Mutt 1.11.0 through 2.0.x before 2.0.7 (and NeoMutt 2019-10-25 through 2021-05-04) has a $imap_qresync issue in which imap/util.c has an out-of-bounds read in situations where an IMAP sequence set ends with a comma. NOTE: the $imap_qresync setting for QRESYNC is not enabled by default.
An out-of-bounds read in the SNMP stack in Contiki-NG 4.4 and earlier allows an attacker to cause a denial of service and potentially disclose information via crafted SNMP packets to snmp_ber_decode_string_len_buffer in os/net/app-layer/snmp/snmp-ber.c.
Buffer over-read while UE process invalid DL ROHC packet for decompression due to lack of check of size of compresses packet in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon IoT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wearables
Buffer over-read can happen while parsing received SDP values due to lack of NULL termination check on SDP in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon IoT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wearables
Buffer over-read can happen while processing WPA,RSN IE of beacon and response frames if IE length is less than length of frame pointer being accessed in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon IoT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wired Infrastructure and Networking
Buffer over-read can happen while parsing received SDP values due to lack of NULL termination check on SDP in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon IoT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wearables
Buffer over-read while unpacking the RTCP packet we may read extra byte if wrong length is provided in RTCP packets in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon IoT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wearables
An out of bounds read can happen when processing VSA attribute due to improper minimum required length check in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wired Infrastructure and Networking
Out of bound memory read while unpacking data due to lack of offset length check in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon IoT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wearables
Buffer over-read can happen while parsing received SDP values due to lack of NULL termination check on SDP in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon IoT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wearables
Out-of-bounds read vulnerability while accessing DTMF payload due to lack of check of buffer length before copying in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon IoT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wearables
Out of bound read occurs while processing crafted SDP due to lack of check of null string in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon IoT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wearables, Snapdragon Wired Infrastructure and Networking
Ming (aka libming) 0.4.8 has a heap-based buffer over-read (2 bytes) in the function decompileIF() in decompile.c.
Buffer over-read can happen while parsing received SDP values due to lack of NULL termination check on SDP in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon IoT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wearables
Ming (aka libming) 0.4.8 has a heap-based buffer over-read (8 bytes) in the function decompileIF() in decompile.c.
Out-of-bounds read in Graphite2 Library in Firefox before 54 in graphite2::Silf::readGraphite function.
u'Buffer over-read while processing received L2CAP packet due to lack of integer overflow check' in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wired Infrastructure and Networking in APQ8009, APQ8053, QCA6390, QCN7605, QCN7606, SA415M, SA515M, SA6155P, SA8155P, SC8180X, SDX55
unrar 0.0.1 (aka unrar-free or unrar-gpl) suffers from a stack-based buffer over-read in unrarlib.c, related to ExtrFile and stricomp.
Buffer over read while processing MT SMS with maximum length due to improper length check in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon IoT, Snapdragon Mobile
In version 4.8.0 and earlier of The Sleuth Kit (TSK), there is a heap-based buffer over-read in ntfs_dinode_lookup in fs/ntfs.c.
Possible out of bound read while WLAN frame parsing due to lack of check for body and header length in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer Electronics Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Voice & Music, Snapdragon Wired Infrastructure and Networking
An issue was discovered on Samsung mobile devices with O(8.x), P(9.x), and Q(10.0) software. There is an out-of-bounds read vulnerability in media.audio_policy. The Samsung ID is SVE-2019-16333 (February 2020).
In Eclipse Openj9 before version 0.38.0, in the implementation of the shared cache (which is enabled by default in OpenJ9 builds) the size of a string is not properly checked against the size of the buffer.
In FreeRDP before version 2.1.2, there is an out of bounds read in license_read_new_or_upgrade_license_packet. A manipulated license packet can lead to out of bound reads to an internal buffer. This is fixed in version 2.1.2.
In FreeRDP before version 2.1.2, there is a global OOB read in update_read_cache_bitmap_v3_order. As a workaround, one can disable bitmap cache with -bitmap-cache (default). This is fixed in version 2.1.2.
There is a possible out of bounds read due to a missing bounds check.Product: AndroidVersions: Android SoCAndroid ID: A-163008256
There is a possible out of bounds read due to a missing bounds check.Product: AndroidVersions: Android SoCAndroid ID: A-163003156
In exif_entry_get_value of exif-entry.c, there is a possible out of bounds read due to a missing bounds check. This could lead to local information disclosure with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-10Android ID: A-147140917
There is a possible out of bounds read due to an incorrect bounds check.Product: AndroidVersions: Android SoCAndroid ID: A-152225183
An issue was discovered in libmatio.a in matio (aka MAT File I/O Library) 1.5.13. There is a stack-based buffer over-read in the function InflateDimensions() in inflate.c when called from ReadNextCell in mat5.c.
An exploitable information leak/denial of service vulnerability exists in the libevm (Ethereum Virtual Machine) `create2` opcode handler of CPP-Ethereum. A specially crafted smart contract code can cause an out-of-bounds read leading to memory disclosure or denial of service. An attacker can create/send malicious a smart contract to trigger this vulnerability.
In LibRaw through 0.18.4, an out of bounds read flaw related to kodak_65000_load_raw has been reported in dcraw/dcraw.c and internal/dcraw_common.cpp. An attacker could possibly exploit this flaw to disclose potentially sensitive memory or cause an application crash.
RIOT is an open-source microcontroller operating system, designed to match the requirements of Internet of Things (IoT) devices and other embedded devices. In version 2025.10 and prior, multiple out-of-bounds read allow any unauthenticated user, with ability to send or manipulate input packets, to read adjacent memory locations, or crash a vulnerable device running the 6LoWPAN stack. The received packet is cast into a sixlowpan_sfr_rfrag_t struct and dereferenced without validating the packet is large enough to contain the struct object. At time of publication, no known patch exists.
An issue was discovered in libmatio.a in matio (aka MAT File I/O Library) 1.5.13. There is a stack-based buffer over-read in Mat_VarReadNextInfo5() in mat5.c.
CODESYS V2 Web-Server before 1.1.9.20 has an Out-of-bounds Read.
Possible buffer out of bound read can occur due to improper validation of TBTT count and length while parsing the beacon response in Snapdragon Compute, Snapdragon Connectivity, Snapdragon Consumer Electronics Connectivity
An issue was discovered in GNU LibreDWG 0.7 and 0.7.1645. There is an out-of-bounds read in the function bit_read_B at bits.c.
An issue was discovered in libmatio.a in matio (aka MAT File I/O Library) 1.5.13. There is a stack-based buffer over-read for a memcpy in the function ReadNextCell() in mat5.c.
In PHP before 5.6.30 and 7.x before 7.0.15, the PHAR archive handler could be used by attackers supplying malicious archive files to crash the PHP interpreter or potentially disclose information due to a buffer over-read in the phar_parse_pharfile function in ext/phar/phar.c.
FreeRDP is a free implementation of the Remote Desktop Protocol. Prior to 3.20.1, a heap out-of-bounds read occurs in the smartcard SetAttrib path when cbAttrLen does not match the actual NDR buffer length. This vulnerability is fixed in 3.20.1.
An issue was discovered in GNU LibreDWG 0.7 and 0.7.1645. There is an out-of-bounds read in the function dwg_dxf_BLOCK_CONTROL at dwg.spec.
An issue was discovered in libmatio.a in matio (aka MAT File I/O Library) 1.5.13. There is a stack-based buffer over-read for the "Rank and Dimension" feature in the function ReadNextCell() in mat5.c.
FreeRDP is a free implementation of the Remote Desktop Protocol. Prior to 3.20.1, global-buffer-overflow was observed in FreeRDP's Base64 decoding path. The root cause appears to be implementation-defined char signedness: on Arm/AArch64 builds, plain char is treated as unsigned, so the guard c <= 0 can be optimized into a simple c != 0 check. As a result, non-ASCII bytes (e.g., 0x80-0xFF) may bypass the intended range restriction and be used as an index into a global lookup table, causing out-of-bounds access. This vulnerability is fixed in 3.20.1.
FreeRDP is a free implementation of the Remote Desktop Protocol. Prior to 3.20.1, the URBDRC client does not perform bounds checking on server‑supplied MSUSB_INTERFACE_DESCRIPTOR values and uses them as indices in libusb_udev_complete_msconfig_setup, causing an out‑of‑bounds read. This vulnerability is fixed in 3.20.1.
An exploitable out-of-bounds read vulnerability exists in the client message-parsing functionality of Aerospike Database Server 3.10.0.3. A specially crafted packet can cause an out-of-bounds read resulting in disclosure of memory within the process, the same vulnerability can also be used to trigger a denial of service. An attacker can simply connect to the port and send the packet to trigger this vulnerability.
Out-of-bounds read in libimagecodec.quram.so prior to SMR Jan-2026 Release 1 allows remote attacker to access out-of-bounds memory.
An issue was discovered in libmatio.a in matio (aka MAT File I/O Library) 1.5.13. There is a buffer over-read in the function Mat_VarPrint() in mat.c.
Out-of-bounds array read vulnerability in the FFRT module Impact: Successful exploitation of this vulnerability may cause features to perform abnormally.
Issue summary: Calling the OpenSSL API function SSL_select_next_proto with an empty supported client protocols buffer may cause a crash or memory contents to be sent to the peer. Impact summary: A buffer overread can have a range of potential consequences such as unexpected application beahviour or a crash. In particular this issue could result in up to 255 bytes of arbitrary private data from memory being sent to the peer leading to a loss of confidentiality. However, only applications that directly call the SSL_select_next_proto function with a 0 length list of supported client protocols are affected by this issue. This would normally never be a valid scenario and is typically not under attacker control but may occur by accident in the case of a configuration or programming error in the calling application. The OpenSSL API function SSL_select_next_proto is typically used by TLS applications that support ALPN (Application Layer Protocol Negotiation) or NPN (Next Protocol Negotiation). NPN is older, was never standardised and is deprecated in favour of ALPN. We believe that ALPN is significantly more widely deployed than NPN. The SSL_select_next_proto function accepts a list of protocols from the server and a list of protocols from the client and returns the first protocol that appears in the server list that also appears in the client list. In the case of no overlap between the two lists it returns the first item in the client list. In either case it will signal whether an overlap between the two lists was found. In the case where SSL_select_next_proto is called with a zero length client list it fails to notice this condition and returns the memory immediately following the client list pointer (and reports that there was no overlap in the lists). This function is typically called from a server side application callback for ALPN or a client side application callback for NPN. In the case of ALPN the list of protocols supplied by the client is guaranteed by libssl to never be zero in length. The list of server protocols comes from the application and should never normally be expected to be of zero length. In this case if the SSL_select_next_proto function has been called as expected (with the list supplied by the client passed in the client/client_len parameters), then the application will not be vulnerable to this issue. If the application has accidentally been configured with a zero length server list, and has accidentally passed that zero length server list in the client/client_len parameters, and has additionally failed to correctly handle a "no overlap" response (which would normally result in a handshake failure in ALPN) then it will be vulnerable to this problem. In the case of NPN, the protocol permits the client to opportunistically select a protocol when there is no overlap. OpenSSL returns the first client protocol in the no overlap case in support of this. The list of client protocols comes from the application and should never normally be expected to be of zero length. However if the SSL_select_next_proto function is accidentally called with a client_len of 0 then an invalid memory pointer will be returned instead. If the application uses this output as the opportunistic protocol then the loss of confidentiality will occur. This issue has been assessed as Low severity because applications are most likely to be vulnerable if they are using NPN instead of ALPN - but NPN is not widely used. It also requires an application configuration or programming error. Finally, this issue would not typically be under attacker control making active exploitation unlikely. The FIPS modules in 3.3, 3.2, 3.1 and 3.0 are not affected by this issue. Due to the low severity of this issue we are not issuing new releases of OpenSSL at this time. The fix will be included in the next releases when they become available.
An issue was discovered in libmatio.a in matio (aka MAT File I/O Library) 1.5.13. There is a stack-based buffer over-read in the function ReadNextStructField() in mat5.c.