NETGEAR RAX30 fing_dil Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of NETGEAR RAX30 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within fing_dil service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-19843.
TOTOLINK X2000R Gh v1.0.0-B20230221.0948.web was discovered to contain a stack overflow via the function formWlSiteSurvey.
TP-LINK TL-WR886N V7.0_3.0.14_Build_221115_Rel.56908n.bin was discovered to contain a stack overflow via the function chkRegVeriRegister.
A stack-based buffer overflow in dnsproxy in ConnMan before 1.39 could be used by network adjacent attackers to execute code.
rtw_wx_set_scan in drivers/staging/rtl8188eu/os_dep/ioctl_linux.c in the Linux kernel through 5.11.6 allows writing beyond the end of the ->ssid[] array. NOTE: from the perspective of kernel.org releases, CVE IDs are not normally used for drivers/staging/* (unfinished work); however, system integrators may have situations in which a drivers/staging issue is relevant to their own customer base.
TP-LINK TL-WR886N V7.0_3.0.14_Build_221115_Rel.56908n.bin was discovered to contain a stack overflow via the function upgradeInfoRegister.
TOTOLINK X2000R Gh v1.0.0-B20230221.0948.web was discovered to contain a stack overflow via the function formMultiAPVLAN.
D-Link G416 httpd API-AUTH Timestamp Processing Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link G416 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the HTTP service listening on TCP port 80. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-21663.
TOTOLINK X2000R Gh v1.0.0-B20230221.0948.web was discovered to contain a stack overflow via the function formMapDel.
TOTOLINK X2000R Gh v1.0.0-B20230221.0948.web was discovered to contain a stack overflow via the function formPortFw.
TP-LINK TL-WR886N V7.0_3.0.14_Build_221115_Rel.56908n.bin was discovered to contain a stack overflow via the function getResetVeriRegister.
TP-LINK TL-WR886N V7.0_3.0.14_Build_221115_Rel.56908n.bin and TL-WDR7660 2.0.30 was discovered to contain a stack overflow via the function bindRequestHandle.
TP-LINK device TL-WR886N V7.0_3.0.14_Build_221115_Rel.56908n.bin and TL-WDR7660 2.0.30 were discovered to contain a stack overflow via the function deviceInfoRegister.
TOTOLINK X2000R Gh v1.0.0-B20230221.0948.web was discovered to contain a stack overflow via the function formWirelessTbl.
TP-LINK TL-WR886N V7.0_3.0.14_Build_221115_Rel.56908n.bin was discovered to contain a stack overflow via the function resetCloudPwdRegister.
TP-LINK TL-WR886N V7.0_3.0.14_Build_221115_Rel.56908n.bin was discovered to contain a stack overflow via the function RegisterRegister.
TP-LINK TL-WR886N V7.0_3.0.14_Build_221115_Rel.56908n.bin was discovered to contain a stack overflow via the function loginRegister.
TP-LINK TL-WR886N V7.0_3.0.14_Build_221115_Rel.56908n.bin was discovered to contain a stack overflow via the function getRegVeriRegister.
D-Link DAP-1325 get_value_of_key Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of XML data provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18824.
OpenSLP as used in ESXi (7.0 before ESXi70U1c-17325551, 6.7 before ESXi670-202102401-SG, 6.5 before ESXi650-202102101-SG) has a heap-overflow vulnerability. A malicious actor residing within the same network segment as ESXi who has access to port 427 may be able to trigger the heap-overflow issue in OpenSLP service resulting in remote code execution.
TOTOLINK X5000R V9.1.0u.6118_B20201102 and TOTOLINK A7000R V9.1.0u.6115_B20201022 was discovered to contain a stack overflow via the lang parameter in the function setLanguageCfg.
in OpenHarmony v3.2.4 and prior versions allow an adjacent attacker arbitrary code execution through out-of-bounds write.
D-Link DAP-1325 SetAPLanSettings DeviceName Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of XML data provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18825.
Certain NETGEAR devices are affected by a stack-based buffer overflow by an unauthenticated attacker. This affects D6200 before 1.1.00.24, R6700v2 before 1.1.0.42, R6800 before 1.1.0.42, and R6900v2 before 1.1.0.42.
Certain NETGEAR devices are affected by a stack-based buffer overflow by an unauthenticated attacker. This affects D7800 before 1.0.1.28, R6100 before 1.0.1.16, R7500 before 1.0.0.112, R7500v2 before 1.0.3.20, R7800 before 1.0.2.36, R9000 before 1.0.2.52, WNDR3700v4 before 1.0.2.88, WNDR4300 before 1.0.2.90, WNDR4300v2 before 1.0.0.48, and WNDR4500v3 before 1.0.0.48.
D-Link DAP-1325 SetAPLanSettings Gateway Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of XML data provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18826.
D-Link DAP-1325 SetSetupWizardStatus Enabled Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of XML data provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18838.
D-Link DAP-1325 SetAPLanSettings IPAddr Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of XML data provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18827.
D-Link DAP-1325 get_value_from_app Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of XML data provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18823.
D-Link DIR-X3260 Prog.cgi Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DIR-X3260 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the prog.cgi binary, which handles HNAP requests made to the lighttpd webserver. The issue results from the lack of proper validation of the length an user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-20774.
In build_read_multi_rsp of gatt_sr.cc, there is a possible out of bounds write due to a missing bounds check. This could lead to remote (proximal/adjacent) code execution with no additional execution privileges needed. User interaction is not needed for exploitation.
D-Link DIR-X3260 Prog.cgi Heap-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DIR-X3260 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the prog.cgi binary, which handles HNAP requests made to the lighttpd webserver. The issue results from the lack of proper validation of the length an user-supplied data prior to copying it to a fixed-length heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-20727.
In handle_rc_metamsg_cmd of btif_rc.cc, there is a possible out of bounds write due to a missing bounds check. This could lead to remote code execution over Bluetooth with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-11 Android-8.1 Android-9 Android-10Android ID: A-181860042
In phNxpNciHal_process_ext_rsp of phNxpNciHal_ext.cc, there is a possible out of bounds write due to a missing bounds check. This could lead to remote code execution over NFC with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-10 Android-11 Android-12 Android-9Android ID: A-181660091
D-Link DIR-816 A2 v1.10CNB05 was discovered to contain a stack overflow via parameter macCloneMac in setMAC.
D-Link DIR-816 A2 v1.10CNB05 was discovered to contain a stack overflow via parameter flag_5G in showMACfilterMAC.
D-Link DAP-1325 SetHostIPv6StaticSettings StaticDNS1 Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of XML data provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18835.
D-Link DIR-816 A2 v1.10CNB05 was discovered to contain a stack overflow via parameter removeRuleList in form2IPQoSTcDel.
Older generation Abbott FreeStyle Libre sensors allow remote attackers within close proximity to enable write access to memory via a specific NFC unlock command. NOTE: The vulnerability is not present in the FreeStyle Libre 14-day in the U.S (announced in August 2018) and FreeStyle Libre 2 outside the U.S (announced in October 2018).
D-Link DIR-816 A2 v1.10CNB05 was discovered to contain a stack overflow via parameter nvmacaddr in form2Dhcpip.cgi.
D-Link DIR-816 A2 v1.10CNB05 was discovered to contain a stack overflow via parameter statuscheckpppoeuser in dir_setWanWifi.
Heap-based buffer overflow in the firmware for some Intel(R) Server Boards, Server Systems and Compute Modules before version 1.59 may allow an unauthenticated user to potentially enable escalation of privilege via adjacent access.
D-Link DAP-1325 SetHostIPv6Settings IPv6Mode Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of XML data provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18832.
Texas Instruments BLE-STACK v2.2.1 for SimpleLink CC2640 and CC2650 devices allows remote attackers to execute arbitrary code via a malformed packet that triggers a buffer overflow.
D-Link DAP-1325 SetAPLanSettings SecondaryDNS Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of XML data provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18830.
D-Link DAP-1325 SetHostIPv6StaticSettings StaticPrefixLength Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of XML data provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18837.
D-Link DAP-2622 DDP Set Date-Time Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-2622 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the DDP service. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. . Was ZDI-CAN-20086.
D-Link DAP-1325 SetHostIPv6StaticSettings StaticDefaultGateway Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of XML data provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18834.
D-Link DAP-1325 SetTriggerAPValidate Key Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of XML data provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18839.
D-Link DAP-1325 setDhcpAssignRangeUpdate lan_ipaddr Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DAP-1325 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the handling of XML data provided to the HNAP1 SOAP endpoint. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-18841.