A Missing Release of Memory after Effective Lifetime vulnerability in the routing protocol daemon (rpd) of Juniper Networks Junos OS and Junos OS Evolved allows a local, low privileged user to cause an impact to the availability of the device. When RIB sharding is enabled and a user executes one of several routing related 'show' commands, a certain amount of memory is leaked. When all available memory has been consumed rpd will crash and restart. The leak can be monitored with the CLI command: show task memory detail | match task_shard_mgmt_cookie where the allocated memory in bytes can be seen to continuously increase with each exploitation. This issue affects: Junos OS: * all versions before 21.2R3-S9, * 21.4 versions before 21.4R3-S11, * 22.2 versions before 22.2R3-S7, * 22.4 versions before 22.4R3-S7, * 23.2 versions before 23.2R2-S4, * 23.4 versions before 23.4R2-S4, * 24.2 versions before 24.2R2, * 24.4 versions before 24.4R1-S2, 24.4R2; Junos OS Evolved: * all versions before 22.2R3-S7-EVO * 22.4-EVO versions before 22.4R3-S7-EVO, * 23.2-EVO versions before 23.2R2-S4-EVO, * 23.4-EVO versions before 23.4R2-S4-EVO, * 24.2-EVO versions before 24.2R2-EVO, * 24.4-EVO versions before 24.4R2-EVO.
A Missing Release of Memory after Effective Lifetime vulnerability in the Anti-Virus processing of Juniper Networks Junos OS on SRX Series allows an unauthenticated, network-based attacker to cause a Denial-of-Service (DoS). On all SRX platforms with Anti-Virus enabled, if a server sends specific content in the HTTP body of a response to a client request, these packets are queued by Anti-Virus processing in Juniper Buffers (jbufs) which are never released. When these jbufs are exhausted, the device stops forwarding all transit traffic. A jbuf memory leak can be noticed from the following logs: (<node>.)<fpc> Warning: jbuf pool id <#> utilization level (<current level>%) is above <threshold>%! To recover from this issue, the affected device needs to be manually rebooted to free the leaked jbufs. This issue affects Junos OS on SRX Series: * all versions before 21.2R3-S9, * 21.4 versions before 21.4R3-S10, * 22.2 versions before 22.2R3-S6, * 22.4 versions before 22.4R3-S6, * 23.2 versions before 23.2R2-S3, * 23.4 versions before 23.4R2-S3, * 24.2 versions before 24.2R2.
A Missing Release of Memory after Effective Lifetime vulnerability in the Juniper Tunnel Driver (jtd) of Juniper Networks Junos OS Evolved allows an unauthenticated network-based attacker to cause Denial of Service. Receipt of specifically malformed IPv6 packets, destined to the device, causes kernel memory to not be freed, resulting in memory exhaustion leading to a system crash and Denial of Service (DoS). Continuous receipt and processing of these packets will continue to exhaust kernel memory, creating a sustained Denial of Service (DoS) condition. This issue only affects systems configured with IPv6. This issue affects Junos OS Evolved: * from 22.4-EVO before 22.4R3-S5-EVO, * from 23.2-EVO before 23.2R2-S2-EVO, * from 23.4-EVO before 23.4R2-S2-EVO, * from 24.2-EVO before 24.2R1-S2-EVO, 24.2R2-EVO. This issue does not affect Juniper Networks Junos OS Evolved versions prior to 22.4R1-EVO.
On QFX and PTX Series, receipt of a malformed packet for J-Flow sampling might crash the FPC (Flexible PIC Concentrator) process which causes all interfaces to go down. By continuously sending the offending packet, an attacker can repeatedly crash the FPC process causing a sustained Denial of Service (DoS). This issue affects both IPv4 and IPv6 packet processing. Affected releases are Juniper Networks Junos OS on QFX and PTX Series: 17.4 versions prior to 17.4R2-S1, 17.4R3; 18.1 versions prior to 18.1R3-S1; 18.2 versions prior to 18.2R1-S3, 18.2R2; 17.2X75 versions prior to 17.2X75-D91, 17.2X75-D100.
A memory leak vulnerability in the of Juniper Networks Junos OS allows an attacker to cause a Denial of Service (DoS) to the device by sending specific commands from a peered BGP host and having those BGP states delivered to the vulnerable device. This issue affects: Juniper Networks Junos OS: 18.1 versions prior to 18.1R2-S4, 18.1R3-S1; 18.1X75 all versions. Versions before 18.1R1 are not affected.
The routing protocol daemon (RPD) process will crash and restart when a specific invalid IPv4 PIM Join packet is received. While RPD restarts after a crash, repeated crashes can result in an extended Denial of Service (DoS) condition. This issue only affects IPv4 PIM. IPv6 PIM is unaffected by this vulnerability. Affected releases are Juniper Networks Junos OS: 12.1X46 versions prior to 12.1X46-D77; 12.3X48 versions prior to 12.3X48-D77; 15.1 versions prior to 15.1F6-S10, 15.1R6-S6, 15.1R7; 15.1X49 versions prior to 15.1X49-D150; 15.1X53 versions prior to 15.1X53-D233, 15.1X53-D59; 16.1 versions prior to 16.1R3-S8, 16.1R4-S8, 16.1R7; 16.2 versions prior to 16.2R2-S6; 17.1 versions prior to 17.1R2-S6, 17.1R3; 17.2 versions prior to 17.2R2-S3, 17.2R3; 17.3 versions prior to 17.3R2-S4, 17.3R3; 17.4 versions prior to 17.4R2.
A vulnerability in the processing of inbound IPv6 packets in Juniper Networks Junos OS on QFX5000 Series and EX4600 switches may cause the memory to not be freed, leading to a packet DMA memory leak, and eventual Denial of Service (DoS) condition. Once the condition occurs, further packet processing will be impacted, creating a sustained Denial of Service (DoS) condition. The following error logs may be observed using the "show heap" command and the device may eventually run out of memory if such packets are received continuously. Jan 12 12:00:00 device-name fpc0 (buf alloc) failed allocating packet buffer Jan 12 12:00:01 device-name fpc0 (buf alloc) failed allocating packet buffer user@device-name> request pfe execute target fpc0 timeout 30 command "show heap" ID Base Total(b) Free(b) Used(b) % Name -- ---------- ----------- ----------- ----------- --- ----------- 0 246fc1a8 536870488 353653752 183216736 34 Kernel 1 91800000 16777216 12069680 4707536 28 DMA 2 92800000 75497472 69997640 5499832 7 PKT DMA DESC 3 106fc000 335544320 221425960 114118360 34 Bcm_sdk 4 97000000 176160768 200 176160568 99 Packet DMA <<<<<<<<<<<<<< 5 903fffe0 20971504 20971504 0 0 Blob This issue affects Juniper Networks Junos OS on QFX5000 Series, EX4600: 18.3R3 versions prior to 18.3R3-S6; 18.4 versions prior to 18.4R2-S9, 18.4R3-S9; 19.1 versions prior to 19.1R2-S3, 19.1R3-S7; 19.2 versions prior to 19.2R1-S8, 19.2R3-S3; 19.3 versions prior to 19.3R2-S7, 19.3R3-S4; 19.4 versions prior to 19.4R2-S5, 19.4R3-S6; 20.1 versions prior to 20.1R3-S1; 20.2 versions prior to 20.2R3-S2; 20.3 versions prior to 20.3R3-S1; 20.4 versions prior to 20.4R3; 21.1 versions prior to 21.1R2-S1, 21.1R3; 21.2 versions prior to 21.2R1-S1, 21.2R2. This issue does not affect Juniper Networks Junos OS: Any versions prior to 17.4R3; 18.1 versions prior to 18.1R3-S6; 18.2 versions prior to 18.2R3; 18.3 versions prior to 18.3R3; 18.4 versions prior to 18.4R2; 19.1 versions prior to 19.1R2.
A Missing Release of Memory after Effective Lifetime vulnerability in the kernel of Juniper Networks Junos OS allows an unauthenticated network based attacker to cause a Denial of Service (DoS). On all Junos platforms, the Kernel Routing Table (KRT) queue can get stuck due to a memory leak triggered by interface flaps or route churn leading to RIB and PFEs getting out of sync. The memory leak causes RTNEXTHOP/route and next-hop memory pressure issue and the KRT queue will eventually get stuck with the error- 'ENOMEM -- Cannot allocate memory'. The out-of-sync state between RIB and FIB can be seen with the "show route" and "show route forwarding-table" command. This issue will lead to failures for adding new routes. The KRT queue status can be checked using the CLI command "show krt queue": user@host > show krt state High-priority add queue: 1 queued ADD nhtype Router index 0 (31212) error 'ENOMEM -- Cannot allocate memory' kqp '0x8ad5e40' The following messages will be observed in /var/log/messages, which indicate high memory for routes/nexthops: host rpd[16279]: RPD_RT_HWM_NOTICE: New RIB highwatermark for routes: 266 [2022-03-04 05:06:07] host rpd[16279]: RPD_KRT_Q_RETRIES: nexthop ADD: Cannot allocate memory host rpd[16279]: RPD_KRT_Q_RETRIES: nexthop ADD: Cannot allocate memory host kernel: rts_veto_net_delayed_unref_limit: Route/nexthop memory is severe pressure. User Application to perform recovery actions. O p 8 err 12, rtsm_id 0:-1, msg type 10, veto simulation: 0. host kernel: rts_veto_net_delayed_unref_limit: Memory usage of M_RTNEXTHOP type = (806321208) Max size possible for M_RTNEXTHOP type = (689432176) Current delayed unref = (0), Max delayed unref on this platform = (120000) Current delayed weight unref = (0) Max delayed weight unref on this platform = (400000) curproc = rpd. This issue affects: Juniper Networks Junos OS 21.2 versions prior to 21.2R3; 21.3 versions prior to 21.3R2-S1, 21.3R3; 21.4 versions prior to 21.4R1-S2, 21.4R2; This issue does not affect Juniper Networks Junos OS versions prior to 21.2R1.
An Improper Release of Memory Before Removing Last Reference vulnerability in the Session Initiation Protocol (SIP) Application Layer Gateway (ALG) of Juniper Networks Junos OS allows unauthenticated network-based attacker to cause a partial Denial of Service (DoS). On all MX and SRX platforms, if the SIP ALG is enabled, receipt of a specific SIP packet will create a stale SIP entry. Sustained receipt of such packets will cause the SIP call table to eventually fill up and cause a DoS for all SIP traffic. The SIP call usage can be monitored by "show security alg sip calls". To be affected the SIP ALG needs to be enabled, either implicitly / by default or by way of configuration. Please verify on SRX with: user@host> show security alg status | match sip SIP : Enabled Please verify on MX whether the following is configured: [ services ... rule <rule-name> (term <term-name>) from/match application/application-set <name> ] where either a. name = junos-sip or an application or application-set refers to SIP: b. [ applications application <name> application-protocol sip ] or c. [ applications application-set <name> application junos-sip ] This issue affects Juniper Networks Junos OS on SRX Series and MX Series: 20.4 versions prior to 20.4R3-S2; 21.1 versions prior to 21.1R3-S2; 21.2 versions prior to 21.2R2-S2; 21.2 versions prior to 21.2R3; 21.3 versions prior to 21.3R2; 21.4 versions prior to 21.4R2. This issue does not affect Juniper Networks Junos OS versions prior to 20.4R1. Juniper SIRT is not aware of any malicious exploitation of this vulnerability.
A Missing Release of Memory after Effective Lifetime vulnerability in the Application Quality of Experience (appqoe) subsystem of the PFE of Juniper Networks Junos OS on SRX Series allows an unauthenticated network based attacker to cause a Denial of Service (DoS). Upon receiving specific traffic a memory leak will occur. Sustained processing of such specific traffic will eventually lead to an out of memory condition that prevents all services from continuing to function, and requires a manual restart to recover. A device is only vulnerable when advance(d) policy based routing (APBR) is configured and AppQoE (sla rule) is not configured for these APBR rules. This issue affects Juniper Networks Junos OS on SRX Series: 20.3 versions prior to 20.3R3-S2; 20.4 versions prior to 20.4R3-S2; 21.1 versions prior to 21.1R3; 21.2 versions prior to 21.2R2-S1, 21.2R3; 21.3 versions prior to 21.3R1-S2, 21.3R2. This issue does not affect Juniper Networks Junos OS versions prior to 20.3R1.
An Allocation of Resources Without Limits or Throttling and a Missing Release of Memory after Effective Lifetime vulnerability in the routing protocol daemon (rpd) of Juniper Networks Junos OS and Junos OS Evolved allows a locally authenticated low privileged attacker to cause a Denial of Sevice (DoS). In a high-scaled BGP routing environment with rib-sharding enabled, two issues may occur when executing a specific CLI command. One is a memory leak issue with rpd where the leak rate is not constant, and the other is a temporary spike in rpd memory usage during command execution. This issue affects: Juniper Networks Junos OS 19.4 versions prior to 19.4R3-S9; 20.2 versions prior to 20.2R3-S5; 20.3 versions prior to 20.3R3-S2; 20.4 versions prior to 20.4R3-S1; 21.1 versions prior to 21.1R3; 21.2 versions prior to 21.2R1-S2, 21.2R2-S1, 21.2R3; 21.3 versions prior to 21.3R2. Juniper Networks Junos OS Evolved All versions prior to 20.4R3-S1-EVO; 21.1-EVO version 21.1R1-EVO and later versions; 21.2-EVO versions prior to 21.2R1-S2-EVO, 21.2R3-EVO; 21.3-EVO versions prior to 21.3R2-EVO. This issue does not affect Juniper Networks Junos OS versions prior to 19.2R1.
A Data Processing vulnerability in the Multi-Service process (multi-svcs) on the FPC of Juniper Networks Junos OS on the PTX Series routers may lead to the process becoming unresponsive, ultimately affecting traffic forwarding, allowing an attacker to cause a Denial of Service (DoS) condition . The Multi-Service Process running on the FPC is responsible for handling sampling-related operations when a J-Flow configuration is activated. This can occur during periods of heavy route churn, causing the Multi-Service Process to stop processing updates, without consuming any further updates from kernel. This back pressure towards the kernel affects further dynamic updates from other processes in the system, including RPD, causing a KRT-STUCK condition and traffic forwarding issues. An administrator can monitor the following command to check if there is the KRT queue is stuck: user@device > show krt state ... Number of async queue entries: 65007 <--- this value keep on increasing. The following logs/alarms will be observed when this condition exists: user@junos> show chassis alarms 2 alarms currently active Alarm time Class Description 2020-10-11 04:33:45 PDT Minor Potential slow peers are: MSP(FPC1-PIC0) MSP(FPC3-PIC0) MSP(FPC4-PIC0) Logs: Oct 11 04:33:44.672 2020 test /kernel: rts_peer_cp_recv_timeout : Bit set for msp8 as it is stuck Oct 11 04:35:56.000 2020 test-lab fpc4 user.err gldfpc-multi-svcs.elf: Error in parsing composite nexthop Oct 11 04:35:56.000 2020 test-lab fpc4 user.err gldfpc-multi-svcs.elf: composite nexthop parsing error Oct 11 04:43:05 2020 test /kernel: rt_pfe_veto: Possible slowest client is msp38. States processed - 65865741. States to be processed - 0 Oct 11 04:55:55 2020 test /kernel: rt_pfe_veto: Memory usage of M_RTNEXTHOP type = (0) Max size possible for M_RTNEXTHOP type = (8311787520) Current delayed unref = (60000), Current unique delayed unref = (10896), Max delayed unref on this platform = (40000) Current delayed weight unref = (71426) Max delayed weight unref on this platform= (400000) curproc = rpd Oct 11 04:56:00 2020 test /kernel: rt_pfe_veto: Too many delayed route/nexthop unrefs. Op 2 err 55, rtsm_id 5:-1, msg type 2 This issue only affects PTX Series devices. No other products or platforms are affected by this vulnerability. This issue affects Juniper Networks Junos OS on PTX Series: 18.2 versions prior to 18.2R3-S7; 18.3 versions prior to 18.3R3-S4; 18.4 versions prior to 18.4R2-S8, 18.4R3-S7; 19.1 versions prior to 19.1R3-S4; 19.2 versions prior to 19.2R3-S1; 19.3 versions prior to 19.3R3-S1; 19.4 versions prior to 19.4R2-S4, 19.4R3-S1; 20.1 versions prior to 20.1R2; 20.2 versions prior to 20.2R2; 20.3 versions prior to 20.3R1-S2, 20.3R2. This issue does not affect Juniper Networks Junos OS versions prior to 18.2R1.
On Juniper Networks SRX Series devices with link aggregation (lag) configured, executing any operation that fetches Aggregated Ethernet (AE) interface statistics, including but not limited to SNMP GET requests, causes a slow kernel memory leak. If all the available memory is consumed, the traffic will be impacted and a reboot might be required. The following log can be seen if this issue happens. /kernel: rt_pfe_veto: Memory over consumed. Op 1 err 12, rtsm_id 0:-1, msg type 72 /kernel: rt_pfe_veto: free kmem_map memory = (20770816) curproc = kmd An administrator can use the following CLI command to monitor the status of memory consumption (ifstat bucket): user@device > show system virtual-memory no-forwarding | match ifstat Type InUse MemUse HighUse Limit Requests Limit Limit Size(s) ifstat 2588977 162708K - 19633958 <<<< user@device > show system virtual-memory no-forwarding | match ifstat Type InUse MemUse HighUse Limit Requests Limit Limit Size(s) ifstat 3021629 189749K - 22914415 <<<< This issue affects Juniper Networks Junos OS on SRX Series: 17.1 versions 17.1R3 and above prior to 17.3R3-S11; 17.4 versions prior to 17.4R3-S5; 18.2 versions prior to 18.2R3-S7, 18.2R3-S8; 18.3 versions prior to 18.3R3-S4; 18.4 versions prior to 18.4R2-S7, 18.4R3-S6; 19.1 versions prior to 19.1R3-S4; 19.2 versions prior to 19.2R1-S6; 19.3 versions prior to 19.3R3-S1; 19.4 versions prior to 19.4R3-S1; 20.1 versions prior to 20.1R2, 20.1R3; 20.2 versions prior to 20.2R2-S2, 20.2R3; 20.3 versions prior to 20.3R1-S2, 20.3R2. This issue does not affect Juniper Networks Junos OS prior to 17.1R3.
A memory leak in the EFR32 Bluetooth LE stack 5.1.0 through 5.1.1 allows an attacker to send an invalid pairing message and cause future legitimate connection attempts to fail. A reset of the device immediately clears the error.
A vulnerability in the Link Layer Discovery Protocol (LLDP) feature for Cisco Nexus 9000 Series Fabric Switches in Application Centric Infrastructure (ACI) Mode could allow an unauthenticated, adjacent attacker to cause a memory leak, which could result in an unexpected reload of the device. This vulnerability is due to incorrect error checking when parsing ingress LLDP packets. An attacker could exploit this vulnerability by sending a steady stream of crafted LLDP packets to an affected device. A successful exploit could allow the attacker to cause a memory leak, which could result in a denial of service (DoS) condition when the device unexpectedly reloads. Note: This vulnerability cannot be exploited by transit traffic through the device. The crafted LLDP packet must be targeted to a directly connected interface, and the attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent). In addition, the attack surface for this vulnerability can be reduced by disabling LLDP on interfaces where it is not required.
BlueZ is a Bluetooth protocol stack for Linux. In affected versions a vulnerability exists in sdp_cstate_alloc_buf which allocates memory which will always be hung in the singly linked list of cstates and will not be freed. This will cause a memory leak over time. The data can be a very large object, which can be caused by an attacker continuously sending sdp packets and this may cause the service of the target device to crash.
A memory leak in the Silicon Labs' Bluetooth stack for EFR32 products may cause memory to be exhausted when sending notifications to multiple clients, this results in all Bluetooth operations, such as advertising and scanning, to stop.
Multiple vulnerabilities in the Link Layer Discovery Protocol (LLDP) implementation for Cisco Video Surveillance 7000 Series IP Cameras could allow an unauthenticated, adjacent attacker to cause a memory leak, which could lead to a denial of service (DoS) condition on an affected device. These vulnerabilities are due to incorrect processing of certain LLDP packets at ingress time. An attacker could exploit these vulnerabilities by sending crafted LLDP packets to an affected device. A successful exploit could allow the attacker to cause the affected device to continuously consume memory, which could cause the device to crash and reload, resulting in a DoS condition. Note: LLDP is a Layer 2 protocol. To exploit these vulnerabilities, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent).
Multiple vulnerabilities in the Link Layer Discovery Protocol (LLDP) implementation for Cisco Video Surveillance 7000 Series IP Cameras could allow an unauthenticated, adjacent attacker to cause a memory leak, which could lead to a denial of service (DoS) condition on an affected device. These vulnerabilities are due to incorrect processing of certain LLDP packets at ingress time. An attacker could exploit these vulnerabilities by sending crafted LLDP packets to an affected device. A successful exploit could allow the attacker to cause the affected device to continuously consume memory, which could cause the device to crash and reload, resulting in a DoS condition. Note: LLDP is a Layer 2 protocol. To exploit these vulnerabilities, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent).
Multiple vulnerabilities in the implementation of the Cisco Discovery Protocol and Link Layer Discovery Protocol (LLDP) for Cisco Video Surveillance 7000 Series IP Cameras could allow an unauthenticated, adjacent attacker to cause a memory leak, which could lead to a denial of service (DoS) condition on an affected device. These vulnerabilities are due to incorrect processing of certain Cisco Discovery Protocol and LLDP packets at ingress time. An attacker could exploit these vulnerabilities by sending crafted Cisco Discovery Protocol or LLDP packets to an affected device. A successful exploit could allow the attacker to cause the affected device to continuously consume memory, which could cause the device to crash and reload, resulting in a DoS condition. Note: Cisco Discovery Protocol and LLDP are Layer 2 protocols. To exploit these vulnerabilities, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent).
HUAWEI P30 smartphones with versions earlier than 10.1.0.160(C00E160R2P11) have a denial of service vulnerability. A module does not deal with mal-crafted messages and it leads to memory leak. Attackers can exploit this vulnerability to make the device denial of service.Affected product versions include: HUAWEI P30 versions Versions earlier than 10.1.0.160(C00E160R2P11).
HUAWEI P30 smartphones with Versions earlier than 10.1.0.123(C431E22R2P5),Versions earlier than 10.1.0.123(C432E22R2P5),Versions earlier than 10.1.0.126(C10E7R5P1),Versions earlier than 10.1.0.126(C185E4R7P1),Versions earlier than 10.1.0.126(C461E7R3P1),Versions earlier than 10.1.0.126(C605E19R1P3),Versions earlier than 10.1.0.126(C636E7R3P4),Versions earlier than 10.1.0.128(C635E3R2P4),Versions earlier than 10.1.0.160(C00E160R2P11),Versions earlier than 10.1.0.160(C01E160R2P11) have a denial of service vulnerability. In specific scenario, due to the improper resource management and memory leak of some feature, the attacker could exploit this vulnerability to cause the device reset.
A vulnerability in the Cisco Discovery Protocol of Cisco Video Surveillance 8000 Series IP Cameras could allow an unauthenticated, adjacent attacker to cause a memory leak, which could lead to a denial of service (DoS) condition on an affected device. The vulnerability is due to incorrect processing of certain Cisco Discovery Protocol packets. An attacker could exploit this vulnerability by sending certain Cisco Discovery Protocol packets to an affected device. A successful exploit could allow the attacker to cause the affected device to continuously consume memory, which could cause the device to crash and reload, resulting in a DOS condition. Note: Cisco Discovery Protocol is a Layer 2 protocol. To exploit this vulnerability, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent).
A vulnerability in the Cisco Discovery Protocol of Cisco Video Surveillance 8000 Series IP Cameras could allow an unauthenticated, adjacent attacker to cause a memory leak, which could lead to a denial of service (DoS) condition on an affected device. The vulnerability is due to incorrect processing of certain Cisco Discovery Protocol packets. An attacker could exploit this vulnerability by sending certain Cisco Discovery Protocol packets to an affected device. A successful exploit could allow the attacker to cause the affected device to continuously consume memory, which could cause the device to crash and reload, resulting in a DOS condition. Note: Cisco Discovery Protocol is a Layer 2 protocol. To exploit this vulnerability, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent).
D-Link DIR-3040 prog.cgi websSecurityHandler Memory Leak Denial-of-Service Vulnerability. This vulnerability allows network-adjacent attackers to create a denial-of-service condition on affected installations of D-Link DIR-3040 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the prog.cgi program, which handles HNAP requests made to the lighttpd webserver listening on ports 80 and 443. The issue results from the lack of proper memory management when processing HTTP cookie values. An attacker can leverage this vulnerability to create a denial-of-service condition on the system. . Was ZDI-CAN-21668.
A missing release of memory after effective lifetime vulnerability in FortiSwitch 6.4.0 to 6.4.6, 6.2.0 to 6.2.6, 6.0.0 to 6.0.6, 3.6.11 and below may allow an attacker on an adjacent network to exhaust available memory by sending specifically crafted LLDP/CDP/EDP packets to the device.
Multiple vulnerabilities in the Link Layer Discovery Protocol (LLDP) implementation for Cisco Video Surveillance 7000 Series IP Cameras could allow an unauthenticated, adjacent attacker to cause a memory leak, which could lead to a denial of service (DoS) condition on an affected device. These vulnerabilities are due to incorrect processing of certain LLDP packets at ingress time. An attacker could exploit these vulnerabilities by sending crafted LLDP packets to an affected device. A successful exploit could allow the attacker to cause the affected device to continuously consume memory, which could cause the device to crash and reload, resulting in a DoS condition. Note: LLDP is a Layer 2 protocol. To exploit these vulnerabilities, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent).
Multiple vulnerabilities in the Link Layer Discovery Protocol (LLDP) implementation for Cisco Video Surveillance 7000 Series IP Cameras could allow an unauthenticated, adjacent attacker to cause a memory leak, which could lead to a denial of service (DoS) condition on an affected device. These vulnerabilities are due to incorrect processing of certain LLDP packets at ingress time. An attacker could exploit these vulnerabilities by sending crafted LLDP packets to an affected device. A successful exploit could allow the attacker to cause the affected device to continuously consume memory, which could cause the device to crash and reload, resulting in a DoS condition. Note: LLDP is a Layer 2 protocol. To exploit these vulnerabilities, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent).
Multiple vulnerabilities in the implementation of the Cisco Discovery Protocol and Link Layer Discovery Protocol (LLDP) for Cisco Video Surveillance 7000 Series IP Cameras could allow an unauthenticated, adjacent attacker to cause a memory leak, which could lead to a denial of service (DoS) condition on an affected device. These vulnerabilities are due to incorrect processing of certain Cisco Discovery Protocol and LLDP packets at ingress time. An attacker could exploit these vulnerabilities by sending crafted Cisco Discovery Protocol or LLDP packets to an affected device. A successful exploit could allow the attacker to cause the affected device to continuously consume memory, which could cause the device to crash and reload, resulting in a DoS condition. Note: Cisco Discovery Protocol and LLDP are Layer 2 protocols. To exploit these vulnerabilities, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent).