Unspecified vulnerability in the Oracle Applications DBA component in Oracle E-Business Suite 12.1.3 allows local users to affect confidentiality via vectors related to AD Utilities.
Unspecified vulnerability in the Solaris Cluster component in Oracle Sun Systems Products Suite 4.3 allows local users to affect confidentiality via vectors related to Cluster Geo.
Unspecified vulnerability in the RDBMS Programmable Interface component in Oracle Database Server 11.2.0.4 and 12.1.0.2 allows local users to affect confidentiality via unknown vectors.
Unspecified vulnerability in the RDBMS Security component in Oracle Database Server 11.2.0.4 and 12.1.0.2 allows local users to affect confidentiality via unknown vectors, a different vulnerability than CVE-2016-5499.
Unspecified vulnerability in the Oracle VM VirtualBox component before 5.0.28 and 5.1.x before 5.1.8 in Oracle Virtualization allows local users to affect confidentiality via vectors related to Core.
sound/core/timer.c in the Linux kernel through 4.6 does not initialize certain r1 data structures, which allows local users to obtain sensitive information from kernel stack memory via crafted use of the ALSA timer interface, related to the (1) snd_timer_user_ccallback and (2) snd_timer_user_tinterrupt functions.
A postinstall script in the dovecot rpm allows local users to read the contents of newly created SSL/TLS key files.
The quagga package before 0.99.23-2.6.1 in openSUSE and SUSE Linux Enterprise Server 11 SP 1 uses weak permissions for /etc/quagga, which allows local users to obtain sensitive information by reading files in the directory.
libcontainer/user/user.go in runC before 0.1.0, as used in Docker before 1.11.2, improperly treats a numeric UID as a potential username, which allows local users to gain privileges via a numeric username in the password file in a container.
kinit in KDE Frameworks before 5.23.0 uses weak permissions (644) for /tmp/xauth-xxx-_y, which allows local users to obtain X11 cookies of other users and consequently capture keystrokes and possibly gain privileges by reading the file.
Unspecified vulnerability in the Siebel Core - Server Framework component in Oracle Siebel CRM 8.1.1, 8.2.2, IP2014, IP2015, and IP2016 allows local users to affect confidentiality via vectors related to Services.
The adjust_branches function in kernel/bpf/verifier.c in the Linux kernel before 4.5 does not consider the delta in the backward-jump case, which allows local users to obtain sensitive information from kernel memory by creating a packet filter and then loading crafted BPF instructions.
The dsa_sign_setup function in crypto/dsa/dsa_ossl.c in OpenSSL through 1.0.2h does not properly ensure the use of constant-time operations, which makes it easier for local users to discover a DSA private key via a timing side-channel attack.
gdm3 3.14.2 and possibly later has an information leak before screen lock
Vulnerability in the Oracle VM VirtualBox product of Oracle Virtualization (component: Core). The supported version that is affected is Prior to 6.1.32. Easily exploitable vulnerability allows low privileged attacker with logon to the infrastructure where Oracle VM VirtualBox executes to compromise Oracle VM VirtualBox. While the vulnerability is in Oracle VM VirtualBox, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in unauthorized read access to a subset of Oracle VM VirtualBox accessible data. Note: This vulnerability applies to Windows systems only. CVSS 3.1 Base Score 3.8 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:L/I:N/A:N).
Vulnerability in the Oracle Solaris product of Oracle Systems (component: Kernel). The supported version that is affected is 11. Easily exploitable vulnerability allows low privileged attacker with logon to the infrastructure where Oracle Solaris executes to compromise Oracle Solaris. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle Solaris accessible data. CVSS 3.1 Base Score 5.5 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N).
Vulnerability in the Oracle VM VirtualBox product of Oracle Virtualization (component: Core). Supported versions that are affected are Prior to 6.1.44 and Prior to 7.0.8. Easily exploitable vulnerability allows high privileged attacker with logon to the infrastructure where Oracle VM VirtualBox executes to compromise Oracle VM VirtualBox. While the vulnerability is in Oracle VM VirtualBox, attacks may significantly impact additional products (scope change). Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle VM VirtualBox accessible data. CVSS 3.1 Base Score 6.0 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:C/C:H/I:N/A:N).
Non-transparent sharing of branch predictor within a context in some Intel(R) Processors may allow an authorized user to potentially enable information disclosure via local access.
Arm Armv8-A core implementations utilizing speculative execution past unconditional changes in control flow may allow unauthorized disclosure of information to an attacker with local user access via a side-channel analysis, aka "straight-line speculation."
Vulnerability in the Oracle VM VirtualBox product of Oracle Virtualization (component: Core). Supported versions that are affected are Prior to 5.2.36, prior to 6.0.16 and prior to 6.1.2. Easily exploitable vulnerability allows low privileged attacker with logon to the infrastructure where Oracle VM VirtualBox executes to compromise Oracle VM VirtualBox. While the vulnerability is in Oracle VM VirtualBox, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle VM VirtualBox accessible data. CVSS 3.0 Base Score 6.5 (Confidentiality impacts). CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:N/A:N).
Unspecified vulnerability in the Java Runtime Environment (JRE) component in Oracle Java SE 7 Update 17 and earlier, and OpenJDK 6 and 7, allows local users to affect confidentiality via vectors related to JAX-WS. NOTE: the previous information is from the April 2013 CPU. Oracle has not commented on claims from another vendor that this issue is related to "processing of MTOM attachments" and the creation of temporary files with weak permissions.
A flaw was found in ansible. Credentials, such as secrets, are being disclosed in console log by default and not protected by no_log feature when using those modules. An attacker can take advantage of this information to steal those credentials. The highest threat from this vulnerability is to data confidentiality. Versions before ansible 2.9.18 are affected.
A temp directory creation vulnerability exists in all versions of Guava, allowing an attacker with access to the machine to potentially access data in a temporary directory created by the Guava API com.google.common.io.Files.createTempDir(). By default, on unix-like systems, the created directory is world-readable (readable by an attacker with access to the system). The method in question has been marked @Deprecated in versions 30.0 and later and should not be used. For Android developers, we recommend choosing a temporary directory API provided by Android, such as context.getCacheDir(). For other Java developers, we recommend migrating to the Java 7 API java.nio.file.Files.createTempDirectory() which explicitly configures permissions of 700, or configuring the Java runtime's java.io.tmpdir system property to point to a location whose permissions are appropriately configured.
IBM BigFix Inventory v9 9.2 stores user credentials in plain in clear text which can be read by a local user.
SDL (Simple DirectMedia Layer) through 1.2.15 and 2.x through 2.0.9 has a heap-based buffer over-read in BlitNtoN in video/SDL_blit_N.c when called from SDL_SoftBlit in video/SDL_blit.c.
SDL (Simple DirectMedia Layer) 2.x through 2.0.9 has a heap-based buffer over-read in Fill_IMA_ADPCM_block, caused by an integer overflow in IMA_ADPCM_decode() in audio/SDL_wave.c.
lavc_CopyPicture in modules/codec/avcodec/video.c in VideoLAN VLC media player through 3.0.7 has a heap-based buffer over-read because it does not properly validate the width and height.
idn in GNU libidn before 1.33 might allow remote attackers to obtain sensitive memory information by reading a zero byte as input, which triggers an out-of-bounds read.
An out-of-bounds read issue was discovered in the HTTP/2 protocol decoder in HAProxy 1.8.x and 1.9.x through 1.9.0 which can result in a crash. The processing of the PRIORITY flag in a HEADERS frame requires 5 extra bytes, and while these bytes are skipped, the total frame length was not re-checked to make sure they were present in the frame.
An issue was discovered in Squid 2.x through 2.7.STABLE9, 3.x through 3.5.28, and 4.x through 4.7. When Squid is configured to use Basic Authentication, the Proxy-Authorization header is parsed via uudecode. uudecode determines how many bytes will be decoded by iterating over the input and checking its table. The length is then used to start decoding the string. There are no checks to ensure that the length it calculates isn't greater than the input buffer. This leads to adjacent memory being decoded as well. An attacker would not be able to retrieve the decoded data unless the Squid maintainer had configured the display of usernames on error pages.
Vulnerability in the Oracle VM VirtualBox product of Oracle Virtualization (component: Core). Supported versions that are affected are Prior to 7.0.20. Difficult to exploit vulnerability allows high privileged attacker with logon to the infrastructure where Oracle VM VirtualBox executes to compromise Oracle VM VirtualBox. While the vulnerability is in Oracle VM VirtualBox, attacks may significantly impact additional products (scope change). Successful attacks of this vulnerability can result in unauthorized read access to a subset of Oracle VM VirtualBox accessible data. CVSS 3.1 Base Score 2.5 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:C/C:L/I:N/A:N).
Vulnerability in the Oracle Business Intelligence Enterprise Edition product of Oracle Analytics (component: Data Visualization). The supported version that is affected is 7.0.0.0.0. Easily exploitable vulnerability allows low privileged attacker with network access via HTTP to compromise Oracle Business Intelligence Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized read access to a subset of Oracle Business Intelligence Enterprise Edition accessible data. CVSS 3.1 Base Score 4.3 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N).
Vulnerability in the Oracle iStore product of Oracle E-Business Suite (component: User Management). Supported versions that are affected are 12.2.3-12.2.13. Easily exploitable vulnerability allows unauthenticated attacker with network access via HTTP to compromise Oracle iStore. Successful attacks of this vulnerability can result in unauthorized read access to a subset of Oracle iStore accessible data. CVSS 3.1 Base Score 5.3 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N).
Vulnerability in the Oracle Installed Base product of Oracle E-Business Suite (component: HTML UI). Supported versions that are affected are 12.2.3-12.2.13. Easily exploitable vulnerability allows unauthenticated attacker with network access via HTTP to compromise Oracle Installed Base. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Oracle Installed Base, attacks may significantly impact additional products (scope change). Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Oracle Installed Base accessible data as well as unauthorized read access to a subset of Oracle Installed Base accessible data. CVSS 3.1 Base Score 6.1 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N).
The Rust Programming Language Standard Library 1.34.x before 1.34.2 contains a stabilized method which, if overridden, can violate Rust's safety guarantees and cause memory unsafety. If the `Error::type_id` method is overridden then any type can be safely cast to any other type, causing memory safety vulnerabilities in safe code (e.g., out-of-bounds write or read). Code that does not manually implement Error::type_id is unaffected.
Vulnerability in the Oracle Customer Interaction History product of Oracle E-Business Suite (component: Outcome-Result). Supported versions that are affected are 12.2.3-12.2.13. Easily exploitable vulnerability allows unauthenticated attacker with network access via HTTP to compromise Oracle Customer Interaction History. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Oracle Customer Interaction History, attacks may significantly impact additional products (scope change). Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Oracle Customer Interaction History accessible data as well as unauthorized read access to a subset of Oracle Customer Interaction History accessible data. CVSS 3.1 Base Score 6.1 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N).
In Wireshark 3.2.x before 3.2.1, the WASSP dissector could crash. This was addressed in epan/dissectors/packet-wassp.c by using >= and <= to resolve off-by-one errors.
In Wireshark 2.4.0 to 2.4.13, 2.6.0 to 2.6.7, and 3.0.0, the DCERPC SPOOLSS dissector could crash. This was addressed in epan/dissectors/packet-dcerpc-spoolss.c by adding a boundary check.
In PHP versions 7.2.x below 7.2.26, 7.3.x below 7.3.13 and 7.4.0, PHP bcmath extension functions on some systems, including Windows, can be tricked into reading beyond the allocated space by supplying it with string containing characters that are identified as numeric by the OS but aren't ASCII numbers. This can read to disclosure of the content of some memory locations.
When PHP EXIF extension is parsing EXIF information from an image, e.g. via exif_read_data() function, in PHP versions 7.1.x below 7.1.30, 7.2.x below 7.2.19 and 7.3.x below 7.3.6 it is possible to supply it with data what will cause it to read past the allocated buffer. This may lead to information disclosure or crash.
When processing certain files, PHP EXIF extension in versions 7.1.x below 7.1.28, 7.2.x below 7.2.17 and 7.3.x below 7.3.4 can be caused to read past allocated buffer in exif_iif_add_value function. This may lead to information disclosure or crash.
When processing certain files, PHP EXIF extension in versions 7.1.x below 7.1.29, 7.2.x below 7.2.18 and 7.3.x below 7.3.5 can be caused to read past allocated buffer in exif_process_IFD_TAG function. This may lead to information disclosure or crash.
In GraphicsMagick 1.4 snapshot-20190322 Q8, there is a heap-based buffer over-read in the function ReadMIFFImage of coders/miff.c, which allows attackers to cause a denial of service or information disclosure via an RLE packet.
When PHP EXIF extension is parsing EXIF information from an image, e.g. via exif_read_data() function, in PHP versions 7.1.x below 7.1.31, 7.2.x below 7.2.21 and 7.3.x below 7.3.8 it is possible to supply it with data what will cause it to read past the allocated buffer. This may lead to information disclosure or crash.
When PHP EXIF extension is parsing EXIF information from an image, e.g. via exif_read_data() function, in PHP versions 7.2.x below 7.2.26, 7.3.x below 7.3.13 and 7.4.0 it is possible to supply it with data what will cause it to read past the allocated buffer. This may lead to information disclosure or crash.
Function iconv_mime_decode_headers() in PHP versions 7.1.x below 7.1.30, 7.2.x below 7.2.19 and 7.3.x below 7.3.6 may perform out-of-buffer read due to integer overflow when parsing MIME headers. This may lead to information disclosure or crash.
In GraphicsMagick 1.4 snapshot-20190322 Q8, there is a heap-based buffer over-read in the ReadMNGImage function of coders/png.c, which allows attackers to cause a denial of service or information disclosure via an image colormap.
cJSON before 1.7.11 allows out-of-bounds access, related to multiline comments.
In GraphicsMagick 1.4 snapshot-20190322 Q8, there is a heap-based buffer over-read in the function ReadXWDImage of coders/xwd.c, which allows attackers to cause a denial of service or information disclosure via a crafted image file.
In Wireshark 2.4.0 to 2.4.13, 2.6.0 to 2.6.7, and 3.0.0, the SRVLOC dissector could crash. This was addressed in epan/dissectors/packet-srvloc.c by preventing a heap-based buffer under-read.