TensorFlow is an end-to-end open source platform for machine learning. In affected versions providing a negative element to `num_elements` list argument of `tf.raw_ops.TensorListReserve` causes the runtime to abort the process due to reallocating a `std::vector` to have a negative number of elements. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/list_kernels.cc#L312) calls `std::vector.resize()` with the new size controlled by input given by the user, without checking that this input is valid. We have patched the issue in GitHub commit 8a6e874437670045e6c7dc6154c7412b4a2135e2. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of division in TFLite is [vulnerable to a division by 0 error](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/div.cc). There is no check that the divisor tensor does not contain zero elements. We have patched the issue in GitHub commit 1e206baedf8bef0334cca3eb92bab134ef525a28. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. The code for `tf.raw_ops.UncompressElement` can be made to trigger a null pointer dereference. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/data/experimental/compression_ops.cc#L50-L53) obtains a pointer to a `CompressedElement` from a `Variant` tensor and then proceeds to dereference it for decompressing. There is no check that the `Variant` tensor contained a `CompressedElement`, so the pointer is actually `nullptr`. We have patched the issue in GitHub commit 7bdf50bb4f5c54a4997c379092888546c97c3ebd. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can craft a TFLite model that would trigger a null pointer dereference, which would result in a crash and denial of service. This is caused by the MLIR optimization of `L2NormalizeReduceAxis` operator. The [implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/compiler/mlir/lite/transforms/optimize.cc#L67-L70) unconditionally dereferences a pointer to an iterator to a vector without checking that the vector has elements. We have patched the issue in GitHub commit d6b57f461b39fd1aa8c1b870f1b974aac3554955. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions all TFLite operations that use quantization can be made to use unitialized values. [For example](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/depthwise_conv.cc#L198-L200). The issue stems from the fact that `quantization.params` is only valid if `quantization.type` is different that `kTfLiteNoQuantization`. However, these checks are missing in large parts of the code. We have patched the issue in GitHub commits 537bc7c723439b9194a358f64d871dd326c18887, 4a91f2069f7145aab6ba2d8cfe41be8a110c18a5 and 8933b8a21280696ab119b63263babdb54c298538. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementations of pooling in TFLite are vulnerable to division by 0 errors as there are no checks for divisors not being 0. We have patched the issue in GitHub commit [dfa22b348b70bb89d6d6ec0ff53973bacb4f4695](https://github.com/tensorflow/tensorflow/commit/dfa22b348b70bb89d6d6ec0ff53973bacb4f4695). The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.StringNGrams` is vulnerable to an integer overflow issue caused by converting a signed integer value to an unsigned one and then allocating memory based on this value. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/string_ngrams_op.cc#L184) calls `reserve` on a `tstring` with a value that sometimes can be negative if user supplies negative `ngram_widths`. The `reserve` method calls `TF_TString_Reserve` which has an `unsigned long` argument for the size of the buffer. Hence, the implicit conversion transforms the negative value to a large integer. We have patched the issue in GitHub commit c283e542a3f422420cfdb332414543b62fc4e4a5. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of fully connected layers in TFLite is [vulnerable to a division by zero error](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/fully_connected.cc#L226). We have patched the issue in GitHub commit 718721986aa137691ee23f03638867151f74935f. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.SparseDenseCwiseDiv` is vulnerable to a division by 0 error. The [implementation](https://github.com/tensorflow/tensorflow/blob/a1bc56203f21a5a4995311825ffaba7a670d7747/tensorflow/core/kernels/sparse_dense_binary_op_shared.cc#L56) uses a common class for all binary operations but fails to treat the division by 0 case separately. We have patched the issue in GitHub commit d9204be9f49520cdaaeb2541d1dc5187b23f31d9. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
The updateMessageStatus function in Android 5.1.1 and earlier allows local users to cause a denial of service (NULL pointer exception and process crash).
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause denial of service in applications serving models using `tf.raw_ops.UnravelIndex` by triggering a division by 0. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/unravel_index_op.cc#L36) does not check that the tensor subsumed by `dims` is not empty. Hence, if one element of `dims` is 0, the implementation does a division by 0. We have patched the issue in GitHub commit a776040a5e7ebf76eeb7eb923bf1ae417dd4d233. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. When a user does not supply arguments that determine a valid sparse tensor, `tf.raw_ops.SparseTensorSliceDataset` implementation can be made to dereference a null pointer. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc#L240-L251) has some argument validation but fails to consider the case when either `indices` or `values` are provided for an empty sparse tensor when the other is not. If `indices` is empty, then [code that performs validation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc#L260-L261) (i.e., checking that the indices are monotonically increasing) results in a null pointer dereference. If `indices` as provided by the user is empty, then `indices` in the C++ code above is backed by an empty `std::vector`, hence calling `indices->dim_size(0)` results in null pointer dereferencing (same as calling `std::vector::at()` on an empty vector). We have patched the issue in GitHub commit 02cc160e29d20631de3859c6653184e3f876b9d7. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can craft a TFLite model that would trigger a division by zero error in LSH [implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/lsh_projection.cc#L118). We have patched the issue in GitHub commit 0575b640091680cfb70f4dd93e70658de43b94f9. The fix will be included in TensorFlow 2.6.0. We will also cherrypick thiscommit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause a denial of service in `boosted_trees_create_quantile_stream_resource` by using negative arguments. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/quantile_ops.cc#L96) does not validate that `num_streams` only contains non-negative numbers. In turn, [this results in using this value to allocate memory](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/quantiles/quantile_stream_resource.h#L31-L40). However, `reserve` receives an unsigned integer so there is an implicit conversion from a negative value to a large positive unsigned. This results in a crash from the standard library. We have patched the issue in GitHub commit 8a84f7a2b5a2b27ecf88d25bad9ac777cd2f7992. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
An issue was discovered on LG mobile devices with Android OS 7.0, 7.1, 7.2, 8.0, and 8.1 software. A TZ trusted application can crash via crafted input. The LG ID is LVE-SMP-190005 (July 2019).
In faceid service, there is a possible out of bounds read due to a missing bounds check. This could lead to local denial of service with System execution privileges needed
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the macros that TensorFlow uses for writing assertions (e.g., `CHECK_LT`, `CHECK_GT`, etc.) have an incorrect logic when comparing `size_t` and `int` values. Due to type conversion rules, several of the macros would trigger incorrectly. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.ReverseSequence` allows for stack overflow and/or `CHECK`-fail based denial of service. The implementation(https://github.com/tensorflow/tensorflow/blob/5b3b071975e01f0d250c928b2a8f901cd53b90a7/tensorflow/core/kernels/reverse_sequence_op.cc#L114-L118) fails to validate that `seq_dim` and `batch_dim` arguments are valid. Negative values for `seq_dim` can result in stack overflow or `CHECK`-failure, depending on the version of Eigen code used to implement the operation. Similar behavior can be exhibited by invalid values of `batch_dim`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `ParseAttrValue`(https://github.com/tensorflow/tensorflow/blob/c22d88d6ff33031aa113e48aa3fc9aa74ed79595/tensorflow/core/framework/attr_value_util.cc#L397-L453) can be tricked into stack overflow due to recursion by giving in a specially crafted input. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a `CHECK` fail in PNG encoding by providing an empty input tensor as the pixel data. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/e312e0791ce486a80c9d23110841525c6f7c3289/tensorflow/core/kernels/image/encode_png_op.cc#L57-L60) only validates that the total number of pixels in the image does not overflow. Thus, an attacker can send an empty matrix for encoding. However, if the tensor is empty, then the associated buffer is `nullptr`. Hence, when calling `png::WriteImageToBuffer`(https://github.com/tensorflow/tensorflow/blob/e312e0791ce486a80c9d23110841525c6f7c3289/tensorflow/core/kernels/image/encode_png_op.cc#L79-L93), the first argument (i.e., `image.flat<T>().data()`) is `NULL`. This then triggers the `CHECK_NOTNULL` in the first line of `png::WriteImageToBuffer`(https://github.com/tensorflow/tensorflow/blob/e312e0791ce486a80c9d23110841525c6f7c3289/tensorflow/core/lib/png/png_io.cc#L345-L349). Since `image` is null, this results in `abort` being called after printing the stacktrace. Effectively, this allows an attacker to mount a denial of service attack. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.QuantizedConv2D`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/00e9a4d67d76703fa1aee33dac582acf317e0e81/tensorflow/core/kernels/quantized_conv_ops.cc#L257-L259) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.FractionalMaxPoolGrad` triggers an undefined behavior if one of the input tensors is empty. The code is also vulnerable to a denial of service attack as a `CHECK` condition becomes false and aborts the process. The implementation(https://github.com/tensorflow/tensorflow/blob/169054888d50ce488dfde9ca55d91d6325efbd5b/tensorflow/core/kernels/fractional_max_pool_op.cc#L215) fails to validate that input and output tensors are not empty and are of the same rank. Each of these unchecked assumptions is responsible for the above issues. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. The TFLite code for allocating `TFLiteIntArray`s is vulnerable to an integer overflow issue(https://github.com/tensorflow/tensorflow/blob/4ceffae632721e52bf3501b736e4fe9d1221cdfa/tensorflow/lite/c/common.c#L24-L27). An attacker can craft a model such that the `size` multiplier is so large that the return value overflows the `int` datatype and becomes negative. In turn, this results in invalid value being given to `malloc`(https://github.com/tensorflow/tensorflow/blob/4ceffae632721e52bf3501b736e4fe9d1221cdfa/tensorflow/lite/c/common.c#L47-L52). In this case, `ret->size` would dereference an invalid pointer. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. Calling `tf.raw_ops.ImmutableConst`(https://www.tensorflow.org/api_docs/python/tf/raw_ops/ImmutableConst) with a `dtype` of `tf.resource` or `tf.variant` results in a segfault in the implementation as code assumes that the tensor contents are pure scalars. We have patched the issue in 4f663d4b8f0bec1b48da6fa091a7d29609980fa4 and will release TensorFlow 2.5.0 containing the patch. TensorFlow nightly packages after this commit will also have the issue resolved. If using `tf.raw_ops.ImmutableConst` in code, you can prevent the segfault by inserting a filter for the `dtype` argument.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in caused by an integer overflow in constructing a new tensor shape. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/0908c2f2397c099338b901b067f6495a5b96760b/tensorflow/core/kernels/sparse_split_op.cc#L66-L70) builds a dense shape without checking that the dimensions would not result in overflow. The `TensorShape` constructor(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) uses a `CHECK` operation which triggers when `InitDims`(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) returns a non-OK status. This is a legacy implementation of the constructor and operations should use `BuildTensorShapeBase` or `AddDimWithStatus` to prevent `CHECK`-failures in the presence of overflows. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a division by zero to occur in `Conv2DBackpropFilter`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1b0296c3b8dd9bd948f924aa8cd62f87dbb7c3da/tensorflow/core/kernels/conv_grad_filter_ops.cc#L513-L522) computes a divisor based on user provided data (i.e., the shape of the tensors given as arguments). If all shapes are empty then `work_unit_size` is 0. Since there is no check for this case before division, this results in a runtime exception, with potential to be abused for a denial of service. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. Passing a complex argument to `tf.transpose` at the same time as passing `conjugate=True` argument results in a crash. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the strided slice implementation in TFLite has a logic bug which can allow an attacker to trigger an infinite loop. This arises from newly introduced support for [ellipsis in axis definition](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/strided_slice.cc#L103-L122). An attacker can craft a model such that `ellipsis_end_idx` is smaller than `i` (e.g., always negative). In this case, the inner loop does not increase `i` and the `continue` statement causes execution to skip over the preincrement at the end of the outer loop. We have patched the issue in GitHub commit dfa22b348b70bb89d6d6ec0ff53973bacb4f4695. TensorFlow 2.6.0 is the only affected version.
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.SdcaOptimizer` triggers undefined behavior due to dereferencing a null pointer. The implementation(https://github.com/tensorflow/tensorflow/blob/60a45c8b6192a4699f2e2709a2645a751d435cc3/tensorflow/core/kernels/sdca_internal.cc) does not validate that the user supplied arguments satisfy all constraints expected by the op(https://www.tensorflow.org/api_docs/python/tf/raw_ops/SdcaOptimizer). The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a null pointer dereference in the implementation of `tf.raw_ops.EditDistance`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/79865b542f9ffdc9caeb255631f7c56f1d4b6517/tensorflow/core/kernels/edit_distance_op.cc#L103-L159) has incomplete validation of the input parameters. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via `CHECK`-fail in `tf.strings.substr` with invalid arguments. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. Specifying a negative dense shape in `tf.raw_ops.SparseCountSparseOutput` results in a segmentation fault being thrown out from the standard library as `std::vector` invariants are broken. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L199-L213) assumes the first element of the dense shape is always positive and uses it to initialize a `BatchedMap<T>` (i.e., `std::vector<absl::flat_hash_map<int64,T>>`(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L27)) data structure. If the `shape` tensor has more than one element, `num_batches` is the first value in `shape`. Ensuring that the `dense_shape` argument is a valid tensor shape (that is, all elements are non-negative) solves this issue. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.CTCGreedyDecoder`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1615440b17b364b875eb06f43d087381f1460a65/tensorflow/core/kernels/ctc_decoder_ops.cc#L37-L50) has a `CHECK_LT` inserted to validate some invariants. When this condition is false, the program aborts, instead of returning a valid error to the user. This abnormal termination can be weaponized in denial of service attacks. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.QuantizedMul`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/55900e961ed4a23b438392024912154a2c2f5e85/tensorflow/core/kernels/quantized_mul_op.cc#L188-L198) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.Conv2DBackpropFilter`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/496c2630e51c1a478f095b084329acedb253db6b/tensorflow/core/kernels/conv_grad_shape_utils.cc#L130) does a modulus operation where the divisor is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Improper buffer size check logic in aviextractor library prior to SMR May-2022 Release 1 allows out of bounds read leading to possible temporary denial of service. The patch adds buffer size check logic.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.Conv2D`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/988087bd83f144af14087fe4fecee2d250d93737/tensorflow/core/kernels/conv_ops.cc#L261-L263) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. The API of `tf.raw_ops.SparseCross` allows combinations which would result in a `CHECK`-failure and denial of service. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/3d782b7d47b1bf2ed32bd4a246d6d6cadc4c903d/tensorflow/core/kernels/sparse_cross_op.cc#L114-L116) is tricked to consider a tensor of type `tstring` which in fact contains integral elements. Fixing the type confusion by preventing mixing `DT_STRING` and `DT_INT64` types solves this issue. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. Passing invalid arguments (e.g., discovered via fuzzing) to `tf.raw_ops.SparseCountSparseOutput` results in segfault. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `DepthwiseConv` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/1a8e885b864c818198a5b2c0cbbeca5a1e833bc8/tensorflow/lite/kernels/depthwise_conv.cc#L287-L288). An attacker can craft a model such that `input`'s fourth dimension would be 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. The TFLite implementation of hashtable lookup is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/1a8e885b864c818198a5b2c0cbbeca5a1e833bc8/tensorflow/lite/kernels/hashtable_lookup.cc#L114-L115) An attacker can craft a model such that `values`'s first dimension would be 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.QuantizeAndDequantizeV4Grad`. This is because the implementation does not validate the rank of the `input_*` tensors. In turn, this results in the tensors being passes as they are to `QuantizeAndDequantizePerChannelGradientImpl`. However, the `vec<T>` method, requires the rank to 1 and triggers a `CHECK` failure otherwise. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 as this is the only other affected version.
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by exploiting a `CHECK`-failure coming from the implementation of `tf.raw_ops.RFFT`. Eigen code operating on an empty matrix can trigger on an assertion and will cause program termination. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `MatrixTriangularSolve`(https://github.com/tensorflow/tensorflow/blob/8cae746d8449c7dda5298327353d68613f16e798/tensorflow/core/kernels/linalg/matrix_triangular_solve_op_impl.h#L160-L240) fails to terminate kernel execution if one validation condition fails. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` is vulnerable to a division by 0. The implementation(https://github.com/tensorflow/tensorflow/blob/279bab6efa22752a2827621b7edb56a730233bd8/tensorflow/core/kernels/maxpooling_op.cc#L1033-L1034) fails to validate that the batch dimension of the tensor is non-zero, before dividing by this quantity. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
TensorFlow is an open source platform for machine learning. In version 2.8.0, the `TensorKey` hash function used total estimated `AllocatedBytes()`, which (a) is an estimate per tensor, and (b) is a very poor hash function for constants (e.g. `int32_t`). It also tried to access individual tensor bytes through `tensor.data()` of size `AllocatedBytes()`. This led to ASAN failures because the `AllocatedBytes()` is an estimate of total bytes allocated by a tensor, including any pointed-to constructs (e.g. strings), and does not refer to contiguous bytes in the `.data()` buffer. The discoverers could not use this byte vector anyway because types such as `tstring` include pointers, whereas they needed to hash the string values themselves. This issue is patched in Tensorflow versions 2.9.0 and 2.8.1.
SQL injection vulnerabilities in CMFA framework prior to SMR Oct-2021 Release 1 allow untrusted application to overwrite some CMFA framework information.
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.SpaceToBatchND` (in all backends such as XLA and handwritten kernels) is vulnerable to an integer overflow: The result of this integer overflow is used to allocate the output tensor, hence we get a denial of service via a `CHECK`-failure (assertion failure), as in TFSA-2021-198. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
A vulnerability in mfc driver prior to SMR Oct-2021 Release 1 allows memory corruption via NULL-pointer dereference.
TensorFlow is an end-to-end open source platform for machine learning. Calling `tf.raw_ops.RaggedTensorToVariant` with arguments specifying an invalid ragged tensor results in a null pointer dereference. The implementation of `RaggedTensorToVariant` operations(https://github.com/tensorflow/tensorflow/blob/904b3926ed1c6c70380d5313d282d248a776baa1/tensorflow/core/kernels/ragged_tensor_to_variant_op.cc#L39-L40) does not validate that the ragged tensor argument is non-empty. Since `batched_ragged` contains no elements, `batched_ragged.splits` is a null vector, thus `batched_ragged.splits(0)` will result in dereferencing `nullptr`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.