-read can occur in Snapdragon Automobile, Snapdragon Mobile and Snapdragon Wear.
An out-of-bounds read was possible in WhatsApp due to incorrect parsing of RTP extension headers. This issue affects WhatsApp for Android prior to 2.18.276, WhatsApp Business for Android prior to 2.18.99, WhatsApp for iOS prior to 2.18.100.6, WhatsApp Business for iOS prior to 2.18.100.2, and WhatsApp for Windows Phone prior to 2.18.224.
An exploitable heap out-of-bounds read vulnerability exists in the way CoTURN 4.5.1.1 web server parses POST requests. A specially crafted HTTP POST request can lead to information leaks and other misbehavior. An attacker needs to send an HTTPS request to trigger this vulnerability.
In macOS High Sierra before 10.13.3, Security Update 2018-001 Sierra, and Security Update 2018-001 El Capitan, an out-of-bounds read was addressed with improved input validation.
u'Buffer over-read issue in Bluetooth peripheral firmware due to lack of check for invalid opcode and length of opcode received from central device(This CVE is equivalent to Link Layer Length Overfow issue (CVE-2019-16336,CVE-2019-17519) and Silent Length Overflow issue(CVE-2019-17518) mentioned in sweyntooth paper)' in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon IoT, Snapdragon Mobile, Snapdragon Voice & Music in APQ8053, APQ8076, AR9344, Bitra, Kamorta, MDM9206, MDM9207C, MDM9607, MSM8905, MSM8917, MSM8937, MSM8940, MSM8953, Nicobar, QCA6174A, QCA9377, QCM2150, QCM6125, QCS404, QCS405, QCS605, QCS610, QM215, Rennell, SC8180X, SDM429, SDM439, SDM450, SDM630, SDM632, SDM636, SDM660, SDM670, SDM710, SDM845, SDX20, SDX24, SM6150, SM7150, SM8150, SXR1130
An issue was discovered in Noise-Java through 2020-08-27. AESGCMFallbackCipherState.encryptWithAd() allows out-of-bounds access.
A code execution vulnerability exists in the Nef polygon-parsing functionality of CGAL libcgal CGAL-5.1.1 in Nef_S2/SNC_io_parser.h SNC_io_parser::read_sface() sfh->volume() OOB read. A specially crafted malformed file can lead to an out-of-bounds read and type confusion, which could lead to code execution. An attacker can provide malicious input to trigger this vulnerability.
A code execution vulnerability exists in the Nef polygon-parsing functionality of CGAL libcgal CGAL-5.1.1. An oob read vulnerability exists in Nef_S2/SNC_io_parser.h SNC_io_parser::read_sloop() slh->twin() An attacker can provide malicious input to trigger this vulnerability.
A code execution vulnerability exists in the Nef polygon-parsing functionality of CGAL libcgal CGAL-5.1.1. An oob read vulnerability exists in Nef_2/PM_io_parser.h PM_io_parser::read_vertex() Face_of[] OOB read. An attacker can provide malicious input to trigger this vulnerability.
libautotrace.a in AutoTrace 0.31.1 has a heap-based buffer over-read in the ReadImage function in input-bmp.c:492:24.
libautotrace.a in AutoTrace 0.31.1 has a heap-based buffer over-read in the pnm_load_raw function in input-pnm.c:346:41.
wolfSSL CyaSSL before 2.9.4 allows remote attackers to have unspecified impact via multiple calls to the CyaSSL_read function which triggers an out-of-bounds read when an error occurs, related to not checking the return code and MAC verification failure.
The DoAlert function in the (1) TLS and (2) DTLS implementations in wolfSSL CyaSSL before 2.9.4 allows remote attackers to have unspecified impact and vectors, which trigger memory corruption or an out-of-bounds read.
The SSL 3 HMAC functionality in wolfSSL CyaSSL 2.5.0 before 2.9.4 does not check the padding length when verification fails, which allows remote attackers to have unspecified impact via a crafted HMAC, which triggers an out-of-bounds read.
PJSIP is a free and open source multimedia communication library written in C. PJSIP versions 2.12 and prior do not parse incoming RTCP feedback RPSI (Reference Picture Selection Indication) packet, but any app that directly uses pjmedia_rtcp_fb_parse_rpsi() will be affected. A patch is available in the `master` branch of the `pjsip/pjproject` GitHub repository. There are currently no known workarounds.
The DNS feature in InterNiche NicheStack TCP/IP 4.0.1 is affected by: Buffer Overflow. The impact is: execute arbitrary code (remote). The component is: DNS response processing functions: dns_upcall(), getoffset(), dnc_set_answer(). The attack vector is: a specific DNS response packet. The code does not check the "response data length" field of individual DNS answers, which may cause out-of-bounds read/write operations, leading to Information leak, Denial-or-Service, or Remote Code Execution, depending on the context.