aria2c in aria2 1.33.1, when --log is used, can store an HTTP Basic Authentication username and password in a file, which might allow local users to obtain sensitive information by reading this file.
In uvc_parse_standard_control of uvc_driver.c, there is a possible out-of-bound read due to improper input validation. This could lead to local information disclosure with no additional execution privileges needed. User interaction is not needed for exploitation. Product: Android. Versions: Android kernel. Android ID: A-111760968.
In the Linux kernel before 5.3.11, there is an info-leak bug that can be caused by a malicious USB device in the drivers/net/can/usb/peak_usb/pcan_usb_core.c driver, aka CID-f7a1337f0d29.
DistUpgrade/DistUpgradeMain.py in Update Manager, as used by Ubuntu 12.04 LTS, 11.10, and 11.04, uses weak permissions for (1) apt-clone_system_state.tar.gz and (2) system_state.tar.gz, which allows local users to obtain repository credentials.
On the x86-64 architecture, the GNU C Library (aka glibc) before 2.31 fails to ignore the LD_PREFER_MAP_32BIT_EXEC environment variable during program execution after a security transition, allowing local attackers to restrict the possible mapping addresses for loaded libraries and thus bypass ASLR for a setuid program.
In the Linux kernel through 5.3.8, f->fmt.sdr.reserved is uninitialized in rcar_drif_g_fmt_sdr_cap in drivers/media/platform/rcar_drif.c, which could cause a memory disclosure problem.
Sander Bos discovered Apport mishandled crash dumps originating from containers. This could be used by a local attacker to generate a crash report for a privileged process that is readable by an unprivileged user.
Apport reads and writes information on a crashed process to /proc/pid with elevated privileges. Apport then determines which user the crashed process belongs to by reading /proc/pid through get_pid_info() in data/apport. An unprivileged user could exploit this to read information about a privileged running process by exploiting PID recycling. This information could then be used to obtain ASLR offsets for a process with an existing memory corruption vulnerability. The initial fix introduced regressions in the Python Apport library due to a missing argument in Report.add_proc_environ in apport/report.py. It also caused an autopkgtest failure when reading /proc/pid and with Python 2 compatibility by reading /proc maps. The initial and subsequent regression fixes are in 2.20.11-0ubuntu16, 2.20.11-0ubuntu8.6, 2.20.9-0ubuntu7.12, 2.20.1-0ubuntu2.22 and 2.14.1-0ubuntu3.29+esm3.
net/core/ethtool.c in the Linux kernel before 2.6.36 does not initialize certain data structures, which allows local users to obtain potentially sensitive information from kernel heap memory by leveraging the CAP_NET_ADMIN capability for an ethtool ioctl call.
The tcf_act_police_dump function in net/sched/act_police.c in the actions implementation in the network queueing functionality in the Linux kernel before 2.6.36-rc4 does not properly initialize certain structure members, which allows local users to obtain potentially sensitive information from kernel memory via vectors involving a dump operation. NOTE: this vulnerability exists because of an incomplete fix for CVE-2010-2942.
The xfs_ioc_fsgetxattr function in fs/xfs/linux-2.6/xfs_ioctl.c in the Linux kernel before 2.6.36-rc4 does not initialize a certain structure member, which allows local users to obtain potentially sensitive information from kernel stack memory via an ioctl call.
The cxgb_extension_ioctl function in drivers/net/cxgb3/cxgb3_main.c in the Linux kernel before 2.6.36-rc5 does not properly initialize a certain structure member, which allows local users to obtain potentially sensitive information from kernel stack memory via a CHELSIO_GET_QSET_NUM ioctl call.
The ethtool_get_rxnfc function in net/core/ethtool.c in the Linux kernel before 2.6.36 does not initialize a certain block of heap memory, which allows local users to obtain potentially sensitive information via an ETHTOOL_GRXCLSRLALL ethtool command with a large info.rule_cnt value, a different vulnerability than CVE-2010-2478.
The hso_get_count function in drivers/net/usb/hso.c in the Linux kernel before 2.6.36-rc5 does not properly initialize a certain structure member, which allows local users to obtain potentially sensitive information from kernel stack memory via a TIOCGICOUNT ioctl call.
Integer overflow in the btrfs_ioctl_clone function in fs/btrfs/ioctl.c in the Linux kernel before 2.6.35 might allow local users to obtain sensitive information via a BTRFS_IOC_CLONE_RANGE ioctl call.
The actions implementation in the network queueing functionality in the Linux kernel before 2.6.36-rc2 does not properly initialize certain structure members when performing dump operations, which allows local users to obtain potentially sensitive information from kernel memory via vectors related to (1) the tcf_gact_dump function in net/sched/act_gact.c, (2) the tcf_mirred_dump function in net/sched/act_mirred.c, (3) the tcf_nat_dump function in net/sched/act_nat.c, (4) the tcf_simp_dump function in net/sched/act_simple.c, and (5) the tcf_skbedit_dump function in net/sched/act_skbedit.c.
The xfs_swapext function in fs/xfs/xfs_dfrag.c in the Linux kernel before 2.6.35 does not properly check the file descriptors passed to the SWAPEXT ioctl, which allows local users to leverage write access and obtain read access by swapping one file into another file.
The ocfs2_prepare_page_for_write function in fs/ocfs2/aops.c in the Oracle Cluster File System 2 (OCFS2) subsystem in the Linux kernel before 2.6.39-rc1 does not properly handle holes that cross page boundaries, which allows local users to obtain potentially sensitive information from uninitialized disk locations by reading a file.
The eql_g_master_cfg function in drivers/net/eql.c in the Linux kernel before 2.6.36-rc5 does not properly initialize a certain structure member, which allows local users to obtain potentially sensitive information from kernel stack memory via an EQL_GETMASTRCFG ioctl call.
The cfg80211_wext_giwessid function in net/wireless/wext-compat.c in the Linux kernel before 2.6.36-rc3-next-20100831 does not properly initialize certain structure members, which allows local users to leverage an off-by-one error in the ioctl_standard_iw_point function in net/wireless/wext-core.c, and obtain potentially sensitive information from kernel heap memory, via vectors involving an SIOCGIWESSID ioctl call that specifies a large buffer size.
The tcf_fill_node function in net/sched/cls_api.c in the netlink subsystem in the Linux kernel 2.6.x before 2.6.32-rc5, and 2.4.37.6 and earlier, does not initialize a certain tcm__pad2 structure member, which might allow local users to obtain sensitive information from kernel memory via unspecified vectors. NOTE: this issue exists because of an incomplete fix for CVE-2005-4881.
snapd 2.54.2 and earlier created ~/snap directories in user home directories without specifying owner-only permissions. This could allow a local attacker to read information that should have been private. Fixed in snapd versions 2.54.3+18.04, 2.54.3+20.04 and 2.54.3+21.10.1
pam_motd (aka the MOTD module) in libpam-modules before 1.1.0-2ubuntu1.1 in PAM on Ubuntu 9.10 and libpam-modules before 1.1.1-2ubuntu5 in PAM on Ubuntu 10.04 LTS allows local users to change the ownership of arbitrary files via a symlink attack on .cache in a user's home directory, related to "user file stamps" and the motd.legal-notice file.
dbus before 1.10.28, 1.12.x before 1.12.16, and 1.13.x before 1.13.12, as used in DBusServer in Canonical Upstart in Ubuntu 14.04 (and in some, less common, uses of dbus-daemon), allows cookie spoofing because of symlink mishandling in the reference implementation of DBUS_COOKIE_SHA1 in the libdbus library. (This only affects the DBUS_COOKIE_SHA1 authentication mechanism.) A malicious client with write access to its own home directory could manipulate a ~/.dbus-keyrings symlink to cause a DBusServer with a different uid to read and write in unintended locations. In the worst case, this could result in the DBusServer reusing a cookie that is known to the malicious client, and treating that cookie as evidence that a subsequent client connection came from an attacker-chosen uid, allowing authentication bypass.
snap-confine in snapd before 2.38 incorrectly set the ownership of a snap application to the uid and gid of the first calling user. Consequently, that user had unintended access to a private /tmp directory.
Kevin Backhouse discovered that apport would read a user-supplied configuration file with elevated privileges. By replacing the file with a symbolic link, a user could get apport to read any file on the system as root, with unknown consequences.
It was discovered that the process_report() function in data/whoopsie-upload-all allowed arbitrary file writes via symlinks.
In snapd versions prior to 2.62, snapd failed to properly check the destination of symbolic links when extracting a snap. The snap format is a squashfs file-system image and so can contain symbolic links and other file types. Various file entries within the snap squashfs image (such as icons and desktop files etc) are directly read by snapd when it is extracted. An attacker who could convince a user to install a malicious snap which contained symbolic links at these paths could then cause snapd to write out the contents of the symbolic link destination into a world-readable directory. This in-turn could allow an unprivileged user to gain access to privileged information.
The MOTD update script in the base-files package in Ubuntu 18.04 LTS before 10.1ubuntu2.2, and Ubuntu 18.10 before 10.1ubuntu6 incorrectly handled temporary files. A local attacker could use this issue to cause a denial of service, or possibly escalate privileges if kernel symlink restrictions were disabled.
systemd-tmpfiles in systemd through 237 mishandles symlinks present in non-terminal path components, which allows local users to obtain ownership of arbitrary files via vectors involving creation of a directory and a file under that directory, and later replacing that directory with a symlink. This occurs even if the fs.protected_symlinks sysctl is turned on.
MySQL before 5.0.67 allows local users to bypass certain privilege checks by calling CREATE TABLE on a MyISAM table with modified (1) DATA DIRECTORY or (2) INDEX DIRECTORY arguments that are originally associated with pathnames without symlinks, and that can point to tables created at a future time at which a pathname is modified to contain a symlink to a subdirectory of the MySQL home data directory. NOTE: this vulnerability exists because of an incomplete fix for CVE-2008-4097.
sosreport in SoS 3.x allows local users to obtain sensitive information from sosreport files or gain privileges via a symlink attack on an archive file in a temporary directory, as demonstrated by sosreport-$hostname-$date.tar in /tmp/sosreport-$hostname-$date.
In Perl through 5.26.2, the Archive::Tar module allows remote attackers to bypass a directory-traversal protection mechanism, and overwrite arbitrary files, via an archive file containing a symlink and a regular file with the same name.
In KDE Ark before 20.08.1, a crafted TAR archive with symlinks can install files outside the extraction directory, as demonstrated by a write operation to a user's home directory.
checkinstall 1.6.2, when used to create a package that contains a symlink, may trigger the creation of a mode 0777 executable file.
lxc-start in lxc before 1.0.8 and 1.1.x before 1.1.4 allows local container administrators to escape AppArmor confinement via a symlink attack on a (1) mount target or (2) bind mount source.
kernel_crashdump in Apport before 2.19 allows local users to cause a denial of service (disk consumption) or possibly gain privileges via a (1) symlink or (2) hard link attack on /var/crash/vmcore.log.
In the cron package through 3.0pl1-128 on Debian, and through 3.0pl1-128ubuntu2 on Ubuntu, the postinst maintainer script allows for group-crontab-to-root privilege escalation via symlink attacks against unsafe usage of the chown and chmod programs.
The Debian pg_ctlcluster, pg_createcluster, and pg_upgradecluster scripts, as distributed in the Debian postgresql-common package before 181+deb9u1 for PostgreSQL (and other packages related to Debian and Ubuntu), handled symbolic links insecurely, which could result in local denial of service by overwriting arbitrary files.
Net-SNMP through 5.7.3 allows Escalation of Privileges because of UNIX symbolic link (symlink) following.
The web interface in CUPS 1.7.4 allows local users in the lp group to read arbitrary files via a symlink attack on a file in /var/cache/cups/rss/ and language[0] set to null. NOTE: this vulnerability exists because of an incomplete fix for CVE-2014-3537.
The web interface in CUPS before 1.7.4 allows local users in the lp group to read arbitrary files via a symlink attack on a file in /var/cache/cups/rss/.
CUPS before 2.0 allows local users to read arbitrary files via a symlink attack on (1) index.html, (2) index.class, (3) index.pl, (4) index.php, (5) index.pyc, or (6) index.py.
A flaw was found in chrony versions before 3.5.1 when creating the PID file under the /var/run/chrony folder. The file is created during chronyd startup while still running as the root user, and when it's opened for writing, chronyd does not check for an existing symbolic link with the same file name. This flaw allows an attacker with privileged access to create a symlink with the default PID file name pointing to any destination file in the system, resulting in data loss and a denial of service due to the path traversal.
lppasswd in CUPS before 1.7.1, when running with setuid privileges, allows local users to read portions of arbitrary files via a modified HOME environment variable and a symlink attack involving .cups/client.conf.
fr-archive-libarchive.c in GNOME file-roller through 3.36.1 allows Directory Traversal during extraction because it lacks a check of whether a file's parent is a symlink to a directory outside of the intended extraction location.
Puppet before 3.3.3 and 3.4 before 3.4.1 and Puppet Enterprise (PE) before 2.8.4 and 3.1 before 3.1.1 allows local users to overwrite arbitrary files via a symlink attack on unspecified files.
The postinst script in the tomcat6 package before 6.0.45+dfsg-1~deb7u4 on Debian wheezy, before 6.0.35-1ubuntu3.9 on Ubuntu 12.04 LTS and on Ubuntu 14.04 LTS; the tomcat7 package before 7.0.28-4+deb7u8 on Debian wheezy, before 7.0.56-3+deb8u6 on Debian jessie, before 7.0.52-1ubuntu0.8 on Ubuntu 14.04 LTS, and on Ubuntu 12.04 LTS, 16.04 LTS, and 16.10; and the tomcat8 package before 8.0.14-1+deb8u5 on Debian jessie, before 8.0.32-1ubuntu1.3 on Ubuntu 16.04 LTS, before 8.0.37-1ubuntu0.1 on Ubuntu 16.10, and before 8.0.38-2ubuntu1 on Ubuntu 17.04 might allow local users with access to the tomcat account to obtain sensitive information or gain root privileges via a symlink attack on the Catalina localhost directory.
Race condition in cpio 2.6 and earlier allows local users to modify permissions of arbitrary files via a hard link attack on a file while it is being decompressed, whose permissions are changed by cpio after the decompression is complete.
In libXfont before 1.5.4 and libXfont2 before 2.0.3, a local attacker can open (but not read) files on the system as root, triggering tape rewinds, watchdogs, or similar mechanisms that can be triggered by opening files.