Multiple buffer overflow vulnerabilities exist in the vtysh_ubus binary of Milesight UR32L v32.3.0.5 due to the use of an unsafe sprintf pattern. A specially crafted HTTP request can lead to arbitrary code execution. An attacker with high privileges can send HTTP requests to trigger these vulnerabilities.This buffer overflow occurs in the set_qos function with the source variable.
Multiple buffer overflow vulnerabilities exist in the vtysh_ubus binary of Milesight UR32L v32.3.0.5 due to the use of an unsafe sprintf pattern. A specially crafted HTTP request can lead to arbitrary code execution. An attacker with high privileges can send HTTP requests to trigger these vulnerabilities.This buffer overflow occurs in the set_ike_profile function with the secrets_remote variable.
Multiple buffer overflow vulnerabilities exist in the vtysh_ubus binary of Milesight UR32L v32.3.0.5 due to the use of an unsafe sprintf pattern. A specially crafted HTTP request can lead to arbitrary code execution. An attacker with high privileges can send HTTP requests to trigger these vulnerabilities.This buffer overflow occurs in the set_qos function with the dest variable.
Apache Kylin 2.3.0, and releases up to 2.6.5 and 3.0.1 has some restful apis which will concatenate os command with the user input string, a user is likely to be able to execute any os command without any protection or validation.
Multiple buffer overflow vulnerabilities exist in the vtysh_ubus binary of Milesight UR32L v32.3.0.5 due to the use of an unsafe sprintf pattern. A specially crafted HTTP request can lead to arbitrary code execution. An attacker with high privileges can send HTTP requests to trigger these vulnerabilities.This buffer overflow occurs in the set_openvpn_client function with the username and the password variables.
Multiple buffer overflow vulnerabilities exist in the vtysh_ubus binary of Milesight UR32L v32.3.0.5 due to the use of an unsafe sprintf pattern. A specially crafted HTTP request can lead to arbitrary code execution. An attacker with high privileges can send HTTP requests to trigger these vulnerabilities.This buffer overflow occurs in the set_dmvpn function with the gre_key variable.
Multiple buffer overflow vulnerabilities exist in the vtysh_ubus binary of Milesight UR32L v32.3.0.5 due to the use of an unsafe sprintf pattern. A specially crafted HTTP request can lead to arbitrary code execution. An attacker with high privileges can send HTTP requests to trigger these vulnerabilities.This buffer overflow occurs in the set_gre function with the remote_ip variable.
FutureNet NXR series, VXR series and WXR series provided by Century Systems Co., Ltd. contain an active debug code vulnerability. If a user who knows how to use the debug function logs in to the product, the debug function may be used and an arbitrary OS command may be executed.
Multiple buffer overflow vulnerabilities exist in the vtysh_ubus binary of Milesight UR32L v32.3.0.5 due to the use of an unsafe sprintf pattern. A specially crafted HTTP request can lead to arbitrary code execution. An attacker with high privileges can send HTTP requests to trigger these vulnerabilities.This buffer overflow occurs in the firewall_handler_set function with the index and description variables.
Multiple buffer overflow vulnerabilities exist in the vtysh_ubus binary of Milesight UR32L v32.3.0.5 due to the use of an unsafe sprintf pattern. A specially crafted HTTP request can lead to arbitrary code execution. An attacker with high privileges can send HTTP requests to trigger these vulnerabilities.This buffer overflow occurs in the set_l2tp function with the remote_subnet and the remote_mask variables.
Multiple buffer overflow vulnerabilities exist in the vtysh_ubus binary of Milesight UR32L v32.3.0.5 due to the use of an unsafe sprintf pattern. A specially crafted HTTP request can lead to arbitrary code execution. An attacker with high privileges can send HTTP requests to trigger these vulnerabilities.This buffer overflow occurs in the set_qos function with the attach_class variable.
Multiple buffer overflow vulnerabilities exist in the vtysh_ubus binary of Milesight UR32L v32.3.0.5 due to the use of an unsafe sprintf pattern. A specially crafted HTTP request can lead to arbitrary code execution. An attacker with high privileges can send HTTP requests to trigger these vulnerabilities.This buffer overflow occurs in the firewall_handler_set function with the ip and mac variables.
Multiple buffer overflow vulnerabilities exist in the vtysh_ubus binary of Milesight UR32L v32.3.0.5 due to the use of an unsafe sprintf pattern. A specially crafted HTTP request can lead to arbitrary code execution. An attacker with high privileges can send HTTP requests to trigger these vulnerabilities.This buffer overflow occurs in the set_openvpn_client function with the remote_subnet and the remote_mask variables when action is 2.
Multiple buffer overflow vulnerabilities exist in the vtysh_ubus binary of Milesight UR32L v32.3.0.5 due to the use of an unsafe sprintf pattern. A specially crafted HTTP request can lead to arbitrary code execution. An attacker with high privileges can send HTTP requests to trigger these vulnerabilities.This buffer overflow occurs in the set_openvpn_client function with the local_virtual_ip and the local_virtual_mask variables.
Multiple buffer overflow vulnerabilities exist in the vtysh_ubus binary of Milesight UR32L v32.3.0.5 due to the use of an unsafe sprintf pattern. A specially crafted HTTP request can lead to arbitrary code execution. An attacker with high privileges can send HTTP requests to trigger these vulnerabilities.This buffer overflow occurs in the set_ike_profile function with the username and the password variables.
Multiple buffer overflow vulnerabilities exist in the vtysh_ubus binary of Milesight UR32L v32.3.0.5 due to the use of an unsafe sprintf pattern. A specially crafted HTTP request can lead to arbitrary code execution. An attacker with high privileges can send HTTP requests to trigger these vulnerabilities.This buffer overflow occurs in the set_qos function with the class_name variable..
Multiple buffer overflow vulnerabilities exist in the vtysh_ubus binary of Milesight UR32L v32.3.0.5 due to the use of an unsafe sprintf pattern. A specially crafted HTTP request can lead to arbitrary code execution. An attacker with high privileges can send HTTP requests to trigger these vulnerabilities.This buffer overflow occurs in the handle_interface_acl function with the interface variable when in_acl is -1.
Multiple buffer overflow vulnerabilities exist in the vtysh_ubus binary of Milesight UR32L v32.3.0.5 due to the use of an unsafe sprintf pattern. A specially crafted HTTP request can lead to arbitrary code execution. An attacker with high privileges can send HTTP requests to trigger these vulnerabilities.This buffer overflow occurs in the set_pptp function with the remote_subnet and the remote_mask variables.
Multiple buffer overflow vulnerabilities exist in the vtysh_ubus binary of Milesight UR32L v32.3.0.5 due to the use of an unsafe sprintf pattern. A specially crafted HTTP request can lead to arbitrary code execution. An attacker with high privileges can send HTTP requests to trigger these vulnerabilities.This buffer overflow occurs in the set_dmvpn function with the cisco_secret variable.
Multiple buffer overflow vulnerabilities exist in the vtysh_ubus binary of Milesight UR32L v32.3.0.5 due to the use of an unsafe sprintf pattern. A specially crafted HTTP request can lead to arbitrary code execution. An attacker with high privileges can send HTTP requests to trigger these vulnerabilities.This buffer overflow occurs in the firewall_handler_set function with the index and to_dport variables.
Multiple buffer overflow vulnerabilities exist in the vtysh_ubus binary of Milesight UR32L v32.3.0.5 due to the use of an unsafe sprintf pattern. A specially crafted HTTP request can lead to arbitrary code execution. An attacker with high privileges can send HTTP requests to trigger these vulnerabilities.This buffer overflow occurs in the into_class_node function with either the class_name or old_class_name variable.
Multiple buffer overflow vulnerabilities exist in the vtysh_ubus binary of Milesight UR32L v32.3.0.5 due to the use of an unsafe sprintf pattern. A specially crafted HTTP request can lead to arbitrary code execution. An attacker with high privileges can send HTTP requests to trigger these vulnerabilities.This buffer overflow occurs in the set_openvpn_client function with the remote_ip and the port variables.
Multiple buffer overflow vulnerabilities exist in the vtysh_ubus binary of Milesight UR32L v32.3.0.5 due to the use of an unsafe sprintf pattern. A specially crafted HTTP request can lead to arbitrary code execution. An attacker with high privileges can send HTTP requests to trigger these vulnerabilities.This buffer overflow occurs in the set_qos function with the default_class variable.
A stack-based buffer overflow vulnerability exists in the wireless.cgi set_wifi_basic() functionality of Wavlink AC3000 M33A8.V5030.210505. A specially crafted HTTP request can lead to arbitrary command execution. An attacker can make an authenticated HTTP request to trigger this vulnerability.
iWT Ltd FaceSentry Access Control System 6.4.8 suffers from an authenticated OS command injection vulnerability using default credentials. This can be exploited to inject and execute arbitrary shell commands as the root user via the 'strInIP' POST parameter in pingTest PHP script.
An OS command injection vulnerability has been reported to affect QNAP operating systems. If exploited, the vulnerability possibly allows remote authenticated administrators to execute commands via unspecified vectors. QES is not affected. We have already fixed the vulnerability in the following versions: QTS 5.0.1.2346 build 20230322 and later QTS 4.5.4.2374 build 20230416 and later QuTS hero h5.0.1.2348 build 20230324 and later QuTS hero h4.5.4.2374 build 20230417 and later QuTScloud c5.0.1.2374 and later
An OS command injection vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow authenticated administrators to execute commands via a network. We have already fixed the vulnerability in the following versions: QTS 5.0.1.2376 build 20230421 and later QuTS hero h5.0.1.2376 build 20230421 and later QuTScloud c5.1.0.2498 and later
An OS command injection vulnerability exists in the ys_thirdparty user_delete functionality of Milesight UR32L v32.3.0.5. A specially crafted network packet can lead to command execution. An attacker can send a sequence of requests to trigger this vulnerability.
An improper neutralization of special elements used in an OS command ('OS Command Injection') vulnerability [CWE-78] in FortiWeb version 7.0.1 and below, 6.4 all versions, version 6.3.18 and below may allow a privileged attacker to execute arbitrary bash commands via crafted cli backup parameters.
InHand Networks InRouter 302, prior to version IR302 V3.5.56, and InRouter 615, prior to version InRouter6XX-S-V2.3.0.r5542, contain vulnerability CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection'). An unauthorized user with privileged access to the local web interface or the cloud account managing the affected devices could push a specially crafted configuration update file to gain root access. This could lead to remote code execution with root privileges.
An OS command injection vulnerability exists in the ys_thirdparty check_system_user functionality of Milesight UR32L v32.3.0.5. A specially crafted set of network packets can lead to command execution. An attacker can send a network request to trigger this vulnerability.
The saveForwardAttachments procedure in the Compose Mail functionality in vtiger CRM 5.0.4 allows remote authenticated users to execute arbitrary code by composing an e-mail message with an attachment filename ending in (1) .php in installations based on certain Apache HTTP Server configurations, (2) .php. on Windows, or (3) .php/ on Linux, and then making a direct request to a certain pathname under storage/.
MAHO-PBX NetDevancer Lite/Uni/Pro/Cloud prior to Ver.1.11.00, MAHO-PBX NetDevancer VSG Lite/Uni prior to Ver.1.11.00, and MAHO-PBX NetDevancer MobileGate Home/Office prior to Ver.1.11.00 allow a remote authenticated attacker with an administrative privilege to execute an arbitrary OS command.
Active Directory Federation Services (ADFS) in Microsoft Windows Server 2003 SP2 and Server 2008 Gold and SP2 does not properly validate headers in HTTP requests, which allows remote authenticated users to execute arbitrary code via a crafted request to an IIS web server, aka "Remote Code Execution in ADFS Vulnerability."
GoSecure on behalf of Genetec Inc. has found a flaw that allows for a remote code execution during the installation of ACAP applications on the Axis device. The application handling service in AXIS OS was vulnerable to command injection allowing an attacker to run arbitrary code. Axis has released patched AXIS OS versions for the highlighted flaw. Please refer to the Axis security advisory for more information and solution.
A vulnerability, which was classified as critical, has been found in Tenda W15E 15.11.0.14. Affected by this issue is the function formSetPortMapping of the file /goform/SetPortMapping. The manipulation of the argument portMappingServer/portMappingProtocol/portMappingWan/porMappingtInternal/portMappingExternal leads to stack-based buffer overflow. The attack may be launched remotely. The exploit has been disclosed to the public and may be used. VDB-261866 is the identifier assigned to this vulnerability. NOTE: The vendor was contacted early about this disclosure but did not respond in any way.
User provided input is not sanitized on the AXIS License Plate Verifier specific “api.cgi” allowing for arbitrary code execution.
User provided input is not sanitized in the “Settings > Access Control” configuration interface allowing for arbitrary code execution.
A vulnerability in Cisco Secure Network Analytics could allow an authenticated, remote attacker to execute arbitrary code as a root user on an affected device. This vulnerability is due to insufficient validation of user input to the web interface. An attacker could exploit this vulnerability by uploading a crafted file to an affected device. A successful exploit could allow the attacker to execute code on the affected device. To exploit this vulnerability, an attacker would need to have valid Administrator credentials on the affected device.
A vulnerability in the web-based management interface of Cisco Small Business RV340, RV340W, RV345, and RV345P Dual WAN Gigabit VPN Routers could allow an authenticated, remote attacker to execute arbitrary code or cause the web-based management process on the device to restart unexpectedly, resulting in a denial of service (DoS) condition. The attacker must have valid administrator credentials. This vulnerability is due to insufficient validation of user-supplied input to the web-based management interface. An attacker could exploit this vulnerability by sending crafted HTTP input to an affected device. A successful exploit could allow the attacker to execute arbitrary code as the root user on the underlying operating system or cause the web-based management process to restart, resulting in a DoS condition.
A vulnerability in the web-based management interface of Cisco Small Business RV016, RV042, RV042G, RV082, RV320 and RV325 Routers could allow an authenticated, remote attacker to execute arbitrary commands on an affected device. This vulnerability is due to improper validation of user input within incoming HTTP packets. An attacker could exploit this vulnerability by sending a crafted HTTP request to the web-based management interface. A successful exploit could allow the attacker to gain root-level privileges and access unauthorized data. To exploit this vulnerability, an attacker would need to have valid administrative credentials on the affected device.
A vulnerability in the Web UI and administrative CLI of the Cisco Secure Email Gateway (ESA) and Cisco Secure Email and Web Manager (SMA) could allow an authenticated remote attacker and or authenticated local attacker to escalate their privilege level and gain root access. The attacker has to have a valid user credential with at least a [[privilege of operator - validate actual name]]. The vulnerability is due to the processing of a specially crafted SNMP configuration file. An attacker could exploit this vulnerability by authenticating to the targeted device and uploading a specially crafted SNMP configuration file that when uploaded could allow for the execution of commands as root. An exploit could allow the attacker to gain root access on the device.
A vulnerability in the web UI feature of Cisco IOS XE Software could allow an authenticated, remote attacker to inject commands with the privileges of root. This vulnerability is due to insufficient input validation. An attacker could exploit this vulnerability by sending crafted input to the web UI. A successful exploit could allow the attacker to inject commands to the underlying operating system with root privileges.
A vulnerability in the web-based management interface of Cisco Small Business RV160 and RV260 Series VPN Routers could allow an authenticated, remote attacker to execute arbitrary commands on the underlying operating system of an affected device. This vulnerability is due to insufficient validation of user input. An attacker could exploit this vulnerability by sending a crafted request to the web-based management interface of an affected device. A successful exploit could allow the attacker to execute arbitrary commands using root-level privileges on the affected device. To exploit this vulnerability, the attacker must have valid Administrator-level credentials on the affected device.
A vulnerability in the Cisco IOx application hosting environment could allow an authenticated, remote attacker to execute arbitrary commands as root on the underlying host operating system. This vulnerability is due to incomplete sanitization of parameters that are passed in for activation of an application. An attacker could exploit this vulnerability by deploying and activating an application in the Cisco IOx application hosting environment with a crafted activation payload file. A successful exploit could allow the attacker to execute arbitrary commands as root on the underlying host operating system.
Multiple vulnerabilities in the web management interface of Cisco Firepower Management Center (FMC) Software could allow an authenticated, remote attacker to execute arbitrary commands on the underlying operating system. The attacker would need valid device credentials but does not require administrator privileges to exploit this vulnerability. These vulnerabilities are due to insufficient validation of user-supplied input for certain configuration options. An attacker could exploit these vulnerabilities by using crafted input within the device configuration GUI. A successful exploit could allow the attacker to execute arbitrary commands on the device including the underlying operating system which could also affect the availability of the device.
Multiple vulnerabilities in Cisco Identity Services Engine (ISE) could allow an authenticated attacker to perform command injection attacks on the underlying operating system and elevate privileges to root. To exploit these vulnerabilities, an attacker must have valid credentials on an affected device. For more information about these vulnerabilities, see the Details section of this advisory.
This vulnerability allows remote attackers to execute arbitrary code on affected installations of Microhard Bullet-LTE prior to v1.2.0-r1112. Authentication is required to exploit this vulnerability. The specific flaw exists within the handling of the ping parameter provided to tools.sh. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-10595.
Multiple vulnerabilities in the Cisco IOx application hosting environment on multiple Cisco platforms could allow an attacker to inject arbitrary commands into the underlying host operating system, execute arbitrary code on the underlying host operating system, install applications without being authenticated, or conduct a cross-site scripting (XSS) attack against a user of the affected software. For more information about these vulnerabilities, see the Details section of this advisory.
Multiple vulnerabilities in the web-based management interface of Cisco Small Business RV320 and RV325 Dual Gigabit WAN VPN Routers could allow an authenticated, remote attacker to inject and execute arbitrary commands on the underlying operating system of an affected device. These vulnerabilities are due to insufficient validation of user-supplied input. An attacker could exploit these vulnerabilities by sending malicious input to an affected device. A successful exploit could allow the attacker to execute arbitrary commands as the root user on the underlying Linux operating system of the affected device. To exploit these vulnerabilities, an attacker would need to have valid Administrator credentials on the affected device. Cisco has not released software updates to address these vulnerabilities.