Use after free in autofill in Google Chrome prior to 86.0.4240.75 allowed a remote attacker who had compromised the renderer process to potentially perform a sandbox escape via a crafted HTML page.
Use after free in payments in Google Chrome prior to 86.0.4240.75 allowed a remote attacker to potentially perform a sandbox escape via a crafted HTML page.
Heap buffer overflow in storage in Google Chrome prior to 85.0.4183.121 allowed a remote attacker to potentially perform out of bounds memory access via a crafted HTML page.
Use after free in WebRTC in Google Chrome prior to 86.0.4240.75 allowed a remote attacker to potentially exploit heap corruption via a crafted WebRTC stream.
Insufficient policy enforcement in downloads in Google Chrome on Windows prior to 86.0.4240.75 allowed a remote attacker who convinced the user to open files to execute arbitrary code via a crafted HTML page.
Insufficient policy enforcement in extensions in Google Chrome prior to 85.0.4183.121 allowed an attacker who convinced a user to install a malicious extension to potentially perform a sandbox escape via a crafted Chrome Extension.
Use after free in user interface in Google Chrome prior to 86.0.4240.183 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.
Use after free in password manager in Google Chrome prior to 86.0.4240.75 allowed a remote attacker who had compromised the renderer process to potentially perform a sandbox escape via a crafted HTML page.
Out of bounds write in V8 in Google Chrome prior to 86.0.4240.99 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.
Use after free in printing in Google Chrome prior to 86.0.4240.75 allowed a remote attacker who had compromised the renderer process to potentially perform a sandbox escape via a crafted HTML page.
Heap buffer overflow in UI in Google Chrome on Windows prior to 86.0.4240.183 allowed a remote attacker who had compromised the renderer process to potentially perform a sandbox escape via a crafted HTML page.
Insufficient data validation in navigation in Google Chrome on Android prior to 86.0.4240.75 allowed a remote attacker who had compromised the renderer process to bypass navigation restrictions via a crafted HTML page.
Libde265 1.0.9 is vulnerable to Buffer Overflow in function void put_qpel_fallback<unsigned short>
A heap-based buffer overflow was discovered in the opj_t2_encode_packet function in lib/openjp2/t2.c in OpenJPEG 2.2.0. The vulnerability causes an out-of-bounds write, which may lead to remote denial of service or possibly unspecified other impact.
A mishandled zero case was discovered in opj_j2k_set_cinema_parameters in lib/openjp2/j2k.c in OpenJPEG 2.2.0. The vulnerability causes an out-of-bounds write, which may lead to remote denial of service (heap-based buffer overflow affecting opj_write_bytes_LE in lib/openjp2/cio.c and opj_j2k_write_sot in lib/openjp2/j2k.c) or possibly remote code execution.
A double-Free vulnerability exists in the XCF image rendering functionality of SDL2_image-2.0.2. A specially crafted XCF image can cause a Double-Free situation to occur. An attacker can display a specially crafted image to trigger this vulnerability.
An off-by-one error was discovered in opj_tcd_code_block_enc_allocate_data in lib/openjp2/tcd.c in OpenJPEG 2.2.0. The vulnerability causes an out-of-bounds write, which may lead to remote denial of service (heap-based buffer overflow affecting opj_mqc_flush in lib/openjp2/mqc.c and opj_t1_encode_cblk in lib/openjp2/t1.c) or possibly remote code execution.
An exploitable code execution vulnerability exists in the XCF image rendering functionality of SDL2_image-2.0.2. A specially crafted XCF image can cause a heap overflow resulting in code execution. An attacker can display a specially crafted image to trigger this vulnerability.
A stack-based buffer overflow was discovered in the pgxtoimage function in bin/jp2/convert.c in OpenJPEG 2.2.0. The vulnerability causes an out-of-bounds write, which may lead to remote denial of service or possibly remote code execution.
An exploitable code execution vulnerability exists in the ILBM image rendering functionality of SDL2_image-2.0.2. A specially crafted ILBM image can cause a stack overflow resulting in code execution. An attacker can display a specially crafted image to trigger this vulnerability.
ImageMagick 7.0.6-1 has an out-of-bounds read vulnerability in ReadOneMNGImage in coders/png.c.
A vulnerability in Apache OpenOffice Writer DOC file parser before 4.1.4, and specifically in ImportOldFormatStyles, allows attackers to craft malicious documents that cause denial of service (memory corruption and application crash) potentially resulting in arbitrary code execution.
OpenCV (Open Source Computer Vision Library) through 3.3 has a buffer overflow in the cv::BmpDecoder::readData function in modules/imgcodecs/src/grfmt_bmp.cpp when reading an image file by using cv::imread, as demonstrated by the 4-buf-overflow-readData-memcpy test case.
OpenCV (Open Source Computer Vision Library) through 3.3 has an out-of-bounds write error in the FillColorRow8 function in utils.cpp when reading an image file by using cv::imread.
OpenCV (Open Source Computer Vision Library) through 3.3 has an out-of-bounds read error in the function icvCvt_BGRA2BGR_8u_C4C3R when reading an image file by using cv::imread.
A flaw was found in Exuberant Ctags in the way it handles the "-o" option. This option specifies the tag filename. A crafted tag filename specified in the command line or in the configuration file results in arbitrary command execution because the externalSortTags() in sort.c calls the system(3) function in an unsafe way.
The ReadSUNImage function in coders/sun.c in GraphicsMagick 1.3.26 has a colormap heap-based buffer over-read.
OpenCV (Open Source Computer Vision Library) through 3.3 has an out-of-bounds read error in the cv::RBaseStream::readBlock function in modules/imgcodecs/src/bitstrm.cpp when reading an image file by using cv::imread, as demonstrated by the 8-opencv-invalid-read-fread test case.
OpenCV (Open Source Computer Vision Library) through 3.3 has an invalid write in the cv::RLByteStream::getBytes function in modules/imgcodecs/src/bitstrm.cpp when reading an image file by using cv::imread, as demonstrated by the 2-opencv-heapoverflow-fseek test case.
When running Apache Tomcat versions 9.0.0.M1 to 9.0.0, 8.5.0 to 8.5.22, 8.0.0.RC1 to 8.0.46 and 7.0.0 to 7.0.81 with HTTP PUTs enabled (e.g. via setting the readonly initialisation parameter of the Default servlet to false) it was possible to upload a JSP file to the server via a specially crafted request. This JSP could then be requested and any code it contained would be executed by the server.
OpenCV (Open Source Computer Vision Library) through 3.3 has an out-of-bounds write error in the FillUniColor function in utils.cpp when reading an image file by using cv::imread.
The ReadMNGImage function in coders/png.c in GraphicsMagick 1.3.26 mishandles large MNG images, leading to an invalid memory read in the SetImageColorCallBack function in magick/image.c.
OpenCV (Open Source Computer Vision Library) through 3.3 has an out-of-bounds write error in the function FillColorRow1 in utils.cpp when reading an image file by using cv::imread.
In modules/imgcodecs/src/grfmt_pxm.cpp, the length of buffer AutoBuffer _src is small than expected, which will cause copy buffer overflow later. If the image is from remote, may lead to remote code execution or denial of service. This affects Opencv 3.3 and earlier.
Use after free in WebRTC in Google Chrome prior to 83.0.4103.61 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.
The ReadWMFImage function in coders/wmf.c in GraphicsMagick 1.3.26 has a use-after-free issue for data associated with exception reporting.
Netatalk through 3.1.13 has an afp_getappl heap-based buffer overflow resulting in code execution via a crafted .appl file. This provides remote root access on some platforms such as FreeBSD (used for TrueNAS).
OpenCV (Open Source Computer Vision Library) through 3.3 has an out-of-bounds write error in the function FillColorRow4 in utils.cpp when reading an image file by using cv::imread.
OpenVPN versions before 2.3.3 and 2.4.x before 2.4.4 are vulnerable to a buffer overflow vulnerability when key-method 1 is used, possibly resulting in code execution.
Multiple unspecified vulnerabilities in Mozilla Firefox 3.x before 3.0.5 and 2.x before 2.0.0.19, Thunderbird 2.x before 2.0.0.19, and SeaMonkey 1.x before 1.1.14 allow remote attackers to run arbitrary JavaScript with chrome privileges via unknown vectors in which "page content can pollute XPCNativeWrappers."
coders/jpeg.c in ImageMagick before 7.0.6-1 allows remote attackers to cause a denial of service (application crash) or possibly have unspecified other impact via JPEG data that is too short.
An exploitable code execution vulnerability exists in the ILBM image rendering functionality of SDL2_image-2.0.2. A specially crafted ILBM image can cause a heap overflow resulting in code execution. An attacker can display a specially crafted image to trigger this vulnerability.
In GraphicsMagick, a heap buffer overflow was found when parsing MIFF.
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Libraries). The supported version that is affected is Java SE: 8u131; Java SE Embedded: 8u131. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Java SE, Java SE Embedded, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in takeover of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 9.6 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H).
Vulnerability in the Java SE component of Oracle Java SE (subcomponent: AWT). Supported versions that are affected are Java SE: 6u151, 7u141 and 8u131. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Java SE, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in takeover of Java SE. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 9.6 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H).
Heap-based Buffer Overflow in GitHub repository vim/vim prior to 8.2.
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: RMI). Supported versions that are affected are Java SE: 6u151, 7u141 and 8u131; Java SE Embedded: 8u131. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Java SE, Java SE Embedded, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in takeover of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 9.6 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H).
Heimdal before 7.4 allows remote attackers to impersonate services with Orpheus' Lyre attacks because it obtains service-principal names in a way that violates the Kerberos 5 protocol specification. In _krb5_extract_ticket() the KDC-REP service name must be obtained from the encrypted version stored in 'enc_part' instead of the unencrypted version stored in 'ticket'. Use of the unencrypted version provides an opportunity for successful server impersonation and other attacks. NOTE: this CVE is only for Heimdal and other products that embed Heimdal code; it does not apply to other instances in which this part of the Kerberos 5 protocol specification is violated.
Heap buffer overflow in vim_strncpy find_word in GitHub repository vim/vim prior to 8.2.4919. This vulnerability is capable of crashing software, Bypass Protection Mechanism, Modify Memory, and possible remote execution
Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Libraries). Supported versions that are affected are Java SE: 6u151, 7u141 and 8u131; Java SE Embedded: 8u131. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Java SE, Java SE Embedded, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in takeover of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 9.6 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H).