Veritas Backup Exec (BE) Agent contains an improper authentication vulnerability that could allow an attacker unauthorized access to the BE Agent via SHA authentication scheme.
Apply updates per vendor instructions.
Veritas APTARE versions prior to 10.4 included code that bypassed the normal login process when specific authentication credentials were provided to the server.
In Veritas NetBackup 8.0 and earlier and NetBackup Appliance 3.0 and earlier, there is unauthenticated, arbitrary remote command execution using the 'bprd' process.
An issue was discovered in the server in Veritas Enterprise Vault before 15.2, ZDI-CAN-24405. It allows remote attackers to execute arbitrary code because untrusted data, received on a .NET Remoting TCP port, is deserialized.
An issue was discovered in the server in Veritas Enterprise Vault before 15.2, ZDI-CAN-24334. It allows remote attackers to execute arbitrary code because untrusted data, received on a .NET Remoting TCP port, is deserialized.
An issue was discovered in the server in Veritas Enterprise Vault before 15.2, ZDI-CAN-24343. It allows remote attackers to execute arbitrary code because untrusted data, received on a .NET Remoting TCP port, is deserialized.
An issue was discovered in the server in Veritas Enterprise Vault before 15.2, ZDI-CAN-24341. It allows remote attackers to execute arbitrary code because untrusted data, received on a .NET Remoting TCP port, is deserialized.
An issue was discovered in Veritas NetBackup Before 8.0 and NetBackup Appliance Before 3.0. NetBackup Cloud Storage Service uses a hardcoded username and password.
An issue was discovered in Veritas NetBackup 8.0 and earlier and NetBackup Appliance 3.0 and earlier. Unauthenticated CORBA interfaces permit inappropriate access.
An issue (6 of 6) was discovered in Veritas Enterprise Vault through 14.1.2. On start-up, the Enterprise Vault application starts several services that listen on random .NET Remoting TCP ports for possible commands from client applications. These TCP services can be exploited due to deserialization behavior that is inherent to the .NET Remoting service. A malicious attacker can exploit both TCP remoting services and local IPC services on the Enterprise Vault Server. This vulnerability is mitigated by properly configuring the servers and firewall as described in the vendor's security alert for this vulnerability (VTS21-003, ZDI-CAN-14079).
An issue (2 of 6) was discovered in Veritas Enterprise Vault through 14.1.2. On start-up, the Enterprise Vault application starts several services that listen on random .NET Remoting TCP ports for possible commands from client applications. These TCP services can be exploited due to deserialization behavior that is inherent to the .NET Remoting service. A malicious attacker can exploit both TCP remoting services and local IPC services on the Enterprise Vault Server. This vulnerability is mitigated by properly configuring the servers and firewall as described in the vendor's security alert for this vulnerability (VTS21-003, ZDI-CAN-14076).
An issue (5 of 6) was discovered in Veritas Enterprise Vault through 14.1.2. On start-up, the Enterprise Vault application starts several services that listen on random .NET Remoting TCP ports for possible commands from client applications. These TCP services can be exploited due to deserialization behavior that is inherent to the .NET Remoting service. A malicious attacker can exploit both TCP remoting services and local IPC services on the Enterprise Vault Server. This vulnerability is mitigated by properly configuring the servers and firewall as described in the vendor's security alert for this vulnerability (VTS21-003, ZDI-CAN-14080).
An issue (3 of 6) was discovered in Veritas Enterprise Vault through 14.1.2. On start-up, the Enterprise Vault application starts several services that listen on random .NET Remoting TCP ports for possible commands from client applications. These TCP services can be exploited due to deserialization behavior that is inherent to the .NET Remoting service. A malicious attacker can exploit both TCP remoting services and local IPC services on the Enterprise Vault Server. This vulnerability is mitigated by properly configuring the servers and firewall as described in the vendor's security alert for this vulnerability (VTS21-003, ZDI-CAN-14074).
An arbitrary command injection vulnerability in the Cluster Server component of Veritas InfoScale allows an unauthenticated remote attacker to execute arbitrary commands as root or administrator. These Veritas products are affected: Access 7.4.2 and earlier, Access Appliance 7.4.2 and earlier, Flex Appliance 1.2 and earlier, InfoScale 7.3.1 and earlier, InfoScale between 7.4.0 and 7.4.1, Veritas Cluster Server (VCS) 6.2.1 and earlier on Linux/UNIX, Veritas Cluster Server (VCS) 6.1 and earlier on Windows, Storage Foundation HA (SFHA) 6.2.1 and earlier on Linux/UNIX, and Storage Foundation HA (SFHA) 6.1 and earlier on Windows.
An issue (4 of 6) was discovered in Veritas Enterprise Vault through 14.1.2. On start-up, the Enterprise Vault application starts several services that listen on random .NET Remoting TCP ports for possible commands from client applications. These TCP services can be exploited due to deserialization behavior that is inherent to the .NET Remoting service. A malicious attacker can exploit both TCP remoting services and local IPC services on the Enterprise Vault Server. This vulnerability is mitigated by properly configuring the servers and firewall as described in the vendor's security alert for this vulnerability (VTS21-003, ZDI-CAN-14075).
A vulnerability was discovered in Veritas NetBackup Snapshot Manager before 10.2.0.1 that allowed untrusted clients to interact with the RabbitMQ service. This was caused by improper validation of the client certificate due to misconfiguration of the RabbitMQ service. Exploiting this impacts the confidentiality and integrity of messages controlling the backup and restore jobs, and could result in the service becoming unavailable. This impacts only the jobs controlling the backup and restore activities, and does not allow access to (or deletion of) the backup snapshot data itself. This vulnerability is confined to the NetBackup Snapshot Manager feature and does not impact the RabbitMQ instance on the NetBackup primary servers.
In Veritas NetBackup before 8.1.2 and NetBackup Appliance before 3.1.2, the BPCD process inadequately validates the file path, allowing an unauthenticated attacker to upload and execute a custom file.
An issue was discovered in the server in Veritas Enterprise Vault before 15.2, ZDI-CAN-24336. It allows remote attackers to execute arbitrary code because untrusted data, received on a .NET Remoting TCP port, is deserialized.
An issue was discovered in Veritas NetBackup through 10.0 and related Veritas products. The NetBackup Primary server is vulnerable to a SQL Injection attack affecting idm, nbars, and SLP manager code.
An issue was discovered in Veritas NetBackup through 10.0 and related Veritas products. The NetBackup Primary server is vulnerable to a second-order SQL Injection attack affecting the NBFSMCLIENT service by leveraging CVE-2022-42302.
An issue was discovered in Veritas NetBackup through 10.0 and related Veritas products. The NetBackup Primary server is vulnerable to a SQL Injection attack affecting the NBFSMCLIENT service.
An issue was discovered in Veritas NetBackup through 10.0.0.1 and related Veritas products. The NetBackup Primary server is vulnerable to an XML External Entity (XXE) Injection attack through the DiscoveryService service.
An issue was discovered in the server in Veritas Enterprise Vault before 15.2, ZDI-CAN-24344. It allows remote attackers to execute arbitrary code because untrusted data, received on a .NET Remoting TCP port, is deserialized.
In Veritas NetBackup OpsCenter, a hard-coded credential exists that could be used to exploit the underlying VxSS subsystem. This affects 8.x through 8.3.0.2, 9.x through 9.0.0.1, 9.1.x through 9.1.0.1, and 10.
In Veritas NetBackup OpsCenter, an unauthenticated remote attacker may be able to perform remote command execution through a Java classloader manipulation. This affects 8.x through 8.3.0.2, 9.x through 9.0.0.1, 9.1.x through 9.1.0.1, and 10.
In Veritas NetBackup OpsCenter, an unauthenticated remote attacker may compromise the host by exploiting an incorrectly patched vulnerability. This affects 8.x through 8.3.0.2, 9.x through 9.0.0.1, 9.1.x through 9.1.0.1, and 10.
An issue was discovered in Veritas NetBackup 8.1.x through 8.1.2, 8.2, 8.3.x through 8.3.0.2, 9.x through 9.0.0.1, and 9.1.x through 9.1.0.1 (and related NetBackup products). An attacker with unauthenticated access could remotely execute arbitrary commands on a NetBackup Primary server.
An issue was discovered in Veritas NetBackup Flex Scale through 3.0 and Access Appliance through 8.0.100. Unauthenticated remote command execution can occur via the management portal.
Veritas APTARE versions prior to 10.5 did not perform adequate authorization checks. This vulnerability could allow for remote code execution by an unauthenticated user.
A Spring MVC or Spring WebFlux application running on JDK 9+ may be vulnerable to remote code execution (RCE) via data binding. The specific exploit requires the application to run on Tomcat as a WAR deployment. If the application is deployed as a Spring Boot executable jar, i.e. the default, it is not vulnerable to the exploit. However, the nature of the vulnerability is more general, and there may be other ways to exploit it.
An issue was discovered in the server in Veritas Enterprise Vault before 15.2, ZDI-CAN-24339. It allows remote attackers to execute arbitrary code because untrusted data, received on a .NET Remoting TCP port, is deserialized.
An issue was discovered in Veritas InfoScale Operations Manager (VIOM) before 7.4.2.800 and 8.x before 8.0.410. The InfoScale VIOM web application is vulnerable to SQL Injection in some of the areas of the application. This allows attackers (who must have admin credentials) to submit arbitrary SQL commands on the back-end database to create, read, update, or delete any sensitive data stored in the database.
An issue (1 of 6) was discovered in Veritas Enterprise Vault through 14.1.2. On start-up, the Enterprise Vault application starts several services that listen on random .NET Remoting TCP ports for possible commands from client applications. These TCP services can be exploited due to deserialization behavior that is inherent to the .NET Remoting service. A malicious attacker can exploit both TCP remoting services and local IPC services on the Enterprise Vault Server. This vulnerability is mitigated by properly configuring the servers and firewall as described in the vendor's security alert for this vulnerability (VTS21-003, ZDI-CAN-14078).
An issue was discovered in Veritas Backup Exec before 21.2. The communication between a client and an Agent requires successful authentication, which is typically completed over a secure TLS communication. However, due to a vulnerability in the SHA Authentication scheme, an attacker is able to gain unauthorized access and complete the authentication process. Subsequently, the client can execute data management protocol commands on the authenticated connection. By using crafted input parameters in one of these commands, an attacker can access an arbitrary file on the system using System privileges.
An issue was discovered in Veritas NetBackup Flex Scale through 3.0 and Access Appliance through 8.0.100. A default password is persisted after installation and may be discovered and used to escalate privileges.
An issue was discovered in Veritas Backup Exec before 21.2. The communication between a client and an Agent requires successful authentication, which is typically completed over a secure TLS communication. However, due to a vulnerability in the SHA Authentication scheme, an attacker is able to gain unauthorized access and complete the authentication process. Subsequently, the client can execute data management protocol commands on the authenticated connection. The attacker could use one of these commands to execute an arbitrary command on the system using system privileges.
A vulnerability in the TP-Link Archer c20 router with firmware version V6.6_230412 and earlier permits unauthorized individuals to bypass the authentication of some interfaces under the /cgi directory. When adding Referer: http://tplinkwifi.net to the the request, it will be recognized as passing the authentication.
Dahua DVR 2.608.0000.0 and 2.608.GV00.0 allows remote attackers to bypass authentication and obtain sensitive information including user credentials, change user passwords, clear log files, and perform other actions via a request to TCP port 37777.
A vulnerability has been identified in SINAMICS S200 (All versions with serial number beginning with SZVS8, SZVS9, SZVS0 or SZVSN and the FS number is 02). The affected device contains an unlocked bootloader. This security oversight enables attackers to inject malicious code, or install untrusted firmware. The intrinsic security features designed to protect against data manipulation and unauthorized access are compromised when the bootloader is not secured.
Unspecified vulnerability in HP Intelligent Management Center (iMC) and HP IMC Service Operation Management Software Module allows remote attackers to bypass authentication via unknown vectors, aka ZDI-CAN-1644.
An Improper Authentication issue was discovered in Hikvision DS-2CD2xx2F-I Series V5.2.0 build 140721 to V5.4.0 build 160530, DS-2CD2xx0F-I Series V5.2.0 build 140721 to V5.4.0 Build 160401, DS-2CD2xx2FWD Series V5.3.1 build 150410 to V5.4.4 Build 161125, DS-2CD4x2xFWD Series V5.2.0 build 140721 to V5.4.0 Build 160414, DS-2CD4xx5 Series V5.2.0 build 140721 to V5.4.0 Build 160421, DS-2DFx Series V5.2.0 build 140805 to V5.4.5 Build 160928, and DS-2CD63xx Series V5.0.9 build 140305 to V5.3.5 Build 160106 devices. The improper authentication vulnerability occurs when an application does not adequately or correctly authenticate users. This may allow a malicious user to escalate his or her privileges on the system and gain access to sensitive information.
Hanwha Techwin SRN-4000, SRN-4000 firmware versions prior to SRN4000_v2.16_170401, A specially crafted http request and response could allow an attacker to gain access to the device management page with admin privileges without proper authentication.
An Improper Authentication issue was discovered in Newport XPS-Cx and XPS-Qx. An attacker may bypass authentication by accessing a specific uniform resource locator (URL).
The Lifeline Donation plugin for WordPress is vulnerable to authentication bypass in versions up to, and including, 1.2.6. This is due to insufficient verification on the user being supplied during the checkout through the plugin. This makes it possible for unauthenticated attackers to log in as any existing user on the site, such as an administrator, if they have access to the email.
A Use of Client-Side Authentication issue was discovered in Advantech B+B SmartWorx MESR901 firmware versions 1.5.2 and prior. The web interface uses JavaScript to check client authentication and redirect unauthorized users. Attackers may intercept requests and bypass authentication to access restricted web pages.
PostgreSQL versions before 9.2.22, 9.3.18, 9.4.13, 9.5.8 and 9.6.4 are vulnerable to incorrect authentication flaw allowing remote attackers to gain access to database accounts with an empty password.
In ABB IP GATEWAY 3.39 and prior, by accessing a specific uniform resource locator (URL) on the web server, a malicious user is able to access the configuration files and application pages without authentication.
An authentication bypass vulnerability in anji-plus AJ-Report up to v1.4.2 allows unauthenticated attackers to execute arbitrary code via a crafted URL.
A remote attacker could bypass the Sandstorm organization restriction before build 0.203 via a comma in an email-address field.
T-Com Speedport 500V routers with firmware 1.31 allow remote attackers to bypass authentication and reconfigure the device via a LOGINKEY=TECOM cookie value.
A vulnerability in the authentication module of Cisco Identity Services Engine (ISE) could allow an unauthenticated, remote attacker to bypass local authentication. The vulnerability is due to improper handling of authentication requests and policy assignment for externally authenticated users. An attacker could exploit this vulnerability by authenticating with a valid external user account that matches an internal username and incorrectly receiving the authorization policy of the internal account. An exploit could allow the attacker to have Super Admin privileges for the ISE Admin portal. This vulnerability does not affect endpoints authenticating to the ISE. The vulnerability affects Cisco ISE, Cisco ISE Express, and Cisco ISE Virtual Appliance running Release 1.3, 1.4, 2.0.0, 2.0.1, or 2.1.0. Release 2.2.x is not affected. Cisco Bug IDs: CSCvb10995.