Large loop in the Bluetooth DHT dissector in Wireshark 3.4.0 to 3.4.9 and 3.2.0 to 3.2.17 allows denial of service via packet injection or crafted capture file
Large loop in the PNRP dissector in Wireshark 3.4.0 to 3.4.9 and 3.2.0 to 3.2.17 allows denial of service via packet injection or crafted capture file
A vulnerability was found in Radare2 in versions prior to 5.6.2, 5.6.0, 5.5.4 and 5.5.2. Mapping a huge section filled with zeros of an ELF64 binary for MIPS architecture can lead to uncontrolled resource consumption and DoS.
In Eclipse Parsson before versions 1.1.4 and 1.0.5, Parsing JSON from untrusted sources can lead malicious actors to exploit the fact that the built-in support for parsing numbers with large scale in Java has a number of edge cases where the input text of a number can lead to much larger processing time than one would expect. To mitigate the risk, parsson put in place a size limit for the numbers as well as their scale.
gRPC contains a vulnerability that allows hpack table accounting errors could lead to unwanted disconnects between clients and servers in exceptional cases/ Three vectors were found that allow the following DOS attacks: - Unbounded memory buffering in the HPACK parser - Unbounded CPU consumption in the HPACK parser The unbounded CPU consumption is down to a copy that occurred per-input-block in the parser, and because that could be unbounded due to the memory copy bug we end up with an O(n^2) parsing loop, with n selected by the client. The unbounded memory buffering bugs: - The header size limit check was behind the string reading code, so we needed to first buffer up to a 4 gigabyte string before rejecting it as longer than 8 or 16kb. - HPACK varints have an encoding quirk whereby an infinite number of 0’s can be added at the start of an integer. gRPC’s hpack parser needed to read all of them before concluding a parse. - gRPC’s metadata overflow check was performed per frame, so that the following sequence of frames could cause infinite buffering: HEADERS: containing a: 1 CONTINUATION: containing a: 2 CONTINUATION: containing a: 3 etc…
C++ Facebook Thrift servers (using cpp2) would not error upon receiving messages with containers of fields of unknown type. As a result, malicious clients could send short messages which would take a long time for the server to parse, potentially leading to denial of service. This issue affects Facebook Thrift prior to v2019.02.18.00.
Excessive Iteration vulnerability in Apache Software Foundation Apache Sling Resource Merger.This issue affects Apache Sling Resource Merger: from 1.2.0 before 1.4.2.
In Storage Performance Development Kit (SPDK) before 19.01, a malicious vhost client (i.e., virtual machine) could carefully construct a circular descriptor chain that would result in a partial denial of service in the SPDK vhost target, because the vhost target did not properly detect such chains.
Go Facebook Thrift servers would not error upon receiving messages with containers of fields of unknown type. As a result, malicious clients could send short messages which would take a long time for the server to parse, potentially leading to denial of service. This issue affects Facebook Thrift prior to v2019.03.04.00.
Java Facebook Thrift servers would not error upon receiving messages with containers of fields of unknown type. As a result, malicious clients could send short messages which would take a long time for the server to parse, potentially leading to denial of service. This issue affects Facebook Thrift prior to v2019.02.18.00.
Legacy C++ Facebook Thrift servers (using cpp instead of cpp2) would not error upon receiving messages with containers of fields of unknown type. As a result, malicious clients could send short messages which would take a long time for the server to parse, potentially leading to denial of service. This issue affects Facebook Thrift prior to v2019.05.06.00.
Python Facebook Thrift servers would not error upon receiving messages with containers of fields of unknown type. As a result, malicious clients could send short messages which would take a long time for the server to parse, potentially leading to denial of service. This issue affects Facebook Thrift prior to v2019.02.18.00.
When reading a specially crafted 7Z archive, the construction of the list of codecs that decompress an entry can result in an infinite loop. This could be used to mount a denial of service attack against services that use Compress' sevenz package.
In ASUS RT-AX3000, ZenWiFi AX (XT8), RT-AX88U, and other ASUS routers with firmware < 3.0.0.4.386.42095 or < 9.0.0.4.386.41994, when IPv6 is used, a routing loop can occur that generates excessive network traffic between an affected device and its upstream ISP's router. This occurs when a link prefix route points to a point-to-point link, a destination IPv6 address belongs to the prefix and is not a local IPv6 address, and a router advertisement is received with at least one global unique IPv6 prefix for which the on-link flag is set.
In Gargoyle OS 1.12.0, when IPv6 is used, a routing loop can occur that generates excessive network traffic between an affected device and its upstream ISP's router. This occurs when a link prefix route points to a point-to-point link, a destination IPv6 address belongs to the prefix and is not a local IPv6 address, and a router advertisement is received with at least one global unique IPv6 prefix for which the on-link flag is set.
In Wireshark 2.4.0 to 2.4.4 and 2.2.0 to 2.2.12, epan/dissectors/packet-wccp.c had a large loop that was addressed by ensuring that a calculated length was monotonically increasing.
In Genivia gSOAP with a specific configuration an unauthenticated remote attacker can generate a high CPU load when forcing to parse an XML having duplicate ID attributes which can lead to a DoS.
In Wireshark 2.4.0 to 2.4.5 and 2.2.0 to 2.2.13, the NBAP dissector could crash with a large loop that ends with a heap-based buffer overflow. This was addressed in epan/dissectors/packet-nbap.c by prohibiting the self-linking of DCH-IDs.
In Wireshark 2.4.0 to 2.4.4 and 2.2.0 to 2.2.12, epan/dissectors/packet-thrift.c had a large loop that was addressed by not proceeding with dissection after encountering an unexpected type.
In TP-Link TL-XDR3230 < 1.0.12, TL-XDR1850 < 1.0.9, TL-XDR1860 < 1.0.14, TL-XDR3250 < 1.0.2, TL-XDR6060 Turbo < 1.1.8, TL-XDR5430 < 1.0.11, and possibly others, when IPv6 is used, a routing loop can occur that generates excessive network traffic between an affected device and its upstream ISP's router. This occurs when a link prefix route points to a point-to-point link, a destination IPv6 address belongs to the prefix and is not a local IPv6 address, and a router advertisement is received with at least one global unique IPv6 prefix for which the on-link flag is set.
libjpeg 9c has a large loop because read_pixel in rdtarga.c mishandles EOF.