The Linux kernel through 5.7.11 allows remote attackers to make observations that help to obtain sensitive information about the internal state of the network RNG, aka CID-f227e3ec3b5c. This is related to drivers/char/random.c and kernel/time/timer.c.
Insufficient policy enforcement in extensions in Google Chrome prior to 85.0.4183.121 allowed an attacker who convinced a user to install a malicious extension to obtain potentially sensitive information via a crafted Chrome Extension.
In ModSecurity before 2.9.6 and 3.x before 3.0.8, HTTP multipart requests were incorrectly parsed and could bypass the Web Application Firewall. NOTE: this is related to CVE-2022-39956 but can be considered independent changes to the ModSecurity (C language) codebase.
Exposure of Sensitive Information to an Unauthorized Actor vulnerability in Apache Software Foundation Apache Traffic Server.This issue affects Apache Traffic Server: 8.0.0 to 9.2.0.
Mutt before 1.14.3 allows an IMAP fcc/postpone man-in-the-middle attack via a PREAUTH response.
dnsmasq before 2.78, when configured as a relay, allows remote attackers to obtain sensitive memory information via vectors involving handling DHCPv6 forwarded requests.
The (1) Htpasswd authentication source in the authcrypt module and (2) SimpleSAML_Session class in SimpleSAMLphp 1.14.11 and earlier allow remote attackers to conduct timing side-channel attacks by leveraging use of the standard comparison operator to compare secret material against user input.
A vulnerability in Batik of Apache XML Graphics allows an attacker to run Java code from untrusted SVG via JavaScript. This issue affects Apache XML Graphics prior to 1.16. Users are recommended to upgrade to version 1.16.
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: JCE). Supported versions that are affected are Java SE: 6u151, 7u141 and 8u131; Java SE Embedded: 8u131; JRockit: R28.3.14. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Java SE, Java SE Embedded, JRockit accessible data. Note: This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.9 (Confidentiality impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:N).
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: JCE). Supported versions that are affected are Java SE: 7u141 and 8u131; Java SE Embedded: 8u131; JRockit: R28.3.14. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Java SE, Java SE Embedded, JRockit accessible data. Note: This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 7.5 (Confidentiality impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N).
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: Security). Supported versions that are affected are Java SE: 6u151, 7u141 and 8u131; Java SE Embedded: 8u131; JRockit: R28.3.14. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. While the vulnerability is in Java SE, Java SE Embedded, JRockit, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Java SE, Java SE Embedded, JRockit accessible data. Note: This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 6.8 (Confidentiality impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:N/A:N).
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: Security). Supported versions that are affected are Java SE: 7u141 and 8u131; Java SE Embedded: 8u131; JRockit: R28.3.14. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Java SE, Java SE Embedded, JRockit accessible data. Note: This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 7.5 (Confidentiality impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N).
The Erlang otp TLS server answers with different TLS alerts to different error types in the RSA PKCS #1 1.5 padding. This allows an attacker to decrypt content or sign messages with the server's private key (this is a variation of the Bleichenbacher attack).
An information disclosure vulnerability exists in the OpenImageIO::decode_iptc_iim() functionality of OpenImageIO Project OpenImageIO v2.3.19.0. A specially-crafted TIFF file can lead to a disclosure of sensitive information. An attacker can provide a malicious file to trigger this vulnerability.
A vulnerability in Batik of Apache XML Graphics allows an attacker to run untrusted Java code from an SVG. This issue affects Apache XML Graphics prior to 1.16. It is recommended to update to version 1.16.
In the previous mitigations for Spectre, the resolution or precision of various methods was reduced to counteract the ability to measure precise time intervals. In that work PerformanceNavigationTiming was not adjusted but it was found that it could be used as a precision timer. This vulnerability affects Thunderbird < 60, Firefox ESR < 60.1, and Firefox < 61.
The openssl gem for Ruby uses the same initialization vector (IV) in GCM Mode (aes-*-gcm) when the IV is set before the key, which makes it easier for context-dependent attackers to bypass the encryption protection mechanism.
A use-after-free vulnerability in SVG Animation has been discovered. An exploit built on this vulnerability has been discovered in the wild targeting Firefox and Tor Browser users on Windows. This vulnerability affects Firefox < 50.0.2, Firefox ESR < 45.5.1, and Thunderbird < 45.5.1.
In SaltStack Salt before 3002.5, authentication to VMware vcenter, vsphere, and esxi servers (in the vmware.py files) does not always validate the SSL/TLS certificate.
Server-Side Request Forgery (SSRF) vulnerability in Batik of Apache XML Graphics allows an attacker to access files using a Jar url. This issue affects Apache XML Graphics Batik 1.14.
Mozilla Firefox 3.0.1 through 3.0.3, Firefox 2.x before 2.0.0.18, and SeaMonkey 1.x before 1.1.13, when running on Windows, do not properly identify the context of Windows .url shortcut files, which allows user-assisted remote attackers to bypass the Same Origin Policy and obtain sensitive information via an HTML document that is directly accessible through a filesystem, as demonstrated by documents in (1) local folders, (2) Windows share folders, and (3) RAR archives, and as demonstrated by IFRAMEs referencing shortcuts that point to (a) about:cache?device=memory and (b) about:cache?device=disk, a variant of CVE-2008-2810.
An existing mitigation of timing side-channel attacks is insufficient in some circumstances. This issue is addressed in Network Security Services (NSS) 3.26.1. This vulnerability affects Thunderbird < 45.5, Firefox ESR < 45.5, and Firefox < 50.
The OWASP ModSecurity Core Rule Set (CRS) is affected by a response body bypass to sequentially exfiltrate small and undetectable sections of data by repeatedly submitting an HTTP Range header field with a small byte range. A restricted resource, access to which would ordinarily be detected, may be exfiltrated from the backend, despite being protected by a web application firewall that uses CRS. Short subsections of a restricted resource may bypass pattern matching techniques and allow undetected access. The legacy CRS versions 3.0.x and 3.1.x are affected, as well as the currently supported versions 3.2.1 and 3.3.2. Integrators and users are advised to upgrade to 3.2.2 and 3.3.3 respectively and to configure a CRS paranoia level of 3 or higher.
The ResourceLinkFactory implementation in Apache Tomcat 9.0.0.M1 to 9.0.0.M9, 8.5.0 to 8.5.4, 8.0.0.RC1 to 8.0.36, 7.0.0 to 7.0.70 and 6.0.0 to 6.0.45 did not limit web application access to global JNDI resources to those resources explicitly linked to the web application. Therefore, it was possible for a web application to access any global JNDI resource whether an explicit ResourceLink had been configured or not.
Out-of-bounds Read in vim/vim prior to 8.2.
The parser in Google V8, as used in Google Chrome before 53.0.2785.113, mishandles scopes, which allows remote attackers to obtain sensitive information from arbitrary memory locations via crafted JavaScript code.
Multiple XML external entity (XXE) vulnerabilities in the (1) Dom4JDriver, (2) DomDriver, (3) JDomDriver, (4) JDom2Driver, (5) SjsxpDriver, (6) StandardStaxDriver, and (7) WstxDriver drivers in XStream before 1.4.9 allow remote attackers to read arbitrary files via a crafted XML document.
contrib/pgcrypto in PostgreSQL before 9.0.20, 9.1.x before 9.1.16, 9.2.x before 9.2.11, 9.3.x before 9.3.7, and 9.4.x before 9.4.2 uses different error responses when an incorrect key is used, which makes it easier for attackers to obtain the key via a brute force attack.
A flaw was found in the way samba implemented SMB1 authentication. An attacker could use this flaw to retrieve the plaintext password sent over the wire even if Kerberos authentication was required.
uri.js in Google V8 before 5.1.281.26, as used in Google Chrome before 51.0.2704.63, uses an incorrect array type, which allows remote attackers to obtain sensitive information by calling the decodeURI function and leveraging "type confusion."
The renderer implementation in Google Chrome before 51.0.2704.63 does not properly restrict public exposure of classes, which allows remote attackers to obtain sensitive information via vectors related to extensions.
The Extensions subsystem in Google Chrome before 50.0.2661.75 incorrectly relies on GetOrigin method calls for origin comparisons, which allows remote attackers to bypass the Same Origin Policy and obtain sensitive information via a crafted extension.
Alpine before 2.23 silently proceeds to use an insecure connection after a /tls is sent in certain circumstances involving PREAUTH, which is a less secure behavior than the alternative of closing the connection and letting the user decide what they would like to do.
The opj_pi_update_decode_poc function in pi.c in OpenJPEG, as used in PDFium in Google Chrome before 48.0.2564.109, miscalculates a certain layer index value, which allows remote attackers to cause a denial of service (out-of-bounds read) via a crafted PDF document.
The diffie_hellman_sha256 function in kex.c in libssh2 before 1.7.0 improperly truncates secrets to 128 or 256 bits, which makes it easier for man-in-the-middle attackers to decrypt or intercept SSH sessions via unspecified vectors, aka a "bits/bytes confusion bug."
In the Bouncy Castle JCE Provider version 1.55 and earlier the other party DH public key is not fully validated. This can cause issues as invalid keys can be used to reveal details about the other party's private key where static Diffie-Hellman is in use. As of release 1.56 the key parameters are checked on agreement calculation.
In the Bouncy Castle JCE Provider version 1.55 and earlier DSA signature generation is vulnerable to timing attack. Where timings can be closely observed for the generation of signatures, the lack of blinding in 1.55, or earlier, may allow an attacker to gain information about the signature's k value and ultimately the private value as well.
In the Bouncy Castle JCE Provider version 1.55 and earlier the DHIES/ECIES CBC mode vulnerable to padding oracle attack. For BC 1.55 and older, in an environment where timings can be easily observed, it is possible with enough observations to identify when the decryption is failing due to padding.
Using XMLHttpRequest, an attacker could have identified installed applications by probing error messages for loading external protocols. This vulnerability affects Thunderbird < 91.4.0, Firefox ESR < 91.4.0, and Firefox < 95.
Improper Access Control in Adminer versions 1.12.0 to 4.6.2 (fixed in version 4.6.3) allows an attacker to achieve Arbitrary File Read on the remote server by requesting the Adminer to connect to a remote MySQL database.
A flaw was found in rsync which could be triggered when rsync compares file checksums. This flaw allows an attacker to manipulate the checksum length (s2length) to cause a comparison between a checksum and uninitialized memory and leak one byte of uninitialized stack data at a time.
The Realm implementations in Apache Tomcat versions 9.0.0.M1 to 9.0.0.M9, 8.5.0 to 8.5.4, 8.0.0.RC1 to 8.0.36, 7.0.0 to 7.0.70 and 6.0.0 to 6.0.45 did not process the supplied password if the supplied user name did not exist. This made a timing attack possible to determine valid user names. Note that the default configuration includes the LockOutRealm which makes exploitation of this vulnerability harder.
Vulnerability in the Java SE, Java SE Embedded product of Oracle Java SE (component: JNDI). Supported versions that are affected are Java SE: 7u271, 8u261, 11.0.8 and 15; Java SE Embedded: 8u261. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks of this vulnerability can result in unauthorized read access to a subset of Java SE, Java SE Embedded accessible data. Note: Applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.1 Base Score 3.7 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N).
libssh before 0.7.3 improperly truncates ephemeral secrets generated for the (1) diffie-hellman-group1 and (2) diffie-hellman-group14 key exchange methods to 128 bits, which makes it easier for man-in-the-middle attackers to decrypt or intercept SSH sessions via unspecified vectors, aka a "bits/bytes confusion bug."
There is a carry propagation bug in the MIPS32 and MIPS64 squaring procedure. Many EC algorithms are affected, including some of the TLS 1.3 default curves. Impact was not analyzed in detail, because the pre-requisites for attack are considered unlikely and include reusing private keys. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH are considered just feasible (although very difficult) because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be significant. However, for an attack on TLS to be meaningful, the server would have to share the DH private key among multiple clients, which is no longer an option since CVE-2016-0701. This issue affects OpenSSL versions 1.0.2, 1.1.1 and 3.0.0. It was addressed in the releases of 1.1.1m and 3.0.1 on the 15th of December 2021. For the 1.0.2 release it is addressed in git commit 6fc1aaaf3 that is available to premium support customers only. It will be made available in 1.0.2zc when it is released. The issue only affects OpenSSL on MIPS platforms. Fixed in OpenSSL 3.0.1 (Affected 3.0.0). Fixed in OpenSSL 1.1.1m (Affected 1.1.1-1.1.1l). Fixed in OpenSSL 1.0.2zc-dev (Affected 1.0.2-1.0.2zb).
GnuTLS incorrectly validates the first byte of padding in CBC modes
vim is vulnerable to Out-of-bounds Read
Guzzle is an open source PHP HTTP client. In affected versions `Authorization` headers on requests are sensitive information. On making a request using the `https` scheme to a server which responds with a redirect to a URI with the `http` scheme, we should not forward the `Authorization` header on. This is much the same as to how we don't forward on the header if the host changes. Prior to this fix, `https` to `http` downgrades did not result in the `Authorization` header being removed, only changes to the host. Affected Guzzle 7 users should upgrade to Guzzle 7.4.4 as soon as possible. Affected users using any earlier series of Guzzle should upgrade to Guzzle 6.5.7 or 7.4.4. Users unable to upgrade may consider an alternative approach which would be to use their own redirect middleware. Alternately users may simply disable redirects all together if redirects are not expected or required.
git_connect_git in connect.c in Git before 2.30.1 allows a repository path to contain a newline character, which may result in unexpected cross-protocol requests, as demonstrated by the git://localhost:1234/%0d%0a%0d%0aGET%20/%20HTTP/1.1 substring.
Guzzle is an open source PHP HTTP client. In affected versions the `Cookie` headers on requests are sensitive information. On making a request using the `https` scheme to a server which responds with a redirect to a URI with the `http` scheme, or on making a request to a server which responds with a redirect to a a URI to a different host, we should not forward the `Cookie` header on. Prior to this fix, only cookies that were managed by our cookie middleware would be safely removed, and any `Cookie` header manually added to the initial request would not be stripped. We now always strip it, and allow the cookie middleware to re-add any cookies that it deems should be there. Affected Guzzle 7 users should upgrade to Guzzle 7.4.4 as soon as possible. Affected users using any earlier series of Guzzle should upgrade to Guzzle 6.5.7 or 7.4.4. Users unable to upgrade may consider an alternative approach to use your own redirect middleware, rather than ours. If you do not require or expect redirects to be followed, one should simply disable redirects all together.