User-controlled operations could have allowed Denial of Service in M-Files Server before 23.4.12528.1 due to uncontrolled memory consumption.
SyncBreeze 10.0.28 contains a denial of service vulnerability in the login endpoint that allows remote attackers to crash the service. Attackers can send an oversized payload in the login request to overwhelm the application and potentially disrupt service availability.
Frigate 2.02 contains a denial of service vulnerability that allows attackers to crash the application by sending oversized input to the command line interface. Attackers can generate a payload of 8000 repeated characters and paste it into the application's command line field to trigger an application crash.
Aerohive HiveOS contains a denial of service vulnerability in the NetConfig UI that allows unauthenticated attackers to render the web interface unusable. Attackers can send a crafted HTTP request to the action.php5 script with specific parameters to trigger a 5-minute service disruption.
When curl retrieves an HTTP response, it stores the incoming headers so that they can be accessed later via the libcurl headers API. However, curl did not have a limit in how many or how large headers it would accept in a response, allowing a malicious server to stream an endless series of headers and eventually cause curl to run out of heap memory.
Code Blocks 20.03 contains a denial of service vulnerability that allows attackers to crash the application by manipulating input in the FSymbols search field. Attackers can paste a large payload of 5000 repeated characters into the search field to trigger an application crash.
VirtualTablet Server 3.0.2 contains a denial of service vulnerability that allows attackers to crash the service by sending oversized string payloads through the Thrift protocol. Attackers can exploit the vulnerability by sending a long string to the send_say() method, causing the server to become unresponsive.
aSc TimeTables 2021.6.2 contains a denial of service vulnerability that allows attackers to crash the application by overwriting subject title fields with excessive data. Attackers can generate a 10,000-character buffer and paste it into the subject title to trigger application instability and potential crash.
Faktory is a language-agnostic persistent background job server. Prior to version 1.8.0, the Faktory web dashboard can suffer from denial of service by a crafted malicious url query param `days`. The vulnerability is related to how the backend reads the `days` URL query parameter in the Faktory web dashboard. The value is used directly without any checks to create a string slice. If a very large value is provided, the backend server ends up using a significant amount of memory and causing it to crash. Version 1.8.0 fixes this issue.
An issue in the cs_bind_ubat component of MonetDB Server v11.45.17 and v11.46.0 allows attackers to cause a Denial of Service (DoS) via crafted SQL statements.
An issue in the GDKfree component of MonetDB Server v11.45.17 and v11.46.0 allows attackers to cause a Denial of Service (DoS) via crafted SQL statements.
An issue in the log_create_delta component of MonetDB Server v11.45.17 and v11.46.0 allows attackers to cause Denial of Service (DoS) via crafted SQL statements.
Products.CMFCore are the key framework services for the Zope Content Management Framework (CMF). The use of Python's marshal module to handle unchecked input in a public method on `PortalFolder` objects can lead to an unauthenticated denial of service and crash situation. The code in question is exposed by all portal software built on top of `Products.CMFCore`, such as Plone. All deployments are vulnerable. The code has been fixed in `Products.CMFCore` version 3.2.
An issue in the gc_col component of MonetDB Server v11.45.17 and v11.46.0 allows attackers to cause a Denial of Service (DoS) via crafted SQL statements.
An issue in the BLOBcmp component of MonetDB Server v11.45.17 and v11.46.0 allows attackers to cause a Denial of Service (DoS) via crafted SQL statements.
A vulnerability has been identified in SIMATIC MV540 H (All versions < V3.3.4), SIMATIC MV540 S (All versions < V3.3.4), SIMATIC MV550 H (All versions < V3.3.4), SIMATIC MV550 S (All versions < V3.3.4), SIMATIC MV560 U (All versions < V3.3.4), SIMATIC MV560 X (All versions < V3.3.4). The result synchronization server of the affected products contains a vulnerability that may lead to a denial of service condition. An attacker may cause a denial of service situation of all socket-based communication of the affected products if the result server is enabled.
An issue in the list_append component of MonetDB Server v11.45.17 and v11.46.0 allows attackers to cause a Denial of Service (DoS) via crafted SQL statements.
Unsanitized input in the query parser in github.com/revel/revel before v1.0.0 allows remote attackers to cause resource exhaustion via memory allocation.
TapinRadio 2.13.7 contains a denial of service vulnerability in the application proxy settings that allows attackers to crash the program by overflowing input fields. Attackers can paste a large buffer of 20,000 characters into the username and address fields to cause the application to become unresponsive and require reinstallation.
Pure-FTPd 1.0.48 allows remote attackers to prevent legitimate server use by making enough connections to exceed the connection limit.
WebLog Expert Web Server Enterprise 9.4 allows Remote Denial Of Service (daemon crash) via a long HTTP Accept Header to TCP port 9991.
An issue was discovered in Xen XAPI before 2020-12-15. Certain xenstore keys provide feedback from the guest, and are therefore watched by toolstack. Specifically, keys are watched by xenopsd, and data are forwarded via RPC through message-switch to xapi. The watching logic in xenopsd sends one RPC update containing all data, any time any single xenstore key is updated, and therefore has O(N^2) time complexity. Furthermore, message-switch retains recent (currently 128) RPC messages for diagnostic purposes, yielding O(M*N) space complexity. The quantity of memory a single guest can monopolise is bounded by xenstored quota, but the quota is fairly large. It is believed to be in excess of 1G per malicious guest. In practice, this manifests as a host denial of service, either through message-switch thrashing against swap, or OOMing entirely, depending on dom0's configuration. (There are no quotas in xenopsd to limit the quantity of keys that result in RPC traffic.) A buggy or malicious guest can cause unreasonable memory usage in dom0, resulting in a host denial of service. All versions of XAPI are vulnerable. Systems that are not using the XAPI toolstack are not vulnerable.
Bingrep v0.8.5 was discovered to contain a memory allocation failure which can cause a Denial of Service (DoS).
Shibboleth Identify Provider 3.x before 3.4.6 has a denial of service flaw. A remote unauthenticated attacker can cause a login flow to trigger Java heap exhaustion due to the creation of objects in the Java Servlet container session.
This affects the package com.fasterxml.jackson.dataformat:jackson-dataformat-cbor from 0 and before 2.11.4, from 2.12.0-rc1 and before 2.12.1. Unchecked allocation of byte buffer can cause a java.lang.OutOfMemoryError exception.
In Wireshark 3.2.0 to 3.2.7, the GQUIC dissector could crash. This was addressed in epan/dissectors/packet-gquic.c by correcting the implementation of offset advancement.
When BIG-IP AFM is provisioned with IPS module enabled and protocol inspection profile is configured on a virtual server or firewall rule or policy, undisclosed traffic can cause an increase in CPU resource utilization. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated.
In archive/zip in Go before 1.16.8 and 1.17.x before 1.17.1, a crafted archive header (falsely designating that many files are present) can cause a NewReader or OpenReader panic. NOTE: this issue exists because of an incomplete fix for CVE-2021-33196.
A flaw was found in the way NSS handled CCS (ChangeCipherSpec) messages in TLS 1.3. This flaw allows a remote attacker to send multiple CCS messages, causing a denial of service for servers compiled with the NSS library. The highest threat from this vulnerability is to system availability. This flaw affects NSS versions before 3.58.
Mastodon is a free, open-source social network server based on ActivityPub. When performing outgoing HTTP queries, Mastodon sets a timeout on individual read operations. Prior to versions 3.5.9, 4.0.5, and 4.1.3, a malicious server can indefinitely extend the duration of the response through slowloris-type attacks. This vulnerability can be used to keep all Mastodon workers busy for an extended duration of time, leading to the server becoming unresponsive. Versions 3.5.9, 4.0.5, and 4.1.3 contain a patch for this issue.
An unauthenticated specially crafted packet sent by an attacker over the network will cause a denial-of-service (DoS) vulnerability. Vulnerability allows attacker to stop the PLC. After stopping (ERR LED flashing red), physical access to the PLC is required in order to restart the application. This issue affects: ABB AC500 V2 products with onboard Ethernet version 2.8.4 and prior versions.
Etherpad < 1.8.3 is affected by a missing lock check which could cause a denial of service. Aggressively targeting random pad import endpoints with empty data would flatten all pads due to lack of rate limiting and missing ownership check.
MediaWiki before 1.36.2 allows a denial of service (resource consumption because of lengthy query processing time). ApiQueryBacklinks (action=query&list=backlinks) can cause a full table scan.
A potential DOS vulnerability was discovered in GitLab CE/EE starting with version 13.7. The stripping of EXIF data from certain images resulted in high CPU usage.
Knot Resolver before 5.6.0 enables attackers to consume its resources, launching amplification attacks and potentially causing a denial of service. Specifically, a single client query may lead to a hundred TCP connection attempts if a DNS server closes connections without providing a response.
In Bento4 1.6.0-638, there is an allocator is out of memory in the function AP4_Array<AP4_TrunAtom::Entry>::EnsureCapacity in Ap4Array.h:172, as demonstrated by GPAC. This can cause a denial of service (DOS).
CoreDNS is a DNS server that chains plugins. In versions prior to 1.12.2, a Denial of Service (DoS) vulnerability exists in the CoreDNS DNS-over-QUIC (DoQ) server implementation. The server previously created a new goroutine for every incoming QUIC stream without imposing any limits on the number of concurrent streams or goroutines. A remote, unauthenticated attacker could open a large number of streams, leading to uncontrolled memory consumption and eventually causing an Out Of Memory (OOM) crash — especially in containerized or memory-constrained environments. The patch in version 1.12.2 introduces two key mitigation mechanisms: `max_streams`, which caps the number of concurrent QUIC streams per connection with a default value of `256`; and `worker_pool_size`, which Introduces a server-wide, bounded worker pool to process incoming streams with a default value of `1024`. This eliminates the 1:1 stream-to-goroutine model and ensures that CoreDNS remains resilient under high concurrency. Some workarounds are available for those who are unable to upgrade. Disable QUIC support by removing or commenting out the `quic://` block in the Corefile, use container runtime resource limits to detect and isolate excessive memory usage, and/or monitor QUIC connection patterns and alert on anomalies.
gRPC contains a vulnerability that allows hpack table accounting errors could lead to unwanted disconnects between clients and servers in exceptional cases/ Three vectors were found that allow the following DOS attacks: - Unbounded memory buffering in the HPACK parser - Unbounded CPU consumption in the HPACK parser The unbounded CPU consumption is down to a copy that occurred per-input-block in the parser, and because that could be unbounded due to the memory copy bug we end up with an O(n^2) parsing loop, with n selected by the client. The unbounded memory buffering bugs: - The header size limit check was behind the string reading code, so we needed to first buffer up to a 4 gigabyte string before rejecting it as longer than 8 or 16kb. - HPACK varints have an encoding quirk whereby an infinite number of 0’s can be added at the start of an integer. gRPC’s hpack parser needed to read all of them before concluding a parse. - gRPC’s metadata overflow check was performed per frame, so that the following sequence of frames could cause infinite buffering: HEADERS: containing a: 1 CONTINUATION: containing a: 2 CONTINUATION: containing a: 3 etc…
node-fetch before versions 2.6.1 and 3.0.0-beta.9 did not honor the size option after following a redirect, which means that when a content size was over the limit, a FetchError would never get thrown and the process would end without failure. For most people, this fix will have a little or no impact. However, if you are relying on node-fetch to gate files above a size, the impact could be significant, for example: If you don't double-check the size of the data after fetch() has completed, your JS thread could get tied up doing work on a large file (DoS) and/or cost you money in computing.
Frontier is Substrate's Ethereum compatibility layer. Prior to commit aea528198b3b226e0d20cce878551fd4c0e3d5d0, at the end of a contract execution, when opcode SUICIDE marks a contract to be deleted, the software uses `storage::remove_prefix` (now renamed to `storage::clear_prefix`) to remove all storages associated with it. This is a single IO primitive call passing the WebAssembly boundary. For large contracts, the call (without providing a `limit` parameter) can be slow. In addition, for parachains, all storages to be deleted will be part of the PoV, which easily exceed relay chain PoV size limit. On the other hand, Frontier's maintainers only charge a fixed cost for opcode SUICIDE. The maintainers consider the severity of this issue high, because an attacker can craft a contract with a lot of storage values on a parachain, and then call opcode SUICIDE on the contract. If the transaction makes into a parachain block, the parachain will then stall because the PoV size will exceed relay chain's limit. This is especially an issue for XCM transactions, because they can't be skipped. Commit aea528198b3b226e0d20cce878551fd4c0e3d5d0 contains a patch for this issue. For parachains, it's recommended to issue an emergency runtime upgrade as soon as possible. For standalone chains, the impact is less severe because the issue mainly affects PoV sizes. It's recommended to issue a normal runtime upgrade as soon as possible. There are no known workarounds.
OpenTelemetry-Go Contrib is a collection of third-party packages for OpenTelemetry-Go. A handler wrapper out of the box adds labels `http.user_agent` and `http.method` that have unbound cardinality. It leads to the server's potential memory exhaustion when many malicious requests are sent to it. HTTP header User-Agent or HTTP method for requests can be easily set by an attacker to be random and long. The library internally uses `httpconv.ServerRequest` that records every value for HTTP `method` and `User-Agent`. In order to be affected, a program has to use the `otelhttp.NewHandler` wrapper and not filter any unknown HTTP methods or User agents on the level of CDN, LB, previous middleware, etc. Version 0.44.0 fixed this issue when the values collected for attribute `http.request.method` were changed to be restricted to a set of well-known values and other high cardinality attributes were removed. As a workaround to stop being affected, `otelhttp.WithFilter()` can be used, but it requires manual careful configuration to not log certain requests entirely. For convenience and safe usage of this library, it should by default mark with the label `unknown` non-standard HTTP methods and User agents to show that such requests were made but do not increase cardinality. In case someone wants to stay with the current behavior, library API should allow to enable it.
The direct_mail extension through 5.2.3 for TYPO3 allows Denial of Service via log entries.
HashiCorp Consul and Consul Enterprise include an HTTP API (introduced in 1.2.0) and DNS (introduced in 1.4.3) caching feature that was vulnerable to denial of service. Fixed in 1.6.6 and 1.7.4.
snappy-java is a Java port of the snappy, a fast C++ compresser/decompresser developed by Google. The SnappyInputStream was found to be vulnerable to Denial of Service (DoS) attacks when decompressing data with a too large chunk size. Due to missing upper bound check on chunk length, an unrecoverable fatal error can occur. All versions of snappy-java including the latest released version 1.1.10.3 are vulnerable to this issue. A fix has been introduced in commit `9f8c3cf74` which will be included in the 1.1.10.4 release. Users are advised to upgrade. Users unable to upgrade should only accept compressed data from trusted sources.
The Apollo Router Core is a configurable, high-performance graph router written in Rust to run a federated supergraph that uses Apollo Federation 2. A vulnerability in Apollo Router allowed queries with deeply nested and reused named fragments to be prohibitively expensive to query plan, specifically due to internal optimizations being frequently bypassed. The query planner includes an optimization that significantly speeds up planning for applicable GraphQL selections. However, queries with deeply nested and reused named fragments can generate many selections where this optimization does not apply, leading to significantly longer planning times. Because the query planner does not enforce a timeout, a small number of such queries can exhaust router's thread pool, rendering it inoperable. This could lead to excessive resource consumption and denial of service. This has been remediated in apollo-router versions 1.61.2 and 2.1.1.
An adversary could cause a continuous restart loop to the entire device by sending a large quantity of HTTP GET requests if the controller has the built-in web server enabled but does not have the built-in web server completely set up and configured for the SNAP PAC S1 Firmware version R10.3b
An issue has been discovered in GitLab EE affecting all versions from 15.11 prior to 16.2.2 which allows an attacker to spike the resource consumption resulting in DoS.
When TCP Verified Accept is enabled on a TCP profile that is configured on a Virtual Server, undisclosed requests can cause an increase in memory resource utilization. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated
Cyberfox Web Browser 52.9.1 contains a denial of service vulnerability that allows attackers to crash the application by overflowing the search bar with excessive data. Attackers can generate a 9,000,000 byte payload and paste it into the search bar to trigger an application crash.
AWebServer GhostBuilding 18 contains a denial of service vulnerability that allows remote attackers to overwhelm the server by sending multiple concurrent HTTP requests. Attackers can generate high-volume requests to multiple endpoints including /mysqladmin to potentially crash or render the service unresponsive.