Integer overflow in xdr_array function in RPC servers for operating systems that use libc, glibc, or other code based on SunRPC including dietlibc, allows remote attackers to execute arbitrary code by passing a large number of arguments to xdr_array through RPC services such as rpc.cmsd and dmispd.
Stack-based buffer overflow in rtsold in FreeBSD 9.1 through 10.1-RC2 allows remote attackers to cause a denial of service (crash) or possibly execute arbitrary code via crafted DNS parameters in a router advertisement message.
In FreeBSD before 11.2-STABLE(r341486) and 11.2-RELEASE-p6, insufficient bounds checking in one of the device models provided by bhyve can permit a guest operating system to overwrite memory in the bhyve host possibly permitting arbitrary code execution. A guest OS using a firmware image can cause the bhyve process to crash, or possibly execute arbitrary code on the host as root.
In FreeBSD before 11.2-STABLE(r348229), 11.2-RELEASE-p7, 12.0-STABLE(r342228), and 12.0-RELEASE-p1, insufficient validation of network-provided data in bootpd may make it possible for a malicious attacker to craft a bootp packet which could cause a stack buffer overflow. It is possible that the buffer overflow could lead to a Denial of Service or remote code execution.
In FreeBSD 12.2-STABLE before r368250, 11.4-STABLE before r368253, 12.2-RELEASE before p1, 12.1-RELEASE before p11 and 11.4-RELEASE before p5 rtsold(8) does not verify that the RDNSS option does not extend past the end of the received packet before processing its contents. While the kernel currently ignores such malformed packets, it passes them to userspace programs. Any programs expecting the kernel to do validation may be vulnerable to an overflow.
Buffer overflow in bootpd on OpenBSD, FreeBSD, and Linux systems via a malformed header type.
In FreeBSD 12.2-STABLE before r368250, 11.4-STABLE before r368253, 12.2-RELEASE before p1, 12.1-RELEASE before p11 and 11.4-RELEASE before p5 when processing a DNSSL option, rtsold(8) decodes domain name labels per an encoding specified in RFC 1035 in which the first octet of each label contains the label's length. rtsold(8) did not validate label lengths correctly and could overflow the destination buffer.
Buffer overflow in libtelnet/encrypt.c in telnetd in FreeBSD 7.3 through 9.0, MIT Kerberos Version 5 Applications (aka krb5-appl) 1.0.2 and earlier, Heimdal 1.5.1 and earlier, GNU inetutils, and possibly other products allows remote attackers to execute arbitrary code via a long encryption key, as exploited in the wild in December 2011.
Off-by-one error in the inet_network function in libbind in ISC BIND 9.4.2 and earlier, as used in libc in FreeBSD 6.2 through 7.0-PRERELEASE, allows context-dependent attackers to cause a denial of service (crash) and possibly execute arbitrary code via crafted input that triggers memory corruption.
ipfw in FreeBSD does not properly handle the use of "me" in its rules when point to point interfaces are used, which causes ipfw to allow connections from arbitrary remote hosts.
Buffer overflow in the sppp driver in FreeBSD 4.11 through 6.1, NetBSD 2.0 through 4.0 beta before 20060823, and OpenBSD 3.8 and 3.9 before 20060902 allows remote attackers to cause a denial of service (panic), obtain sensitive information, and possibly execute arbitrary code via crafted Link Control Protocol (LCP) packets with an option length that exceeds the overall length, which triggers the overflow in (1) pppoe and (2) ippp. NOTE: this issue was originally incorrectly reported for the ppp driver.
Integer overflow in IEEE 802.11 network subsystem (ieee80211_ioctl.c) in FreeBSD before 6.0-STABLE, while scanning for wireless networks, allows remote attackers to execute arbitrary code by broadcasting crafted (1) beacon or (2) probe response frames.
The sendfile system call in FreeBSD 4.8 through 4.11 and 5 through 5.4 can transfer portions of kernel memory if a file is truncated while it is being sent, which could allow remote attackers to obtain sensitive information.
The TCP MSS (maximum segment size) functionality in netinet allows remote attackers to cause a denial of service (resource exhaustion) via (1) a low MTU, which causes a large number of small packets to be produced, or (2) via a large number of packets with a small TCP payload, which cause a large number of calls to the resource-intensive sowakeup function.
The prescan function in Sendmail 8.12.9 allows remote attackers to execute arbitrary code via buffer overflow attacks, as demonstrated using the parseaddr function in parseaddr.c.
Integer overflow in fetch on FreeBSD 4.1 through 5.3 allows remote malicious servers to execute arbitrary code via certain HTTP headers in an HTTP response, which lead to a buffer overflow.
Buffer overflows in BSD-based FTP servers allows remote attackers to execute arbitrary commands via a long pattern string containing a {} sequence, as seen in (1) g_opendir, (2) g_lstat, (3) g_stat, and (4) the glob0 buffer as used in the glob functions glob2 and glob3.
Buffer overflow in BSD-based telnetd telnet daemon on various operating systems allows remote attackers to execute arbitrary commands via a set of options including AYT (Are You There), which is not properly handled by the telrcv function.
time server daemon timed allows remote attackers to cause a denial of service via malformed packets.
Buffer overflow in Canna input system allows remote attackers to execute arbitrary commands via an SR_INIT command with a long user name or group name.
FreeBSD mmap function allows users to modify append-only or immutable files.
Off-by-one error in the fb_realpath() function, as derived from the realpath function in BSD, may allow attackers to execute arbitrary code, as demonstrated in wu-ftpd 2.5.0 through 2.6.2 via commands that cause pathnames of length MAXPATHLEN+1 to trigger a buffer overflow, including (1) STOR, (2) RETR, (3) APPE, (4) DELE, (5) MKD, (6) RMD, (7) STOU, or (8) RNTO.
In FreeBSD 12.0-STABLE before r349622, 12.0-RELEASE before 12.0-RELEASE-p7, 11.3-PRERELEASE before r349624, 11.3-RC3 before 11.3-RC3-p1, and 11.2-RELEASE before 11.2-RELEASE-p11, a bug in iconv implementation may allow an attacker to write past the end of an output buffer. Depending on the implementation, an attacker may be able to create a denial of service, provoke incorrect program behavior, or induce a remote code execution.
Buffer overflow of rlogin program using TERM environmental variable.
Improper bounds checking of the obuf variable in the link_ntoa() function in linkaddr.c of the BSD libc library may allow an attacker to read or write from memory. The full impact and severity depends on the method of exploit and how the library is used by applications. According to analysis by FreeBSD developers, it is very unlikely that applications exist that utilize link_ntoa() in an exploitable manner, and the CERT/CC is not aware of any proof of concept. A blog post describes the functionality of link_ntoa() and points out that none of the base utilities use this function in an exploitable manner. For more information, please see FreeBSD Security Advisory SA-16:37.
Buffer overflow in the decodearr function in ntpq in ntp 4.2.8p6 through 4.2.8p10 allows remote attackers to execute arbitrary code by leveraging an ntpq query and sending a response with a crafted array.
In FreeBSD before 11.1-STABLE, 11.1-RELEASE-p7, 10.4-STABLE, 10.4-RELEASE-p7, and 10.3-RELEASE-p28, the kernel does not properly validate IPsec packets coming from a trusted host. Additionally, a use-after-free vulnerability exists in the IPsec AH handling code. This issue could cause a system crash or other unpredictable results.
In FreeBSD before 11.2-STABLE(r340854) and 11.2-RELEASE-p5, an integer overflow error can occur when handling the client address length field in an NFSv4 request. Unprivileged remote users with access to the NFS server can crash the system by sending a specially crafted NFSv4 request.
SQLite through 3.32.0 has an integer overflow in sqlite3_str_vappendf in printf.c.
A set of carefully crafted ipv6 packets can trigger an integer overflow in the calculation of a fragment reassembled packet's payload length field. This allows an attacker to trigger a kernel panic, resulting in a denial of service.
All versions of NVIDIA GPU Display Driver contain a vulnerability in the kernel mode layer handler where multiple integer overflows may cause improper memory allocation leading to a denial of service or potential escalation of privileges.
Integer overflow in the _gd2GetHeader function in gd_gd2.c in the GD Graphics Library (aka libgd) before 2.2.3, as used in PHP before 5.5.37, 5.6.x before 5.6.23, and 7.x before 7.0.8, allows remote attackers to cause a denial of service (heap-based buffer overflow and application crash) or possibly have unspecified other impact via crafted chunk dimensions in an image.
Integer overflow in the bhyve hypervisor in FreeBSD 10.1, 10.2, 10.3, and 11.0 when configured with a large amount of guest memory, allows local users to gain privilege via a crafted device descriptor.
A malicious value of size in a structure of packed libnv can cause an integer overflow, leading to the allocation of a smaller buffer than required for the parsed data.
In FreeBSD before 11.1-STABLE, 11.1-RELEASE-p9, 10.4-STABLE, 10.4-RELEASE-p8 and 10.3-RELEASE-p28, insufficient validation of user-provided font parameters can result in an integer overflow, leading to the use of arbitrary kernel memory as glyph data. Unprivileged users may be able to access privileged kernel data.
An issue was discovered on Samsung mobile devices with N(7.x) (MT6755/MT6757 Mediatek models) software. Bootloader has an integer overflow that leads to arbitrary code execution via the download offset control. The Samsung ID is SVE-2017-10732 (January 2018).
In Android before 2018-04-05 or earlier security patch level on Qualcomm Snapdragon Mobile SD 210/SD 212/SD 205, SD 400, SD 410/12, SD 430, SD 450, SD 615/16/SD 415, SD 617, SD 625, SD 650/52, SD 800, SD 808, SD 810, SD 820, and SD 835, an integer overflow leading to buffer overflow can occur during a VT call.
In Android before 2018-04-05 or earlier security patch level on Qualcomm Snapdragon Automobile, Snapdragon Mobile, and Snapdragon Wear MDM9206, MDM9607, MDM9625, MDM9640, MDM9645, MDM9650, MDM9655, MSM8909W, SD 210/SD 212/SD 205, SD 400, SD 425, SD 430, SD 450, SD 617, SD 625, SD 650/52, SD 800, SD 808, SD 810, SD 820, SD 820A, SD 835, SD 845, SD 850, and SDX20, integer overflow may lead to buffer overflows in IPC router Root-PD driver.
There is an Integer Overflow Vulnerability in Huawei Smartphone. Successful exploitation of these vulnerabilities may escalate the permission to that of the root user.
WebM libvpx (aka the VP8 Codec SDK) before 0.9.5, as used in Google Chrome before 7.0.517.44, allows remote attackers to cause a denial of service (memory corruption) or possibly execute arbitrary code via invalid frames.
The WebSockets implementation in Google Chrome before 6.0.472.53 does not properly handle integer values, which allows remote attackers to cause a denial of service or possibly have unspecified other impact via unknown vectors.
International Components for Unicode (ICU) for C/C++ 63.1 has an integer overflow in number::impl::DecimalQuantity::toScientificString() in i18n/number_decimalquantity.cpp.
In Android before 2018-04-05 or earlier security patch level on Qualcomm Snapdragon Automobile and Snapdragon Mobile MDM9625, MDM9635M, MDM9640, MDM9645, MDM9650, MDM9655, SD 400, SD 425, SD 430, SD 450, SD 600, SD 617, SD 625, SD 650/52, SD 800, SD 808, SD 810, SD 820, SD 820A, SD 835, SD 845, SD 850, and SDX20, in the Diag User-PD command registration function, a length variable used during buffer allocation is not checked, so if it is very large, an integer overflow followed by a buffer overflow occurs.
In Android before 2018-04-05 or earlier security patch level on Qualcomm Snapdragon Mobile SD 410/12, SD 617, SD 650/52, SD 800, SD 808, and SD 810, in TQS QSEE application, while parsing "Set Certificates" command an integer overflow may result in buffer overflow.
In Android before 2018-04-05 or earlier security patch level on Qualcomm Snapdragon Mobile and Snapdragon Wear IPQ4019, MDM9206, MDM9607, MDM9615, MDM9625, MDM9635M, MSM8909W, SD 210/SD 212/SD 205, SD 400, SD 410/12, SD 600, SD 615/16/SD 415, SD 808, and SD 810, if start_addr + size is too large in boot_clobber_check_local_address_range(), an integer overflow occurs, resulting in clobber protection check being bypassed and SBL memory corruption.
An integer overflow vulnerability exists in the DICOM parse_dicom_meta_info functionality of Accusoft ImageGear 19.9. A specially crafted malformed file can lead to a stack-based buffer overflow. An attacker can provide a malicious file to trigger this vulnerability.
u'Integer overflow to buffer overflow occurs while playback of ASF clip having unexpected number of codec entries' in Snapdragon Auto, Snapdragon Compute, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wearables in APQ8009, APQ8009W, APQ8017, APQ8037, APQ8053, APQ8064AU, APQ8096, APQ8096AU, APQ8096SG, APQ8098, MDM9206, MDM9650, MSM8905, MSM8909, MSM8909W, MSM8917, MSM8920, MSM8937, MSM8940, MSM8953, MSM8996, MSM8996AU, MSM8996SG, MSM8998, QCM4290, QCM6125, QCS405, QCS410, QCS4290, QCS603, QCS605, QCS610, QCS6125, QM215, SA6145P, SA6150P, SA6155, SA6155P, SA8150P, SA8155, SA8155P, SA8195P, SDA429W, SDA640, SDA660, SDA670, SDA845, SDM429, SDM429W, SDM439, SDM450, SDM455, SDM630, SDM632, SDM636, SDM640, SDM660, SDM670, SDM710, SDM830, SDM845, SDW2500, SDX20, SDX20M, SDX50M, SDX55, SDX55M, SM4125, SM4250, SM4250P, SM6115, SM6115P, SM6125, SM6150, SM6150P, SM6250, SM6250P, SM6350, SM7125, SM7150, SM7150P, SM7225, SM7250, SM7250P, SM8150, SM8150P, SM8250, SXR1120, SXR1130, SXR2130, SXR2130P, WCD9330
A code execution vulnerability exists in the WS-Addressing plugin functionality of Genivia gSOAP 2.8.107. A specially crafted SOAP request can lead to remote code execution. An attacker can send an HTTP request to trigger this vulnerability.
A heap-based buffer overflow vulnerability exists in the DecoderStream::Append functionality of Accusoft ImageGear 19.10. A specially-crafted file can lead to code execution. An attacker can provide a malicious file to trigger this vulnerability.
An integer overflow issue has been reported in the general_composite_rect() function in pixman prior to version 0.32.8. An attacker could exploit this issue to cause an application using pixman to crash or, potentially, execute arbitrary code.