Tenda routers G1 and G3 v15.11.0.17(9502)_CN were discovered to contain a stack overflow in the function formDelDhcpRule. This vulnerability allows attackers to cause a Denial of Service (DoS) via the delDhcpIndex parameter.
Tenda routers G1 and G3 v15.11.0.17(9502)_CN were discovered to contain a stack overflow in the function formIPMacBindModify. This vulnerability allows attackers to cause a Denial of Service (DoS) via the IPMacBindRuleIP and IPMacBindRuleMac parameters.
Improper validation of DRAM addresses in SMU may allow an attacker to overwrite sensitive memory locations within the ASP potentially resulting in a denial of service.
Tenda AX3 v16.03.12.10_CN was discovered to contain a stack overflow in the function fromSetSysTime. This vulnerability allows attackers to cause a Denial of Service (DoS) via the timeZone parameter.
An untrusted pointer dereference in mrb_vm_exec() of mruby v3.0.0 can lead to a segmentation fault or application crash.
Tenda routers G1 and G3 v15.11.0.17(9502)_CN were discovered to contain a stack overflow in the function formAddDnsForward. This vulnerability allows attackers to cause a Denial of Service (DoS) via the DnsForwardRule parameter.
Tenda AX3 v16.03.12.10_CN was discovered to contain a stack overflow in the function formSetMacFilterCfg. This vulnerability allows attackers to cause a Denial of Service (DoS) via the deviceList parameter.
Tenda routers G1 and G3 v15.11.0.17(9502)_CN were discovered to contain a stack overflow in the function formSetPortMapping. This vulnerability allows attackers to cause a Denial of Service (DoS) via the portMappingServer, portMappingProtocol, portMappingWan, porMappingtInternal, and portMappingExternal parameters.
Tenda AX3 v16.03.12.10_CN was discovered to contain a heap overflow in the function GetParentControlInfo. This vulnerability allows attackers to cause a Denial of Service (DoS) via the mac parameter.
A vulnerability was found in D-Link DCS-932L 2.18.01. It has been declared as critical. Affected by this vulnerability is the function setSystemEmail of the file /setSystemEmail. The manipulation of the argument EmailSMTPPortNumber leads to stack-based buffer overflow. The attack can be launched remotely. The exploit has been disclosed to the public and may be used. This vulnerability only affects products that are no longer supported by the maintainer.
Tenda routers G1 and G3 v15.11.0.17(9502)_CN were discovered to contain a stack overflow in the function formSetPortMapping. This vulnerability allows attackers to cause a Denial of Service (DoS) via the portMappingServer, portMappingProtocol, portMappingWan, porMappingtInternal, and portMappingExternal parameters.
Tenda routers G1 and G3 v15.11.0.17(9502)_CN were discovered to contain a stack overflow in the function formAddDhcpBindRule. This vulnerability allows attackers to cause a Denial of Service (DoS) via the addDhcpRules parameter.
examples/6lbr/apps/6lbr-webserver/httpd.c in CETIC-6LBR (aka 6lbr) 1.5.0 has a strcat stack-based buffer overflow via a request for a long URL over a 6LoWPAN network.
Tenda routers G1 and G3 v15.11.0.17(9502)_CN were discovered to contain a stack overflow in the function formSetQvlanList. This vulnerability allows attackers to cause a Denial of Service (DoS) via the qvlanName parameter.
Tenda AX3 v16.03.12.10_CN was discovered to contain a stack overflow in the function fromSetWifiGusetBasic. This vulnerability allows attackers to cause a Denial of Service (DoS) via the shareSpeed parameter.
Tenda AX3 v16.03.12.10_CN was discovered to contain a stack overflow in the function formSetDeviceName. This vulnerability allows attackers to cause a Denial of Service (DoS) via the devName parameter.
Heap-based Buffer Overflow in function bfd_getl32 in Binutils objdump 3.37.
D-Link DIR-619L 2.06B01 is vulnerable to Buffer Overflow in the formSysCmd function via the submit-url parameter.
Tenda AX12 v22.03.01.21 was discovered to contain a stack buffer overflow in the function sub_422CE4. This vulnerability allows attackers to cause a Denial of Service (DoS) via the strcpy parameter.
Tenda routers G1 and G3 v15.11.0.17(9502)_CN were discovered to contain a stack overflow in the function formSetStaticRoute. This vulnerability allows attackers to cause a Denial of Service (DoS) via the staticRouteNet, staticRouteMask, and staticRouteGateway parameters.
Tenda routers G1 and G3 v15.11.0.17(9502)_CN were discovered to contain a stack overflow in the function formIPMacBindAdd. This vulnerability allows attackers to cause a Denial of Service (DoS) via the IPMacBindRule parameter.
A Buffer Overflow vulnerability exists in Tenda Router AX12 V22.03.01.21_CN in the sub_422CE4 function in page /goform/setIPv6Status via the prefixDelegate parameter, which causes a Denial of Service.
A vulnerability has been identified in Teamcenter V12.4 (All versions < V12.4.0.13), Teamcenter V13.0 (All versions < V13.0.0.9), Teamcenter V13.1 (All versions), Teamcenter V13.2 (All versions < V13.2.0.8), Teamcenter V13.3 (All versions < V13.3.0.3), Teamcenter V14.0 (All versions < V14.0.0.2). The tcserver.exe binary in affected applications is vulnerable to a stack overflow condition during the parsing of user input that may lead the binary to crash.
An issue was discovered in GnuTLS before 3.6.15. A server can trigger a NULL pointer dereference in a TLS 1.3 client if a no_renegotiation alert is sent with unexpected timing, and then an invalid second handshake occurs. The crash happens in the application's error handling path, where the gnutls_deinit function is called after detecting a handshake failure.
Tenda AX3 v16.03.12.10_CN was discovered to contain a stack overflow in the function fromSetIpMacBind. This vulnerability allows attackers to cause a Denial of Service (DoS) via the list parameter.
PJSIP is a free and open source multimedia communication library written in C. Versions 2.12 and prior contain a stack buffer overflow vulnerability that affects PJSUA2 users or users that call the API `pjmedia_sdp_print(), pjmedia_sdp_media_print()`. Applications that do not use PJSUA2 and do not directly call `pjmedia_sdp_print()` or `pjmedia_sdp_media_print()` should not be affected. A patch is available on the `master` branch of the `pjsip/pjproject` GitHub repository. There are currently no known workarounds.
Tenda AX3 v16.03.12.10_CN and AX12 22.03.01.2_CN was discovered to contain a stack overflow in the function form_fast_setting_wifi_set. This vulnerability allows attackers to cause a Denial of Service (DoS) via the timeZone parameter.
Tenda AX3 v16.03.12.10_CN was discovered to contain a stack overflow in the function saveParentControlInfo. This vulnerability allows attackers to cause a Denial of Service (DoS) via the time parameter.
Extreme EXOS 15.7, 16.x, 21.x, and 22.x allows remote attackers to trigger a buffer overflow leading to a reboot.
Tenda AX3 v16.03.12.10_CN was discovered to contain a stack overflow in the function formSetVirtualSer. This vulnerability allows attackers to cause a Denial of Service (DoS) via the list parameter.
An issue was discovered in PlayJava in Play Framework 2.6.0 through 2.8.2. The body parsing of HTTP requests eagerly parses a payload given a Content-Type header. A deep JSON structure sent to a valid POST endpoint (that may or may not expect JSON payloads) causes a StackOverflowError and Denial of Service.
A vulnerability has been identified in Opcenter Execution Foundation (All versions < V2407), Opcenter Quality (All versions < V2312), SIMATIC PCS neo (All versions < V4.1), SINEC NMS (All versions < V2.0 SP1), Totally Integrated Automation Portal (TIA Portal) V14 (All versions), Totally Integrated Automation Portal (TIA Portal) V15.1 (All versions), Totally Integrated Automation Portal (TIA Portal) V16 (All versions), Totally Integrated Automation Portal (TIA Portal) V17 (All versions < V17 Update 8), Totally Integrated Automation Portal (TIA Portal) V18 (All versions < V18 Update 3). The affected application contains an out of bounds write past the end of an allocated buffer when handling specific requests on port 4002/tcp and 4004/tcp. This could allow an attacker to crash the application. The corresponding service is auto-restarted after the crash.
A buffer overflow vulnerability exists in the AMF of open5gs 2.1.4. When the length of MSIN in Supi exceeds 24 characters, it leads to AMF denial of service.
TOTOLINK X5000R V9.1.0u.6118_B20201102 and TOTOLINK A7000R V9.1.0u.6115_B20201022 were discovered to contain a stack overflow in the function setParentalRules. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted POST request.
Mediainfo before version 20.08 has a heap buffer overflow vulnerability via MediaInfoLib::File_Gxf::ChooseParser_ChannelGrouping.
Tenda AC8V4 V16.03.34.06 was discovered to contain a stack overflow via the list parameter in the set_qosMib_list function.
Denial of Service vulnerability in Rostelecom CS-C2SHW 5.0.082.1. AgentGreen service has a bug in parsing broadcast discovery UDP packet. Sending a packet of too small size will lead to an attempt of allocating buffer of negative size. As the result service AgentGreen will be terminated and started again later.
A vulnerability has been found in TP-Link TL-WR841N V11. The vulnerability exists in the /userRpm/WlanNetworkRpm_AP.htm file due to missing input parameter validation, which may lead to the buffer overflow to cause a crash of the web service and result in a denial-of-service (DoS) condition. The attack may be launched remotely. This vulnerability only affects products that are no longer supported by the maintainer.
A Buffer Overflow vulnerability exists in Tenda Router AX12 V22.03.01.21_CN in the sub_422CE4 function in the goform/setIPv6Status binary file /usr/sbin/httpd via the conType parameter, which causes a Denial of Service.
In lldpd before 1.0.13, when decoding SONMP packets in the sonmp_decode function, it's possible to trigger an out-of-bounds heap read via short SONMP packets.
A vulnerability has been found in TP-Link TL-WR841N V11. The vulnerability exists in the /userRpm/WzdWlanSiteSurveyRpm_AP.htm file due to missing input parameter validation, which may lead to the buffer overflow to cause a crash of the web service and result in a denial-of-service (DoS) condition. The attack may be launched remotely. This vulnerability only affects products that are no longer supported by the maintainer.
Heap buffer overflow at moddable/xs/sources/xsDebug.c in Moddable SDK before before 20200903. The top stack frame is only partially initialized because the stack overflowed while creating the frame. This leads to a crash in the code sending the stack frame to the debugger.
The function ClientEAPOLKeyRecvd() in the Realtek RTL8195A Wi-Fi Module prior to versions released in April 2020 (up to and excluding 2.08) does not validate the size parameter for an rtl_memcpy() operation, resulting in a stack buffer overflow which can be exploited for denial of service. An attacker can impersonate an Access Point and attack a vulnerable Wi-Fi client, by injecting a crafted packet into the WPA2 handshake. The attacker does not need to know the network's PSK.
Nanopb is a small code-size Protocol Buffers implementation. In Nanopb before versions 0.4.4 and 0.3.9.7, decoding specifically formed message can leak memory if dynamic allocation is enabled and an oneof field contains a static submessage that contains a dynamic field, and the message being decoded contains the submessage multiple times. This is rare in normal messages, but it is a concern when untrusted data is parsed. This is fixed in versions 0.3.9.7 and 0.4.4. The following workarounds are available: 1) Set the option `no_unions` for the oneof field. This will generate fields as separate instead of C union, and avoids triggering the problematic code. 2) Set the type of the submessage field inside oneof to `FT_POINTER`. This way the whole submessage will be dynamically allocated and the problematic code is not executed. 3) Use an arena allocator for nanopb, to make sure all memory can be released afterwards.
A vulnerability has been found in TP-Link TL-WR841N V11. The vulnerability exists in the /userRpm/Wan6to4TunnelCfgRpm.htm file due to missing input parameter validation, which may lead to the buffer overflow to cause a crash of the web service and result in a denial-of-service (DoS) condition. The attack may be launched remotely. This vulnerability only affects products that are no longer supported by the maintainer.
An issue was discovered in tcpreplay tcpprep v4.3.3. There is a heap buffer overflow vulnerability in get_l2len() that can make tcpprep crash and cause a denial of service.
A Buffer Overflow vulnerability exists in zlog 1.2.15 via zlog_conf_build_with_file in src/zlog/src/conf.c.
A vulnerability in dynamic access policies (DAP) functionality of Cisco Adaptive Security Appliance (ASA) Software and Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause an affected device to reload, resulting in a denial of service (DoS) condition. This vulnerability is due to improper processing of HostScan data received from the Posture (HostScan) module. An attacker could exploit this vulnerability by sending crafted HostScan data to an affected device. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a DoS condition. https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-asa-ftd-dap-dos-GhYZBxDU ["https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-asa-ftd-dap-dos-GhYZBxDU"] This advisory is part of the November 2022 release of the Cisco ASA, FTD, and FMC Security Advisory Bundled publication.
An issue was discovered in tcpreplay tcpprep v4.3.3. There is a heap buffer overflow vulnerability in MemcmpInterceptorCommon() that can make tcpprep crash and cause a denial of service.
NLnet Labs Routinator versions 0.9.0 up to and including 0.10.1, support the gzip transfer encoding when querying RRDP repositories. This encoding can be used by an RRDP repository to cause an out-of-memory crash in these versions of Routinator. RRDP uses XML which allows arbitrary amounts of white space in the encoded data. The gzip scheme compresses such white space extremely well, leading to very small compressed files that become huge when being decompressed for further processing, big enough that Routinator runs out of memory when parsing input data waiting for the next XML element.