NVIDIA NeMo Framework for all platforms contains a vulnerability in the NLP component, where malicious data created by an attacker could cause a code injection issue. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, information disclosure, and data tampering.
NVIDIA WebDataset for all platforms contains a vulnerability where an attacker could execute arbitrary code with elevated permissions. A successful exploit of this vulnerability might lead to escalation of privileges, data tampering, information disclosure, and denial of service.
NVIDIA vGPU software for Linux-style hypervisors contains a vulnerability in the Virtual GPU Manager, where a malicious guest could cause stack buffer overflow. A successful exploit of this vulnerability might lead to code execution, denial of service, escalation of privileges, information disclosure, or data tampering.
NVIDIA Virtual GPU Manager contains a vulnerability in the vGPU plugin, in which the software reads from a buffer by using buffer access mechanisms such as indexes or pointers that reference memory locations after the targeted buffer, which may lead to code execution, denial of service, escalation of privileges, or information disclosure. This affects vGPU version 8.x (prior to 8.4), version 9.x (prior to 9.4) and version 10.x (prior to 10.3).
NVIDIA DGX A100 SBIOS contains a vulnerability where an attacker may modify arbitrary memory of SMRAM by exploiting the GenericSio and LegacySmmSredir SMM APIs. A successful exploit of this vulnerability may lead to denial of service, escalation of privileges, and information disclosure.
NVIDIA GPU Display Driver for Windows contains a vulnerability in wksServicePlugin.dll, where the driver implementation does not restrict or incorrectly restricts access from the named pipe server to a connecting client, which may lead to potential impersonation to the client's secure context.
NVIDIA DGX A100 SBIOS contains a vulnerability where an attacker may cause an SMI callout vulnerability that could be used to execute arbitrary code at the SMM level. A successful exploit of this vulnerability may lead to code execution, denial of service, escalation of privileges, and information disclosure.
NVIDIA DGX H100 BMC contains a vulnerability in IPMI, where an attacker may cause improper input validation. A successful exploit of this vulnerability may lead to code execution, denial of services, escalation of privileges, and information disclosure.
NVIDIA DGX H100 BMC contains a vulnerability in the REST service where a host user may cause as improper authentication issue. A successful exploit of this vulnerability may lead to escalation of privileges, information disclosure, code execution, and denial of service.
NVIDIA GPU Display Driver for Windows and Linux contains a vulnerability where unexpected untrusted data is parsed, which may lead to code execution, denial of service, escalation of privileges, data tampering, or information disclosure.
NVIDIA GPU Display Driver for Windows contains a vulnerability in the user mode layer, where an unprivileged regular user can access or modify system files or other files that are critical to the application, which may lead to code execution, denial of service, escalation of privileges, information disclosure, or data tampering.
Trusty TLK contains a vulnerability in the NVIDIA TLK kernel’s tz_map_shared_mem function where an integer overflow on the size parameter causes the request buffer and the logging buffer to overflow, allowing writes to arbitrary addresses within the kernel.
Trusty contains a vulnerability in the HDCP service TA where bounds checking in command 9 is missing. Improper restriction of operations within the bounds of a memory buffer might lead to escalation of privileges, information disclosure, and denial of service.
Bootloader contains a vulnerability in NVIDIA MB2 where potential heap overflow might cause corruption of the heap metadata, which might lead to arbitrary code execution, denial of service, and information disclosure during secure boot.
Trusty contains a vulnerability in the HDCP service TA where bounds checking in command 11 is missing. Improper restriction of operations within the bounds of a memory buffer might lead to information disclosure, denial of service, or escalation of privileges.
Trusty contains a vulnerability in command handlers where the length of input buffers is not verified. This vulnerability can cause memory corruption, which may lead to information disclosure, escalation of privileges, and denial of service.
Bootloader contains a vulnerability in NVIDIA TegraBoot where a potential heap overflow might allow an attacker to control all the RAM after the heap block, leading to denial of service or code execution.
NVIDIA vGPU manager contains a vulnerability in the vGPU plugin, in which an input index is not validated, which may lead to integer overflow, which in turn may cause tampering of data, information disclosure, or denial of service. This affects vGPU version 8.x (prior to 8.6) and version 11.0 (prior to 11.3).
NVIDIA GPU Display Driver for Windows contains a vulnerability in nvidia-smi where an uncontrolled DLL loading path may lead to arbitrary code execution, denial of service, information disclosure, and data tampering.
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager (vGPU plugin), where it improperly validates the length field in a request from a guest. This flaw allows a malicious guest to send a length field that is inconsistent with the actual length of the input, which may lead to information disclosure, data tampering, or denial of service. This affects vGPU version 12.x (prior to 12.3), version 11.x (prior to 11.5) and version 8.x (prior 8.8).
NVIDIA GPU Display Driver for Windows, all versions, contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for DxgkDdiEscape in which improper access control may lead to denial of service and information disclosure.
NVIDIA Linux kernel distributions contain a vulnerability in FuSa Capture (VI/ISP), where integer underflow due to lack of input validation may lead to complete denial of service, partial integrity, and serious confidentiality loss for all processes in the system.
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager (vGPU plugin), where there is the potential to execute privileged operations by the guest OS, which may lead to information disclosure, data tampering, escalation of privileges, and denial of service
NVIDIA vGPU software contains a vulnerability in the guest kernel mode driver and Virtual GPU Manager (vGPU plugin), in which an input length is not validated, which may lead to information disclosure, tampering of data, or denial of service. This affects vGPU version 12.x (prior to 12.2) and version 11.x (prior to 11.4).
NVIDIA Windows GPU Display Driver, all versions, contains a vulnerability in the NVIDIA Control Panel component in which an attacker with local system access can corrupt a system file, which may lead to denial of service or escalation of privileges.
NVIDIA GPU Display Driver for Windows and Linux contains a vulnerability in firmware where the driver contains an assert() or similar statement that can be triggered by an attacker, which leads to an application exit or other behavior that is more severe than necessary, and may lead to denial of service or system crash.
NVIDIA GPU Display Driver for Windows and Linux, R450 and R460 driver branch, contains a vulnerability where the software uses a reference count to manage a resource that is incorrectly updated, which may lead to denial of service.
The string component in the GNU C Library (aka glibc or libc6) through 2.28, when running on the x32 architecture, incorrectly attempts to use a 64-bit register for size_t in assembly codes, which can lead to a segmentation fault or possibly unspecified other impact, as demonstrated by a crash in __memmove_avx_unaligned_erms in sysdeps/x86_64/multiarch/memmove-vec-unaligned-erms.S during a memcpy.
In FreeBSD 12.0-STABLE before r350261, 12.0-RELEASE before 12.0-RELEASE-p8, 11.3-STABLE before r350263, 11.3-RELEASE before 11.3-RELEASE-p1, and 11.2-RELEASE before 11.2-RELEASE-p12, system calls operating on file descriptors as part of mqueuefs did not properly release the reference allowing a malicious user to overflow the counter allowing access to files, directories, and sockets opened by processes owned by other users.
In FreeBSD 12.0-STABLE before r350222, 12.0-RELEASE before 12.0-RELEASE-p8, 11.3-STABLE before r350223, 11.3-RELEASE before 11.3-RELEASE-p1, and 11.2-RELEASE before 11.2-RELEASE-p12, rights transmitted over a domain socket did not properly release a reference on transmission error allowing a malicious user to cause the reference counter to wrap, forcing a free event. This could allow a malicious local user to gain root privileges or escape from a jail.
In Android for MSM, Firefox OS for MSM, QRD Android, with all Android releases from CAF using the Linux kernel, when memory allocation fails while creating a calibration block in create_cal_block stale pointers are left uncleared.
An elevation of privilege vulnerability exists when the DirectX Graphics Kernel (DXGKRNL) driver improperly handles objects in memory, aka "DirectX Graphics Kernel Elevation of Privilege Vulnerability." This affects Windows Server 2016, Windows 10, Windows 10 Servers. This CVE ID is unique from CVE-2018-8400, CVE-2018-8401, CVE-2018-8405.
An elevation of privilege vulnerability exists when the Windows kernel fails to properly handle objects in memory, aka "Windows Kernel Elevation of Privilege Vulnerability." This affects Windows 7, Windows Server 2012 R2, Windows RT 8.1, Windows Server 2008, Windows Server 2019, Windows Server 2012, Windows 8.1, Windows Server 2016, Windows Server 2008 R2, Windows 10, Windows 10 Servers.
An elevation of privilege vulnerability exists in the way that the Windows Kernel handles objects in memory, aka "Windows Kernel Elevation of Privilege Vulnerability." This affects Windows Server 2012 R2, Windows RT 8.1, Windows Server 2016, Windows 8.1, Windows 10, Windows 10 Servers.
An elevation of privilege vulnerability exists in the way that the Windows Kernel handles objects in memory, aka "Windows Kernel Elevation of Privilege Vulnerability." This affects Windows Server 2016, Windows 10, Windows Server 2019, Windows 10 Servers.
An elevation of privilege vulnerability exists when the DirectX Graphics Kernel (DXGKRNL) driver improperly handles objects in memory, aka "DirectX Graphics Kernel Elevation of Privilege Vulnerability." This affects Windows Server 2012 R2, Windows RT 8.1, Windows Server 2016, Windows 8.1, Windows 10, Windows 10 Servers. This CVE ID is unique from CVE-2018-8400, CVE-2018-8401, CVE-2018-8406.
An elevation of privilege vulnerability exists in Windows when the Win32k component fails to properly handle objects in memory, aka "Win32k Elevation of Privilege Vulnerability." This affects Windows 7, Windows Server 2012 R2, Windows RT 8.1, Windows Server 2008, Windows Server 2019, Windows Server 2012, Windows 8.1, Windows Server 2016, Windows Server 2008 R2, Windows 10, Windows 10 Servers. This CVE ID is unique from CVE-2018-8641.
A vulnerability, which was classified as problematic, was found in Xoslab Easy File Locker 2.2.0.184. This affects the function MessageNotifyCallback in the library xlkfs.sys. The manipulation leads to denial of service. Local access is required to approach this attack. The exploit has been disclosed to the public and may be used. The identifier VDB-221457 was assigned to this vulnerability.
Unisys Stealth 3.3 Windows endpoints before 3.3.016.1 allow local users to gain access to Stealth-enabled devices by leveraging improper cleanup of memory used for negotiation key storage.
arm: guest_physmap_remove_page not removing the p2m mappings The functions to remove one or more entries from a guest p2m pagetable on Arm (p2m_remove_mapping, guest_physmap_remove_page, and p2m_set_entry with mfn set to INVALID_MFN) do not actually clear the pagetable entry if the entry doesn't have the valid bit set. It is possible to have a valid pagetable entry without the valid bit set when a guest operating system uses set/way cache maintenance instructions. For instance, a guest issuing a set/way cache maintenance instruction, then calling the XENMEM_decrease_reservation hypercall to give back memory pages to Xen, might be able to retain access to those pages even after Xen started reusing them for other purposes.
In freeIsolatedUidLocked of ProcessList.java, there is a possible UID reuse due to improper cleanup. This could lead to local escalation of privilege between constrained processes with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-10Android ID: A-146313311
In onNullBinding of ManagedServices.java, there is a possible permission bypass due to an incorrectly unbound service. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-12Android ID: A-192475653