A vulnerability in the ingress flow creation functionality of Cisco Adaptive Security Appliance (ASA) could allow an unauthenticated, remote attacker to cause the CPU to increase upwards of 100% utilization, causing a denial of service (DoS) condition on an affected system. The vulnerability is due to incorrect handling of an internal software lock that could prevent other system processes from getting CPU cycles, causing a high CPU condition. An attacker could exploit this vulnerability by sending a steady stream of malicious IP packets that can cause connections to be created on the targeted device. A successful exploit could allow the attacker to exhaust CPU resources, resulting in a DoS condition during which traffic through the device could be delayed. This vulnerability applies to either IPv4 or IPv6 ingress traffic. This vulnerability affects Cisco Adaptive Security Appliance (ASA) and Firepower Threat Defense (FTD) Software that is running on the following Cisco products: 3000 Series Industrial Security Appliances (ISA), ASA 5500 Series Adaptive Security Appliances, ASA 5500-X Series Next-Generation Firewalls, ASA Services Module for Cisco Catalyst 6500 Series Switches and Cisco 7600 Series Routers, Adaptive Security Virtual Appliances (ASAv), Firepower 2100 Series Security Appliances, Firepower 4110 Security Appliances, Firepower 9300 ASA Security Modules. Cisco Bug IDs: CSCvf63718.
A vulnerability in the IPv6 processing code of Cisco IOS and IOS XE Software could allow an unauthenticated, remote attacker to cause the device to reload. The vulnerability is due to incorrect handling of specific IPv6 hop-by-hop options. An attacker could exploit this vulnerability by sending a malicious IPv6 packet to or through the affected device. A successful exploit could allow the attacker to cause the device to reload, resulting in a denial of service (DoS) condition on an affected device.
A vulnerability in the Internet Key Exchange Version 2 (IKEv2) module of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause a memory leak or a reload of an affected device that leads to a denial of service (DoS) condition. The vulnerability is due to incorrect processing of certain IKEv2 packets. An attacker could exploit this vulnerability by sending crafted IKEv2 packets to an affected device to be processed. A successful exploit could cause an affected device to continuously consume memory and eventually reload, resulting in a DoS condition. Cisco Bug IDs: CSCvf22394.
Vulnerability of input parameter verification in the motor module.Successful exploitation of this vulnerability may affect availability.
Improperly implemented option-field processing in the TCP/IP stack on Allen-Bradley L30ERMS safety devices v30 and earlier causes a denial of service. When a crafted TCP packet is received, the device reboots immediately.
sflow decode package does not employ sufficient packet sanitisation which can lead to a denial of service attack. Attackers can craft malformed packets causing the process to consume large amounts of memory resulting in a denial of service.
Incorrect validation of user input in the role name parser may lead to use of uninitialized memory allowing an unauthenticated attacker to use a specially crafted request to cause a denial of service. This issue affects MongoDB Server v4.4 versions prior to 4.4.0-rc12; MongoDB Server v4.2 versions prior to 4.2.9.
A vulnerability exists in the HCI IEC 60870-5-104 function included in certain versions of the RTU500 series product. The vulnerability can only be exploited, if the HCI 60870-5-104 is configured with support for IEC 62351-5 and the CMU contains the license feature ‘Advanced security’ which must be ordered separately. If these preconditions are fulfilled, an attacker could exploit the vulnerability by sending a specially crafted message to the RTU500, causing the targeted RTU500 CMU to reboot. The vulnerability is caused by a missing input data validation which eventually if exploited causes an internal buffer to overflow in the HCI IEC 60870-5-104 function.
A vulnerability has been identified in SCALANCE X302-7 EEC (230V), SCALANCE X302-7 EEC (230V, coated), SCALANCE X302-7 EEC (24V), SCALANCE X302-7 EEC (24V, coated), SCALANCE X302-7 EEC (2x 230V), SCALANCE X302-7 EEC (2x 230V, coated), SCALANCE X302-7 EEC (2x 24V), SCALANCE X302-7 EEC (2x 24V, coated), SCALANCE X304-2FE, SCALANCE X306-1LD FE, SCALANCE X307-2 EEC (230V), SCALANCE X307-2 EEC (230V, coated), SCALANCE X307-2 EEC (24V), SCALANCE X307-2 EEC (24V, coated), SCALANCE X307-2 EEC (2x 230V), SCALANCE X307-2 EEC (2x 230V, coated), SCALANCE X307-2 EEC (2x 24V), SCALANCE X307-2 EEC (2x 24V, coated), SCALANCE X307-3, SCALANCE X307-3, SCALANCE X307-3LD, SCALANCE X307-3LD, SCALANCE X308-2, SCALANCE X308-2, SCALANCE X308-2LD, SCALANCE X308-2LD, SCALANCE X308-2LH, SCALANCE X308-2LH, SCALANCE X308-2LH+, SCALANCE X308-2LH+, SCALANCE X308-2M, SCALANCE X308-2M, SCALANCE X308-2M PoE, SCALANCE X308-2M PoE, SCALANCE X308-2M TS, SCALANCE X308-2M TS, SCALANCE X310, SCALANCE X310, SCALANCE X310FE, SCALANCE X310FE, SCALANCE X320-1 FE, SCALANCE X320-1-2LD FE, SCALANCE X408-2, SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on front), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (230V, ports on rear), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on front), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M (24V, ports on rear), SCALANCE XR324-12M TS (24V), SCALANCE XR324-12M TS (24V), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on front), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (24V, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on front), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 100-240VAC/60-250VDC, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on front), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M EEC (2x 24V, ports on rear), SCALANCE XR324-4M PoE (230V, ports on front), SCALANCE XR324-4M PoE (230V, ports on rear), SCALANCE XR324-4M PoE (24V, ports on front), SCALANCE XR324-4M PoE (24V, ports on rear), SCALANCE XR324-4M PoE TS (24V, ports on front), SIPLUS NET SCALANCE X308-2. Affected devices do not properly validate the HTTP headers of incoming requests. This could allow an unauthenticated remote attacker to crash affected devices.
The package muhammara before 2.6.0; all versions of package hummus are vulnerable to Denial of Service (DoS) when PDFStreamForResponse() is used with invalid data.
Cube is a semantic layer for building data applications. Prior to version 0.34.34, it is possible to make the entire Cube API unavailable by submitting a specially crafted request to a Cube API endpoint. The issue has been patched in `v0.34.34` and it's recommended that all users exposing Cube APIs to the public internet upgrade to the latest version to prevent service disruption. There are currently no workaround for older versions, and the recommendation is to upgrade.
An issue in alanclarke URLite v.3.1.0 allows an attacker to cause a denial of service (DoS) via a crafted payload to the parsing function.
A vulnerability has been identified in SIMATIC CN 4100 (All versions < V2.7). The affected application allows IP configuration change without authentication to the device. This could allow an attacker to cause denial of service condition.
AyeView 2.20 allows user-assisted attackers to cause a denial of service (memory consumption or application crash) via a bitmap (aka .bmp) file with large height and width values.
A flaw exists in Trading Technologies Messaging 7.1.28.3 (ttmd.exe) due to improper validation of user-supplied data when processing a type 8 message sent to default TCP RequestPort 10200. An unauthenticated, remote attacker can exploit this issue, via a specially crafted message, to terminate ttmd.exe.
TestingPlatform is a testing platform for Internet Security Standards. Prior to version 2.1.1, user input is not filtered correctly. Nmap options are accepted. In this particular case, the option to create log files is accepted in addition to a host name (and even without). A log file is created at the location specified. These files are created as root. If the file exists, the existing file is being rendered useless. This can result in denial of service. Additionally, input for scanning can be any CIDR blocks passed to nmap. An attacker can scan 0.0.0.0/0 or even local networks. Version 2.1.1 contains a patch for this issue.
The TCP Input module in Cisco IOS 12.2 through 12.4 and 15.0 through 15.4, when NAT is used, allows remote attackers to cause a denial of service (memory consumption or device reload) via crafted TCP packets, aka Bug IDs CSCuh33843 and CSCuj41494.
Improper input validation in GROWI versions prior to v4.2.3 (v4.2 Series), GROWI versions prior to v4.1.12 (v4.1 Series), and GROWI v3 series and earlier GROWI versions prior to v4.2.3 (v4.2 Series), GROWI versions prior to v4.1.12 (v4.1 Series), and GROWI v3 series and earlier allows remote attackers to cause a denial of service via unspecified vectors.
The SIP implementation in Cisco TelePresence TC Software 4.x and 5.x and TE Software 4.x and 6.0 allows remote attackers to cause a denial of service (device reload) via crafted SIP packets, aka Bug ID CSCud29566.
The Nokia 6131 Near Field Communication (NFC) phone with 05.12 firmware allows remote attackers to cause a denial of service (device crash) via (1) a large value in the payload length field in an NDEF record, or a certain length for a (2) tel: or (3) sms: NDEF URI.
Dell iDRAC8 versions prior to 2.83.83.83 contain a denial of service vulnerability. A remote unauthenticated attacker could potentially exploit this vulnerability to cause resource exhaustion in the webserver, resulting in a denial of service condition.
A denial of service (DoS) vulnerability was discovered in go-git versions prior to v5.11. This vulnerability allows an attacker to perform denial of service attacks by providing specially crafted responses from a Git server which triggers resource exhaustion in go-git clients. Applications using only the in-memory filesystem supported by go-git are not affected by this vulnerability. This is a go-git implementation issue and does not affect the upstream git cli.
Improper input validation vulnerability in EC-CUBE versions from 3.0.5 to 3.0.18 allows a remote attacker to cause a denial-of-service (DoS) condition via unspecified vector.
Nortel Networks UNIStim IP Phone 0604DAS allows remote attackers to cause a denial of service (crash) via a long ping packet ("ping of death"). NOTE: this issue could not be reproduced by a third party, who tested it on 0604DAD. In addition, the original researcher was not able to reliably reproduce the issue.
uap-core before 0.7.3 is vulnerable to a denial of service attack when processing crafted User-Agent strings. Some regexes are vulnerable to regular expression denial of service (REDoS) due to overlapping capture groups. This allows remote attackers to overload a server by setting the User-Agent header in an HTTP(S) request to maliciously crafted long strings. This has been patched in uap-core 0.7.3.
In TensorFlow before 1.15.2 and 2.0.1, converting a string (from Python) to a tf.float16 value results in a segmentation fault in eager mode as the format checks for this use case are only in the graph mode. This issue can lead to denial of service in inference/training where a malicious attacker can send a data point which contains a string instead of a tf.float16 value. Similar effects can be obtained by manipulating saved models and checkpoints whereby replacing a scalar tf.float16 value with a scalar string will trigger this issue due to automatic conversions. This can be easily reproduced by tf.constant("hello", tf.float16), if eager execution is enabled. This issue is patched in TensorFlow 1.15.1 and 2.0.1 with this vulnerability patched. TensorFlow 2.1.0 was released after we fixed the issue, thus it is not affected. Users are encouraged to switch to TensorFlow 1.15.1, 2.0.1 or 2.1.0.
On BIG-IP version 16.1.x before 16.1.2, 15.1.x before 15.1.4.1, 14.1.x before 14.1.4.4, and all versions of 13.1.x and 12.1.x, when a message routing type virtual server is configured with both Diameter Session and Router Profiles, undisclosed traffic can cause an increase in memory resource utilization. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated.
Multiple unspecified vulnerabilities in the UNIStim File Transfer Protocol (UFTP) processing in IP Client Manager (IPCM) in Nortel Multimedia Communication Server (MSC) 5100 3.0.13 allow remote attackers to cause a denial of service (device outage) via a UFTP message that has a negative block size or other crafted Connection Details values.
The com.eypcnnapps.quickreboot (aka Eyuep Can Yilmaz {ROOT] Quick Reboot) application 1.0.8 for Android has exposed broadcast receivers for PowerOff, Reboot, and Recovery (e.g., com.eypcnnapps.quickreboot.widget.PowerOff) that are susceptible to unauthorized broadcasts because of missing input validation.
IBM Spectrum Protect 7.1 and 8.1 could allow an attacker to cause a denial of service due ti improper validation of user-supplied input. IBM X-Force ID: 183613.
Reactor Netty HttpServer, versions 0.9.3 and 0.9.4, is exposed to a URISyntaxException that causes the connection to be closed prematurely instead of producing a 400 response.
An Improper Validation of Syntactic Correctness of Input vulnerability in the kernel of Juniper Networks Junos OS Evolved on PTX series allows a network-based, unauthenticated attacker to cause a Denial of Service (DoS). When an incoming TCP packet destined to the device is malformed there is a possibility of a kernel panic. Only TCP packets destined to the ports for BGP, LDP and MSDP can trigger this. This issue only affects PTX10004, PTX10008, PTX10016. No other PTX Series devices or other platforms are affected. This issue affects Juniper Networks Junos OS Evolved: 20.4-EVO versions prior to 20.4R3-S4-EVO; 21.3-EVO versions prior to 21.3R3-EVO; 21.4-EVO versions prior to 21.4R3-EVO; 22.1-EVO versions prior to 22.1R2-EVO. This issue does not affect Juniper Networks Junos OS Evolved versions prior to 20.4R1-EVO.
An Improper Input Validation vulnerability in ingress TCP segment processing of Juniper Networks Junos OS Evolved allows a network-based unauthenticated attacker to send a crafted TCP segment to the device, triggering a kernel panic, leading to a Denial of Service (DoS) condition. Continued receipt and processing of this TCP segment could create a sustained Denial of Service (DoS) condition. This issue affects Juniper Networks Junos OS Evolved: 21.3 versions prior to 21.3R3-EVO; 21.4 versions prior to 21.4R2-EVO; 22.1 versions prior to 22.1R2-EVO. This issue does not affect Juniper Networks Junos OS Evolved versions prior to 21.3R1-EVO.
A vulnerability in the checkpoint manager implementation of Cisco Redundancy Configuration Manager (RCM) for Cisco StarOS Software could allow an unauthenticated, remote attacker to cause the checkpoint manager process to restart upon receipt of malformed TCP data. This vulnerability is due to improper input validation of an ingress TCP packet. An attacker could exploit this vulnerability by sending crafted TCP data to the affected application. A successful exploit could allow the attacker to cause a denial of service (DoS) condition due to the checkpoint manager process restarting.
An issue discovered in GPAC 2.3-DEV-rev605-gfc9e29089-master in MP4Box in gf_avc_change_vui /afltest/gpac/src/media_tools/av_parsers.c:6872:55 allows attackers to crash the application.
A vulnerability in the OOXML parsing module in Clam AntiVirus (ClamAV) Software version 0.104.1 and LTS version 0.103.4 and prior versions could allow an unauthenticated, remote attacker to cause a denial of service condition on an affected device. The vulnerability is due to improper checks that may result in an invalid pointer read. An attacker could exploit this vulnerability by sending a crafted OOXML file to an affected device. An exploit could allow the attacker to cause the ClamAV scanning process to crash, resulting in a denial of service condition.
CWE-20: Improper Input Validation vulnerability exists that could cause a Denial Of Service when specific crafted FTP command is sent to the device.
This affects all versions of package libxmljs. When invoking the libxmljs.parseXml function with a non-buffer argument the V8 code will attempt invoking the .toString method of the argument. If the argument's toString value is not a Function object V8 will crash.
Improper input validation for some Intel(R) PROSet/Wireless WiFi products may allow an unauthenticated user to potentially enable denial of service via network access.
@adobe/css-tools versions 4.3.1 and earlier are affected by an Improper Input Validation vulnerability that could result in a denial of service while attempting to parse CSS.
The MongoDB Server is susceptible to a denial of service vulnerability due to improper handling of specific date values in JSON input when using OIDC authentication. This can be reproduced using the mongo shell to send a malicious JSON payload leading to an invariant failure and server crash. This issue affects MongoDB Server v7.0 versions prior to 7.0.17 and MongoDB Server v8.0 versions prior to 8.0.5. The same issue affects MongoDB Server v6.0 versions prior to 6.0.21, but an attacker can only induce denial of service after authenticating.
In F5 BIG-IP LTM, AAM, AFM, Analytics, APM, ASM, DNS, Link Controller, PEM and WebSafe software version 13.0.0 and 12.1.0 - 12.1.2, undisclosed HTTP requests may cause a denial of service.
A vulnerability in the Common Open Policy Service (COPS) engine of Cisco IOS XE Software on Cisco cBR-8 Converged Broadband Routers could allow an unauthenticated, remote attacker to crash a device. The vulnerability is due to insufficient input validation. An attacker could exploit this vulnerability by sending a malformed COPS message to the device. A successful exploit could allow the attacker to crash the device.
A vulnerability in the DHCP server of Cisco Prime Network Registrar could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to insufficient input validation of incoming DHCP traffic. An attacker could exploit this vulnerability by sending a crafted DHCP request to an affected device. A successful exploit could allow the attacker to cause a restart of the DHCP server process, causing a DoS condition.
A vulnerability in the implementation of Multiprotocol Border Gateway Protocol (MP-BGP) for the Layer 2 VPN (L2VPN) Ethernet VPN (EVPN) address family in Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition. The vulnerability is due to incorrect processing of Border Gateway Protocol (BGP) update messages that contain crafted EVPN attributes. An attacker could exploit this vulnerability by sending BGP update messages with specific, malformed attributes to an affected device. A successful exploit could allow the attacker to cause an affected device to crash, resulting in a DoS condition.
A Remote Code Execution vulnerability in HPE Intelligent Management Center (iMC) PLAT version 7.3 E0504P04 was found.
A vulnerability in the PDF archive parsing module in Clam AntiVirus (ClamAV) Software versions 0.101 - 0.102.2 could allow an unauthenticated, remote attacker to cause a denial of service condition on an affected device. The vulnerability is due to a stack buffer overflow read. An attacker could exploit this vulnerability by sending a crafted PDF file to an affected device. An exploit could allow the attacker to cause the ClamAV scanning process crash, resulting in a denial of service condition.
A vulnerability in the ssl_inspection component of Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to crash Snort instances. The vulnerability is due to insufficient input validation in the ssl_inspection component. An attacker could exploit this vulnerability by sending a malformed TLS packet through a Cisco Adaptive Security Appliance (ASA). A successful exploit could allow the attacker to crash a Snort instance, resulting in a denial of service (DoS) condition.
IBM Db2 for Linux, UNIX and Windows (includes Db2 Connect Server) 10.5, 11.1, and 11.5 is vulnerable to denial of service with a specially crafted query. IBM X-Force ID: 266166.
Improper Input Validation vulnerability in Mitsubishi Electric MELSEC iQ-F series FX5U-xMy/z(x=32,64,80, y=T,R, z=ES,DS,ESS,DSS) with serial number 17X**** or later and versions prior to 1.270, Mitsubishi Electric Mitsubishi Electric MELSEC iQ-F series FX5U-xMy/z(x=32,64,80, y=T,R, z=ES,DS,ESS,DSS) with serial number 179**** and prior and versions prior to 1.073, MELSEC iQ-F series FX5UC-xMy/z(x=32,64,96, y=T,R, z=D,DSS) with serial number 17X**** or later and versions prior to 1.270, Mitsubishi Electric MELSEC iQ-F series FX5UC-xMy/z(x=32,64,96, y=T,R, z=D,DSS) with serial number 179**** and prior and versions prior to 1.073, Mitsubishi Electric MELSEC iQ-F series FX5UC-32MT/DS-TS versions prior to 1.270, Mitsubishi Electric MELSEC iQ-F series FX5UC-32MT/DSS-TS versions prior to 1.270, Mitsubishi Electric MELSEC iQ-F series FX5UC-32MR/DS-TS versions prior to 1.270, Mitsubishi Electric MELSEC iQ-F series FX5UJ-xMy/z(x=24,40,60, y=T,R, z=ES,ESS) versions prior to 1.030, Mitsubishi Electric MELSEC iQ-F series FX5UJ-xMy/ES-A(x=24,40,60, y=T,R) versions prior to 1.031 and Mitsubishi Electric MELSEC iQ-F series FX5S-xMy/z(x=30,40,60,80, y=T,R, z=ES,ESS) version 1.000 allows a remote unauthenticated attacker to cause a DoS condition for the product's program execution or communication by sending specially crafted packets. System reset of the product is required for recovery.